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Abstract
Techniques making use of Deep Neural Networks (DNN)
have recently been seen to bring large improvements in text-
independent speaker recognition. In this paper, we verify that
the DNN based methods result in excellent performances in
the context of text-dependent speaker verification as well. We
build our system on the previously introduced HMM based i-
vector approach, where phone models are used to obtain frame
level alignment in order to collect sufficient statistics for i-
vector extraction. For comparison, we experiment with an al-
ternative alignment obtained directly from the output of DNN
trained for phone classification. We also experiment with DNN
based bottleneck features and their combinations with standard
cepstral features. Although the i-vector approach is generally
considered not suitable for text-dependent speaker verification,
we show that our HMM based approach combined with bot-
tleneck features provides truly state-of-the-art performance on
RSR2015 data.

1. Introduction
During the last decade, text-independent speaker recognition
technology has been largely improved in terms of both com-
putational complexity and accuracy. The newly introduced
channel-compensation techniques, such as Joint Factor Analy-
sis (JFA) [1,2], evolved in the i-vector paradigm [3], where each
speech utterance is represented by a low-dimensional fixed-
length vector. To verify speaker identity, similarity of i-vectors
can be measured as a simple cosine distance or by using a more
elaborate Bayesian model such as Probabilistic Linear Discrim-
inant Analysis (PLDA) [4, 5].

Recently, there has been an increased effort in applying
these techniques also to the problem of text-dependent speaker
verification, where not only the speaker of the test utterance but
also the (typically very short) uttered phrase have to match with
the enrollment utterance in order to get correctly accepted. A
typical application is a voice-based access control. Unfortu-
nately, the techniques used for text-independent speaker recog-
nition were initially found ineffective for the text-dependent
task. Similar or better performance was usually obtained
using slight modifications of simpler and older techniques
such as Gaussian Mixture Model–Universal Background Model
(GMM-UBM) [6, 7] or NAP compensated GMM mean super-
vector scored using SVM classifier [8, 9]. Only limited success
was observed in the experiments with i-vectors/PLDA [10, 11]
or JFA, which mainly served as an i-vector-like feature extrac-
tion method [12, 13].

In [14], Hidden Markov Model (HMM) based i-vector ap-
proach was proposed for text-prompted speaker verification,
where the phrases are composed from limited predefined set of

words. In this approach, an HMM is trained for each word. For
each enrollment or test utterance, word specific HMMs are con-
catenated into the phrase specific HMM. This HMM is in turn
used to collect sufficient statistics for i-vector extraction instead
of the conventional GMM-UBM. This approach was further ex-
tended to text-dependent task in [15], where the HMM models
were trained for individual phonemes rather than words. Note
that, while there is a specific HMM built for each phrase, there
is only one set of Gaussian components (Gaussians from all
the HMM states of all phone models) corresponding to a single
phrase-independent i-vector extraction model. The i-vector ex-
tractor is trained and used in the usual way, except that, it bene-
fits from the better alignment of frames to Gaussian components
as constrained by the HMM model. This approach was found
to provide state-of-the-art performance on RSR2015 data [10].
However, the drawback of this approach is that we need to know
the phrase specific phone sequence for constructing the corre-
sponding HMM.

More recently, techniques that make use of DNNs have
been devised to significantly improve text-independent speaker
verification. In one of the approaches, a DNN trained for phone
classification is used to partition the feature space instead of
the conventional GMM-UBM. In other words, DNN outputs
are used to define the alignment for collecting the sufficient
statistics for the i-vector extraction [16–21]. In this work, we
experiment with the DNN-based alignment in the context of
text-dependent speaker verification. We are mainly interested
in comparing this method with the aforementioned i-vector
method [15] relying on the HMM alignment. Note that, unlike
in the HMM based method, we do not need the phrase phoneme
transcription in order to obtain the DNN alignment.

