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Abstract

We examine a scenario where we have no access to native tran-

scribers in the target language. This is typical of language com-

munities that are under-resourced. However, turkers (online

crowd workers) available in online marketplaces can serve as

valuable alternative resources for providing transcripts in the

target language. We assume that the turkers neither speak nor

have any familiarity with the target language. Thus, they are un-

able to distinguish all phone pairs in the target language; their

transcripts therefore specify, at best, a probability distribution

called a probabilistic transcript (PT). Standard deep neural net-

work (DNN) training using PTs do not necessarily improve er-

ror rates. Previously reported results have demonstrated some

success by adopting the multi-task learning (MTL) approach.

In this study, we report further improvements by introducing

a deep auto-encoder based MTL. This method leverages large

amounts of untranscribed data in the target language in addi-

tion to the PTs obtained from turkers. Furthermore, to encour-

age transfer learning in the feature space, we also examine the

effect of using monophones from transcripts in well-resourced

languages. We report consistent improvement in phone error

rates (PER) for Swahili, Amharic, Dinka, and Mandarin.

Index Terms: cross-lingual speech recognition, probabilistic

transcription, deep neural networks, multi-task learning

1. Introduction

Recent advances in speech recognition have been mostly due

to the advent of deep learning algorithms such as deep neural

networks (DNN), convolutional neural networks (CNNs) and

recurrent neural networks (RNN). Their popularity is mostly at-

tributed to the fact that neural networks achieve much lower

error rates than Gaussian mixture models (GMMs), especially

with large training corpora. However, these systems are mani-

fest only in a few countries where languages are well-resourced.

A well-resourced language is a language (e.g. English) with an

abundance of resources to support development of speech tech-

nology. Those resources are usually defined in terms of 100+

hours of speech data, corresponding transcripts, pronunciation

dictionaries, and language models. Among these, the most ex-

pensive and time consuming resource is the acquisition of tran-

scripts. Primarily because of this reason, more than 99% of

6900 languages in the world are still under-resourced [1].

In [2], Hasegawa-Johnson et al. were able to show that au-

tomatic speech recognition (ASR) systems can be built from

transcripts collected from non-native speakers who neither

spoke the target language nor had any familiarity with it. This

circumvents the difficult task of finding native speakers in the

target language. Briefly, a single utterance in some target lan-

guage L is transcribed by multiple turkers who do not speak
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Figure 1: A deterministic transcription (DT) for the word cat.
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Figure 2: A probabilistic transcription (PT) for the word cat.

L. Due to this, no single turker can generate the correct tran-

script. Instead, a collection of transcripts from multiple turkers

is constructed for a single utterance in L. This collection can be

represented as a confusion network. We will refer to such a net-

work as a probabilistic transcript (PT). On the contrary, a native

speaker will be able to generate the correct transcript which can

be represented as a single sequence of labels. We will refer to

this sequence as a deterministic transcript (DT). DTs are simply

conventional transcripts that are used for building large corpora

ASR systems.

As an example, consider the DT for the word “cat” as

shown in Fig. 1. Each arc represents a label and a probability

value which is 1.0 always. On the other hand, a PT will look like

the network in Fig. 2. The arc weight specifies the conditional

probability that the phoneme was spoken, given the evidence in

the transcripts. Because workers cannot distinguish all phone

pairs in the utterance language, these weights are usually less

than 1.0. In terms of training a DNN, the DTs are simply 1-hot

alignments that are frequently observed in conventional tran-

scripts. However, for PTs, the alignments are soft since a single

frame could have multiple labels with non-zero probabilities.

2. Background

The following low resource conditions outline the nature of the

data used in this study:

• PTs in target language: PTs in the target language L, written

as English nonsense syllables, are collected from turkers who

do not speak L.

• PTs are limited: The amount of PTs available from the turkers

is limited to only 40 minutes of audio.

• Zero DTs in target language: There are no DTs in L.
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Figure 3: Multi-task Learning for probabilistic transcripts (PT).

• DTs only in source languages: There are DTs from 6 other

source languages ( �= L) which are well-resourced.

• DTs are limited: There are about 40 minutes of DTs in each

source language. Hence, the total amount of multilingual DTs

available for training is ≈ 4 hours. (40 minutes/language × 6

languages).

• Unsupervised data: There are about 5.5 hours of unsuper-

vised data in the target language.

Training an ASR system in such a scenario is challenging

mainly for two reasons: (a) Zero DTs in the target language

(lacking in quantity), (b) Unreliable PTs (lacking in quality).

However, it is still possible to train a hidden Markov model

(HMM) using PTs [3] and achieve significant improvements

over a multilingual HMM that does not use PTs. Later, in [4],

it was demonstrated that a DNN is better trained when inte-

grated with the MTL framework. In this study, we show that

we are able to achieve further improvements by making use of

unsupervised data. More specifically, we explore using a deep

auto-encoder as part of the MTL framework.