Another DNN-based approach, successful in text-
independent speaker verification—as well as in other fields
of speech processing [22–26]—is using DNNs for extracting
frame-by-frame speech features. Typically, a bottleneck (BN)
DNN is trained for phone classification, where the features are
taken from a narrow hidden layer that compresses the relevant
information into low dimensional feature vectors [26, 27].
Such features are then used as the input to the usual i-vector
based system. The good speaker recognition performance with
such BN features is somewhat counter-intuitive as the DNN
trained for phone classification should learn to suppress the
“unimportant” speaker related information. However, it seems
that a GMM-UBM trained on such BN features partitions the
feature space into phone-like clusters. This seems to be im-
portant for the good speaker recognition performance just like
in the case of the previously mentioned DNN approach [16],
where the feature space partitioning is given directly by the
DNN outputs. This hypothesis is in agreement with the
analysis in [26], where the best performance was obtained with
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standard i-vector system, where the input features were BN
features concatenated with standard MFCCs. While the BN
features guaranteed good feature space partitioning, MFCCs
contributed with the speaker information that may have been
already suppressed in the BN features.

In this paper, we verify that BN features—combined with
MFCC features—provide excellent performance also for text-
dependent speaker verification. Although the BN features are
already expected to provide good alignment, we show that fur-
ther improvement can be obtained when combined with the
HMM based i-vector extraction. To our knowledge, this method
provides the best performance obtained with a single i-vector
based system on RSR2015 data.

For completeness (although not studied in this work), let
us mention that DNNs have been also used to extract speak-
ers identity vector in a more direct way (compared to the DNN
based i-vectors) [28–30] or to classify i-vectors in speaker
recognition task [31].

2. i-vector Based System
2.1. General i-vector Extraction

Although thoroughly described in literature, let us review the
basics of i-vector extraction. The main principle is that the
utterance-dependent Gaussian Mixture Model (GMM) super-
vector of concatenated mean vectors s is modeled as

s = m + Tw, (1)

where m = [µ(1)′ , . . . ,µ(C)′ ]′ is the GMM-UBM mean super-
vector (of C components), T = [T(1)′ , . . . ,T(C)′ ]′ is a low-
rank matrix representing M bases spanning subspace with im-
portant variability in the mean super-vector space, and w is a
latent variable of size M with standard normal distribution.

The i-vector φ is the Maximum a Posteriori (MAP) point
estimate of the variable w. It maps most of the relevant in-
formation from a variable-length observation X to a fixed-
dimensional vector. The closed-form solution for computing
the i-vector can be expressed as a function of the zero- and
first-order statistics: nX = [N

(1)
X , . . . , N

(C)
X ]′ and fX =

[f
(1)′
X , . . . , f

(C)′
X ]′, where

N
(c)
X =

∑

t

γ
(c)
t (2)

f
(c)
X =

∑

t

γ
(c)
t ot, (3)

where γ(c)
t is the posterior (or occupation) probability of frame

ot being generated by the mixture component c. The tuple
γt = (γ

(1)
t , . . . , γ

(C)
t ) is usually referred to as frame align-

ment. Note that this variable can be computed either using the
GMM-UBM or using a separate model [16,26,32]. In this work,
we compare the standard GMM-UBM frame alignment with
HMM- and DNN-based approaches, described in the following
sections. The i-vector is then expressed as

φX = L−1
X T̄′ f̄X (4)

where LX is the precision matrix of the posterior distribution of
w, computed as:

LX = I +
C∑

c=1

N
(c)
X T̄(c)′T̄(c), (5)

with c being the GMM-UBM component index, and the ‘bar’
symbols denote normalized variables:

f̄
(c)
X = Σ(c)− 1

2

(
f
(c)
X −N

(c)
X µ(c)

)
(6)

T̄(c) = Σ(c)− 1
2 T(c), (7)

where Σ(c)− 1
2 is a symmetrical decomposition (such as

Cholesky decomposition) of an inverse of the GMM-UBM co-
variance matrix Σ(c). Note that the normalization GMM-UBM
(i.e. the µ(c) and Σ(c) parameters) should be computed via the
same alignment as used in Eq. (2) and (3).

2.2. HMMs in Text-Dependent i-vector Systems

In [15], an HMM structure is proposed for text-dependent
speaker verification, where phoneme recognizer is first trained
with 3-state, GMM-based, mono-phone HMMs. Let F be the
total number of mono-phones, S = 3F be the number of all
states, G be the number of Gaussian components per state, and
C = SG be the number of all individual Gaussians, and let
(s, g) denote a Gaussian component g in state s. Then, for each
phrase (based on the transcribed sequence of phonemes in that
phrase), a new phrase-specific HMM is constructed by concate-
nating the corresponding mono-phone HMMs. The Viterbi al-
gorithm is then used to obtain the alignment of the frames to
the HMM states, and within each state s, the GMM alignment
γ
(s,g)
t for each frame t is computed. We can now re-interpret

the pair (s, g) as one out of C Gaussians and we can substitute
γ
(c)
t in Eq. (2) and (3) by γ(s,g)

t . Note that, due to the typically
short duration of the phrases, not all phonemes are used in the
phrase-specific HMM, therefore the alignment of frames to the
Gaussian components can often be sparse.

It is worth mentioning that after calculating the zero-
and first-order statistics for the training set, a single (phrase-
independent) i-vector extractor was trained.

2.3. Frame Alignment Using DNNs

In this approach, it is assumed that the output of a DNN pro-
duces true posteriors (e.g. softmax function at the output).
These posteriors can be then directly used for i-vector extrac-
tion in Eq. (2) and (3). As described in the Introduction section,
it has been found that a DNN trained for phoneme classification
produces excellent results.

Let us note, that the output of this system has to be used
for computing the base UBM normalization parameters in (6)
and in (7). In our experiments, the topology of this network is
identical to the one used for BN feature extraction except for
the number of the output nodes, as described in the following
section.

2.4. i-vector Normalization and Scoring

In our experiments i-vectors are length-normalized [33], and
further normalized using phrase dependent regularized Within-
class Covariance Normalization (WCCN) [34]. In the case of
standard WCCN, i-vectors are transformed using linear trans-
formation Σ

−1/2
wc in order to whiten the within class covari-

ance matrix Σwc, which is estimated on training data. For
text-dependent task, we only found WCCN effective when ap-
plied in phrase dependent manner (i.e. for trials of a specific
phrase, Σwc is estimated only on the training utterances of that
phrase) [15]. With RSR2015 dataset, however, this leaves us
only very limited amount of data for estimating phrase specific
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matrices Σwc. For this reason, we found it necessary to reg-
ularize Σwc by adding a small constant to the matrix diago-
nal [15, 35].

Simple cosine distance scoring is used in all our experi-
ments followed by phrase dependent s-norm score normaliza-
tion [5].

3. Bottleneck Features
Bottleneck neural network refers to DNN with a specific topol-
ogy, where one of the hidden layers has significantly lower di-
mensionality than the surrounding layers. A bottleneck feature
vector is generally understood as a by-product of forwarding a
primary input feature vector through the DNN, while reading
the vector of values at the output of the bottleneck layer. In this
work, we use more elaborate architecture for BN features called
Stacked Bottleneck Features [36], which proved to be very ef-
fective in our previous text-independent speaker recognition ex-
periments [26]. This architecture is based on a cascade of two
such BN DNNs. The BN output of the first network is stacked
in time, defining context-dependent input features for the sec-
ond DNN (hence the term Stacked Bottleneck Features). The
input features to the first stage DNN are 24 log Mel-scale filter
bank outputs augmented with 13 fundamental frequency fea-
tures [36] and normalized using conversation-side based mean
subtraction. The outputs from the BN layer of the second stage
DNN are then taken as the final output features (i.e. the features
to train the i-vector model on). With this architecture, each out-
put feature vector is effectively extracted from 30 frames (300
ms) of the input features in the context around the current frame.
See [26,36] for more details on the exact structure of this archi-
tecture. In all our experiments the extracted BN features are
80-dimensional.

The BN DNNs are trained to discriminate between triphone
tied-state targets. Using a pre-trained GMM/HMM ASR sys-
tem, we can cluster triphone states to the desirable number of
targets (DNN outputs) [36]. The same ASR system is used to
force-align the data for DNN training in order to obtain the tar-
get labels. We use two different DNNs in our experiment, both
trained on Switchboard data (8 kHz, conversational telephone
speech). The primary DNN for extracting BN features is trained
to classify 8000 triphone state target. The second DNN with
1011 targets is primarily intended for DNN based alignment as
described in Section 2.3. However, since this second DNN also
uses the BN architecture, we also examine the BN features ex-
tracted using this network.