3. Deep Auto-encoder based MTL

Auto-encoders have been previously used for noise reduction

using single layer networks in [5] and deeper recurrent layers in

[6].

More recently, deep denoising auto-encoders in the MTL

framework have been used in the problem of far-field speech

recognition [7]. An auto-encoder was used to learn the map-

ping between the noisy signals of distant microphones and the

relatively clean signals of close-talk microphones. Since the

primary objective is to improve the classification performance

of an ASR system, the authors in [7] integrate the auto-encoder

into an MTL framework. Thus, the unified network optimizes

two tasks simultaneously - the denoising task and the recogni-

tion task.

Auto-encoders have also been used to generate bottleneck

features in under-resourced scenarios when little training data

are available. For example, in [8], the authors train a stack of

deep auto-encoders (DAEs) in a layer-wise unsupervised man-

ner to predict clean speech from artificially corrupted noisy

speech. Then a bottleneck layer, an additional hidden layer,

and a final softmax layer are added to the stack of DAEs before

fine-tuning the entire network using backpropagation.

More relevant to our work is the study in [9]. The authors

train a neural network to recognize digits from inaccurately la-

beled images in the MNIST dataset. To incorporate a notion

of perceptual consistency in the training, they train an auto-

encoder in parallel to promote top-down consistency of model

predictions with the observations. This allowed the model to

discover the noise pattern in the data.

Similarly, in the PT scenario, the labels are inaccurate and

hence noisy. Consequently, the backpropagated errors gener-

ated from cross-entropy training are also noisy. This will be

evident from the results in Section 4.5. Briefly, the results show

that DNNs trained using PTs do not necessarily outperform

GMM-HMMs. This is because the label noise in PTs corrupt

the hidden layer feature representations during training. Thus,

in this context, we use DAE as a means to fix these errors and

thus discover more useful hidden layer representations. This is

illustrated in Fig. 3. Similar to [7,9], the primary objective is to

improve phone error rates (PERs) in the target language. Thus,

the objective function of the MTL framework is represented by,

L(W) = LCE-PT(W) + λDTLCE-DT(W) + λDAELDAE(W) (1)

where LCE-PT is the cross-entropy loss of the first (primary) task

where the ground truth labels (senones) are based on PTs of the

target language. LCE-DT(W) is the cross-entropy loss of the sec-

ond task where the ground truth labels are based on DTs of the

other well-resourced languages. The ground truth labels of DTs

can either be context-dependent senones or context-independent

phones. In the third task, the loss function LDAE is the MSE

(mean square error) between the reconstructed features and the

input features. λDT, λDAE are the weights of the loss functions

associated with the secondary tasks in the MTL. W are the

weights of the neural network.

4. Experiments and Results
4.1. Data
Multilingual audio files were obtained from the Special Broad-

casting Service (SBS) network which publishes multilingual ra-

dio podcasts in Australia. Natively transcribed DTs available

for Arabic (arb), Cantonese (yue), and Hungarian (hun) were

always used as training languages. PTs (from turkers unfamil-

iar with the target language) were used as additional training

data for the target language. We experimented with four target

languages - Swahili (swh), Amharic (amh), Dinka (din), and

Mandarin (cmn) - in a round-robin fashion. For example, if

swh is the target language, then the training set consists of PTs

in swh and DTs in the remaining six languages (arb, yue, hun,

amh, din, cmn). Thus, it excludes having swh DTs in the train-

ing set.

More than 2500 turkers participated in transcribing, with

roughly 30% of them claiming to know only English. The re-

maining turkers claimed knowing other languages such as Span-

ish, French, German, Japanese, and Mandarin. The utterances

were limited to a length of 5 seconds. This is because the turkers

did not understand the utterance language and it was easier for

them to annotate short utterances than long. Since English was

the most common language among the turkers, they were asked

to annotate the sounds using English letters. The sequence of

letters was not meant to be meaningful English words or sen-

tences since this would be detrimental to the final performance.

The important criterion was that the annotated letters represent

sounds they heard from the utterances as if they were listening
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Table 1: SBS Multilingual Corpus.

Language Utterances Phones

Train Test

Swahili (swh) 462 123 48

Amharic (amh) 516 127 37

Dinka (din) 248 53 27

Mandarin (cmn) 467 113 52

Arabic (arb) 468 112 46

Cantonese (yue) 544 148 32

Hungarian (hun) 459 117 65

All - - 82

to a sequence of nonsense syllables in some exotic language.