4. Experimental Setup
4.1. Data

We report our results on RSR2015 data set Part I [10]. This
dataset comprises recordings from 157 male and 143 female
speakers, each pronouncing 30 different phrases in 9 distinct
sessions. For each speaker and each phrase, three sessions are
used for enrollment, while the remaining are used for testing.
This data is further divided into three disjoint speaker subset:
background, development and evaluation set. In our experi-
ments, only the background set is used for training. It is used
to train gender independent UBM and i-vector extractor and
phrase dependent regularized WCCN [15, 34]. It is also used
to extract scores for phrase dependent s-norm. All results are
reported for the evaluation sets. The development set is not
used at all in this work. Note that we use exactly the same

setup (training data and trial set for evaluation) as used in [12].
Therefore, our results should be directly comparable with the
best results reported in Table 6 in that paper.

The Switchboard data is used for training of DNNs as de-
scribed in Section 3.

4.2. Features

We have experimented with few different configuration for the
standard cepstral features. For the experiments reported in
this paper, we have selected 39-dimensional PLP features and
60-dimensional MFCC features, which perform slightly better
for females and males, respectively. Moreover, combination
of these two feature sets performs particularly well in fusion.
Both PLP and MFCC are extracted from 16 kHz signal using
HTK [37] with a similar configuration: 25 ms hamming win-
dowed frames with 15 ms overlap. For each utterance, the fea-
tures are normalized using cepstral mean and variance normal-
ization after dropping the (initial and final) silence frames.

Beside the cepstral features, two versions of 80-
dimensional DNN based bottleneck features are used in our ex-
periments as described in Section 3. Note that these features
are extracted from RSR data down-sampled to 8 kHz as, at the
time of running these experiments, we only had available BN
DNN trained on 8 kHz conversational telephone Switchboard
data. Therefore, for comparison, we also report results with
8 kHz version of MFCC features.

4.3. Systems

All reported results are obtained with i-vector based systems.
The 400-dimensional i-vectors are length-normalized [33], and
further normalized using phrase dependent regularized WCCN
as described in section 2.4. Cosine distance is then used to ob-
tain speaker verification scores, which are further normalized
using phrase dependent s-norm.

Results are reported for individual i-vector based systems,
which differ in the input features (MFCC, PLP, BN or their com-
bination) and in the method for aligning speech frames to the
Gaussian components as described in Section 2. The three pos-
sible alignment models are: 1) GMM with 1024 components
(i.e. the standard i-vector approach), 2) HMM with 3 states
and 8 Gaussian components for each of 39 mono-phones (re-
sulting in total number of 936 Gaussian components) and 3)
DNN with 1011 outputs (corresponding to 1011 Gaussian com-
ponents in the i-vector extraction model). All three alignment
methods therefore result in i-vector model of a similar size.

5. Results
5.1. GMM, HMM and DNN Alignment Comparison

In Table 1, we analyze the effect of the three different alignment
techniques for i-vector extraction from Section 2. The DET
curves for few systems selected from Table 1 are also shown
in Figure 1 and Figure 2 for male and female trials, respectively.

The first section of the table shows results with MFCC fea-
tures. The first line corresponds to the standard i-vector extrac-
tion model with GMM alignment as used in text-independent
speaker verification. From the second line, we can see that the
HMM based alignment significantly improves the performance,
which is in line with the results from [15], where this method is
proposed and analyzed. DNN based alignment performs com-
parably to HMM, even though it does not rely on the exact
phrase transcription. Note that the nature of the DNN based
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Table 1: Comparison of different features and alignment methods in terms of Equal Error Rate (EER) and Normalized Detection Cost
Function as defined for NIST SRE08 (NDCFmin

old ) and NIST SRE10 (NDCFmin
new). Note that MFCC features are extracted from 16kHz

speech signal, while BN features are extracted only from 8kHz speech signal.