Since no turker is likely to generate the perfect transcript, each

utterance was transcribed by ten turkers creating ten different

transcripts per utterance. These transcripts were converted to

phones and merged into a PT using [10]. Turkers were typi-

cally paid $500 per ten turkers for transcribing an hour of au-

dio. As for DTs, the same set of utterances were transcribed by

native speakers of the utterance language. The DTs in the target

language were used only to know the ground truth hypotheses

which are necessary for evaluating the ASR performance on the

test set.

The training set consists of a) about 40 minutes of PTs in the

target language and, b) about 40 minutes of DTs in other source

languages which exclude the target language. The development

and test sets were worth 10 minutes each. Going back to our

previous example, if swh is the target language, then the training

set consists of 40 minutes of PTs in swh and 40 minutes of DTs

each in amh, din, cmn, arb, yue, and hun.

Finally, phone based language models (LMs) were built

from the text in the target language mined from Wikipedia. The

corpus is summarized in Table 1. The test utterances were se-

lected to avoid speaker or gender bias. All experiments were

conducted using the Kaldi toolkit [11].

4.2. Monolingual GMM-HMM and DNN-HMM

In the first baseline, monolingual GMM-HMM and DNN-

HMM models were trained and tested using DTs in the tar-

get language. This is the oracle scenario if we assume DTs

were to be available in the target language. Context-dependent

GMM monolingual acoustic models were trained using 39-

dimensional Mel Frequency Cepstral Coefficients (MFCC)

which include the delta and acceleration coefficients. Tempo-

ral context was included by splicing 7 successive frames (cur-

rent +/- 3 frames) into a high dimensional supervector and

then projecting the supervector to 40 dimensions using lin-

ear discriminant analysis (LDA). Using these features, a max-

imum likelihood linear transform (MLLT) [12] was computed

to transform the means of the existing model. The forced

alignments obtained from the LDA+MLLT model were further

used for speaker adaptive training (SAT) by computing feature-

space maximum likelihood linear regression (fMLLR) trans-

forms [13]. The LDA+MLLT+SAT model is the final GMM

model. The forced aligned senones obtained from this model

were treated as the ground truth labels for DNN training.

For DNN training, we start with greedy layer-wise

Restricted Boltzmann Machines (RBMs) unsupervised pre-

training since this leads to better initialization [14]. Then the

DNNs were fine-tuned using supervised cross-entropy training.

The monolingual PERs over a total of about 7K-8K phones are

given in Table 2. This gives us an estimate about the approxi-

mate lower bound PERs thereby indicating that this is possibly

Table 2: Phone Error Rates (PERs) of monolingual GMM-

HMM and DNN-HMM models. Dev set in parentheses.

Lang PER (%)

GMM-HMM DNN-HMM

swh 35.13 (45.78) 34.25 (39.64)

amh 51.90 (48.68) 46.69 (44.07)

din 51.56 (47.03) 48.37 (48.00)

cmn 31.80 (26.14) 28.26 (25.16)

Table 3: Phone Error Rates (PERs) of multilingual GMM-HMM

and DNN-HMM models. Dev set in parentheses.

Lang PER (%)

GMM-HMM DNN-HMM # Senones

swh 63.02 (66.00) 60.40 (61.62) 950

amh 68.65 (68.47) 65.56 (64.82) 1008

din 67.93 (66.79) 63.81 (65.44) 1012

cmn 69.55 (67.08) 59.50 (59.50) 985

the best we can achieve.

4.3. Multilingual GMM-HMM and DNN-HMM
As mentioned earlier, we assume DTs in the target language

are not available to us during training. Thus, in the second

baseline, DTs from the six training languages were pooled

together to train multilingual GMM-HMMs and multilingual

DNN-HMMs. The training procedure was the same as the one

outlined in Section 4.2. Decision tree clustering of the multi-

lingual data resulted in about 1000 senones. The multilingual

DNNs were trained using 6 hidden layers with 1024 nodes per

layer and a final softmax layer with about 1000 output nodes

representing the senones.

The PERs are given in Table 3. Expectedly, due to lack

of DTs in the target language, the PERs are much higher than

the ideal case in Table 2. Hence, the PERs in Table 3 establish

the upper bound of PERs. In all subsequent experiments, we

start from the upper bound of PERs in Table 3 and attempt to

approach the lower bound PERs in Table 2 by including PTs

during training.

4.4. PT Adapted MAP GMM-HMM

In this step, the multilingual GMM-HMM model in Section 4.3

is adapted using the PTs in the target language since DTs are not

available for adaptation. The multilingual GMM-HMM acous-

tic model is adapted using maximum aposteriori (MAP) adap-

tation described in more detail in [3]. The main component in

this step is that the ASR search graph, represented as a WFST

mapping from the acoustic signal to a sentence, is defined by the

composition H◦C◦L◦G◦PT instead of the usual H◦C◦L◦G.

Here, PT is the confusion network of phones obtained from

turkers as was described in Section 1.