Male Female

Features Alignment EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

MFCC
GMM 0.67 0.0382 0.1983 0.62 0.0355 0.1991

HMM 0.37 0.0204 0.1142 0.49 0.0275 0.1533

DNN 0.36 0.0203 0.1286 0.39 0.0218 0.1441

BN
GMM 0.59 0.0325 0.1564 0.40 0.0201 0.1066

HMM 0.48 0.0242 0.1446 0.33 0.0151 0.0845

DNN 0.77 0.0428 0.2026 0.59 0.0296 0.1416

MFCC+BN
GMM 0.31 0.0176 0.0955 0.28 0.0144 0.0898

HMM 0.30 0.0148 0.0927 0.27 0.0134 0.0809
DNN 0.43 0.0236 0.1410 0.45 0.0255 0.1291

alignment is rather different from (and perhaps complementary
to) the HMM one: Instead of relying on the transcription, DNN
makes the decision locally based only on the acoustic context;
the alignment units are tied triphone states rather than Gaussian
components in mono-phone states. Also, the DNN is discrimi-
natively trained on large amount of speech data and using differ-
ent features, while HMMs are trained only on the small amount
of RSR2015 background data. On the other hand, the HMM
based method leads to much more compact representation as
there is just single model (and features) used for both the align-
ment and the rest of the i-vector extraction. Furthermore, we
only report results on our evaluation set where all the target and
non-target trials share the same phrase in both the enrollment
and the test utterance. In other words, this setup assumes that
both the target speakers and imposters always know and pro-
nounce the correct phrase. However, HMM alignment would
offer much better performance if the evaluation trials included
also wrong phrase trials due to checking the correctness of the
phrase using the HMM structure and the Viterbi alignment.

The second section of Table 1 reports results obtained with
the BN features. We can see that BN features perform very well
even in the standard i-vector setting with the GMM alignment.
Most likely, this can be attributed to the better phone-like fea-
ture space clustering obtained with GMM trained on BN fea-
tures. The good performance of the BN features is striking,
especially when we realize that the BN features perform better
than MFCC with the GMM alignment, even though the BN fea-
tures are extracted only from 8 kHz speech signal. In fact, the
performance with similar MFCC features extracted from 8 kHz
signal is very poor (1.84% and 2.19% EER for males and fe-
males, respectively). The BN features still significantly bene-
fit from the HMM based alignment, although not as much as
MFCC features. Interestingly, BN features fail to perform well
in combination with the DNN based alignment.

In the third section of Table 1, results are shown for
concatenated MFCC+BN features (60+80=140 dimensions).
In [26], superior performance was reported for text-independent
speaker recognition with i-vector based system trained on such
features. Here, we verify that concatenated MFCC+BN features
provide excellent performance also for the text-dependent task.
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Figure 1: DET curves for different methods of extracting poste-
rior probabilities for male trials. The square and star markers
corresponds to NDCFmin

old and NDCFmin
newoperating points, re-

spectively.

This time, however, only small improvement is obtained from
the HMM based alignment compared to the GMM based one. It
seems that the presence of the BN features already guaranties an
appropriate feature space partitioning and alignment even with
the GMM model. Again, the DNN based alignment seems to
fail in the presence of the BN features.

5.2. Fusion Results

Table 2 shows results for different strategies of combining fea-
tures and systems. The DET curves for few selected systems
are also shown in Figure 3 and Figure 4 for male and female tri-
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Figure 2: DET curves for different methods of extracting poste-
rior probabilities for female trials. The square and star markers
corresponds to NDCFmin

old and NDCFmin
newoperating points, re-

spectively.

als, respectively. Since the HMM based alignment turned out to
generally provide the best performance in the previous experi-
ments, all the following results are reported for this alignment
method. Note that Table 2 repeats parts of the results from Ta-
ble 1 to facilitate the comparison.

The first section of Table 2 shows results for the individual
systems based on different features. Newly added are results
for PLP features, which perform better compared to MFCCs for
female trials, but slightly worse for male trials.

Our primary DNN for extracting BN features is trained to
classify 8000 target triphone tied states. On the other hand,
the alignment DNN from the previous experiments is trained
only with 1011 target triphone states in order to keep the size
of the corresponding i-vector extractor model reasonable and
comparable to the GMM and HMM based models. Although
unnecessary, we use BN topology also for the alignment DNN.
Therefore, for comparison, we show also the result with the
80-dimensional BN1011 features extracted using the DNN with
1011 targets, which was primarily intended for the alignment.
As can be seen from the results, the BN features from the fine-
grained DNN with 8000 outputs significantly outperforms the
BN1011 features.

The second section of Table 2 shows results for 140-
dimensional MFCC+BN and 119-dimensional PLP+BN con-
catenated features. Both concatenated features performs com-
parably. In both cases, the concatenated features perform sig-
nificantly better than the individual constituent features.

The third section of Table 2 contains results for score level
fusion of systems with individual MFCC, PLP or BN features.
In this work, we use the most trivial fusion, where the scores
from the individual systems are simply averaged (given the
equal weight). Interestingly, the score level fusion is very ef-
fective and, in contrary to our experience from text independent
task, it brings larger improvements than concatenation of cep-
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Figure 3: DET curves for BN features with two best configu-
rations from MFCC and PLP for male trials. The square and
star markers correspond to NDCFmin

old and NDCFmin
newoperating

points, respectively.

stral and BN features (i.e. fusion at the feature level). The likely
reason for such behavior is the small amount of RSR2015 train-
ing data, which might not be sufficient to train the larger model
based on the higher-dimensional concatenated features. Even
the fusion of the two system based on MFCC and PLP cep-
stral features performs comparably or better than the systems
with MFCC+BN and PLP+BN features. Nevertheless, score
level fusion of cepstral features with BN provides superior per-
formance. Clearly the best results reported in this work are ob-
tained with three-fold score level fusion of MFCC, PLP and BN
based system.

6. Conclusions
This work verified that the successful DNN based approaches
to text-independent speaker recognition are very effective for
the RSR2015 text-dependent task as well. Our baseline sys-
tem is based on the previously proposed phrase-independent i-
vector approach, where HMM based phone recognizer serves
as UBM for collecting sufficient statistics [15]. In the case of
the baseline system, the statistics are to be collected using a
forced-alignment based on the correct phrase transcription in
order to obtain good performance for the text-dependent task.
On the other hand, similar or better verification performance is
obtained with DNN based alignment, where no transcription is
necessary.

Furthermore, excellent performance was obtained with
DNN based bottleneck features especially when concatenated
with the standard cepstral features. Our experiments support
the hypothesis that a GMM trained on the bottleneck results in
a superior partitioning of the feature space into phone like clus-
ters: The standard i-vector approach based GMM-UBM pro-
vides performance similar to the phone transcription supervised
HMM based method. Note however that the HMM based align-
ment can still significantly help in rejecting wrong-phrase utter-
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Table 2: Results for different features, concatenated features and score fusions with HMM based systems. Note that MFCC and PLP
cepstral features are extracted from 16kHz speech signal, while BN features are extracted only from 8kHz speech signal.

Male Female

Features EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

MFCC 0.37 0.0204 0.1142 0.49 0.0275 0.1533

PLP 0.41 0.0217 0.1103 0.42 0.0207 0.1029

BN 0.48 0.0242 0.1446 0.33 0.0151 0.0845

BN1011 0.58 0.0308 0.1780 0.44 0.0193 0.1060

MFCC+BN 0.30 0.0148 0.0927 0.27 0.0134 0.0809

PLP+BN 0.27 0.0149 0.1019 0.27 0.0124 0.0627

MFCC, PLP fusion 0.25 0.0123 0.0712 0.27 0.0139 0.0721

MFCC, BN fusion 0.15 0.0088 0.0493 0.16 0.0078 0.0315

PLP, BN fusion 0.18 0.0096 0.0637 0.17 0.0073 0.0326

MFCC, PLP, BN fusion 0.13 0.0070 0.0424 0.16 0.0058 0.0299
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Figure 4: DET curves for BN features with two best configu-
rations from MFCC and PLP for female trials. The square and
star markers correspond to NDCFmin

old and NDCFmin
newoperating

points, respectively.

ances, which are not present in our evaluation data.
The best results reported in this paper were obtained with a

simple score level fusion of the HMM based i-vector systems,
each trained on different cepstral or bottleneck features.
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