The PER results for the MAP adapted GMM are under the

column MAP-GMM in Table 4. The PER results for the mul-

tilingual DNN-HMM (column MULTI-DNN in Table 4) are

replicated from Table 3 for purposes of comparison.

4.5. PT Adapted DNN-HMM

Here, we follow the conventional procedure of adapting a mul-

tilingual DNN-HMM to the target language. The softmax layer

of the multilingual DNN-HMM in Section 4.3 is replaced by

a randomly initialized softmax layer while retaining the shared

hidden layers (SHLs) of the multilingual DNN-HMM [15]. The

resulting DNN is fine tuned using the PT alignments generated

by the MAP adapted model from Section 4.4. This is the con-
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Table 4: Phone Error Rates (PERs) of different ASR systems: (a) Unadapted system: Multilingual DNN (MULTI-DNN, Sec. 4.3), (b)

Adapted systems: MAP adapted GMM (MAP-GMM, Sec. 4.4), Conventional DNN trained with PTs (DNN, Sec. 4.5), MTL trained

with PT senones and DT senones (MTL-SS, Sec. 4.6), MTL trained with PT senones and DT monophones (MTL-SP, Sec. 4.6), MTL

trained with PT senones, DT senones, and Auto-encoder (MTL-SSA, Sec. 4.7), MTL trained with PT senones, DT monophones, and

Auto-encoder (MTL-SPA, Sec. 4.7), and (c) Oracle system: Monolingual DNN (MONO-DNN, Sec. 4.2) trained with DTs in the target

language. The number in the parentheses is the absolute improvement of PER over the MULTI-DNN system.

Lang PER (%)

Unadapted PT Adapted Oracle

MULTI-DNN MAP-GMM DNN MTL-SS MTL-SP MTL-SSA MTL-SPA MONO-DNN

swh 60.40 (0.0) 45.32 (15.08) 45.89 (14.51) 44.89 (15.51) 44.51 (15.89) 44.03 (16.37) 43.72 (16.68) 34.25 (26.15)

amh 65.56 (0.0) 61.98 (3.58) 61.72 (3.84) 60.79 (4.77) 60.44 (5.12) 59.40 (6.16) 59.32 (6.24) 46.69 (18.87)

din 63.81 (0.0) 59.48 (4.33) 59.64 (4.17) 58.37 (5.44) 58.44 (5.37) 58.20 (5.61) 57.65 (6.16) 48.37 (15.44)

cmn 59.50 (0.0) 56.38 (3.12) 55.03 (4.47) 53.53 (5.97) 53.15 (6.35) 51.97 (7.53) 52.54 (6.96) 28.26 (31.24)

ventional way to adapt a DNN using DTs [16]. However, it was

shown in [4] that this approach does not work very well for PTs

largely due to the presence of incorrect labels in PTs.

The results are shown under the column DNN in Table 4.

Clearly, the performance of DNN is worse than MAP-GMM

for Swahili and Dinka and only marginally better for Amharic.

On an average, the DNN system marginally outperforms the

MAP-GMM system by only about 0.22% absolute.

4.6. Multi-Task Learning With Senones and Phones

To alleviate the effect of incorrect labels, an MTL system [4] us-

ing two separate softmax layers are used. The first softmax layer

is trained with senones of the target language PTs whereas the

second softmax layer is trained with senones of DTs in all the

remaining six languages. In Table 4, the column under MTL-SS

(SS = Senones in PT + Senones in DT) represents the PERs over

various languages. The absolute decrease in PER compared to

the conventional DNN is consistent across all languages and is

in the range 1.00%-1.5%. Comparing the PT adapted MTL-SS

with the unadapted MULTI-DNN, the absolute decrease in PER

is in the range 4.77%-15.51%.

In this study, we also investigate MTL training using

context-independent monophone targets for the DTs as opposed

to using only context-dependent senones in [4]. The motivation

behind this is to encourage more sharing of the feature space

between PTs and DTs. It is possible that some of the contexts

(senones) in the target language are unique to the target lan-

guage although the center phone might be common between the

target language and the well-resourced languages. The unique

context discourages transfer learning. To alleviate this effect,

we train the second task using monophones obtained from the

DTs. The results are outlined in Table 4 under the column MTL-

SP (SP = Senones in PT + Phones in DT). The net effect of us-

ing monophone targets is a slight improvement in PER by about

0.4% absolute over MTL-SS except for Dinka.

4.7. Multi-Task Learning With Deep Auto-encoder

Although MTL in Section 4.6 improves PER over the conven-

tional DNN, it does not make use of large amounts of untran-

scribed audio data that are available in the target language. In

this study, we make use of the DAE, as illustrated in Figure 3,

as an additional task in the MTL framework. The structure of

the DAE is simple. It uses the SHLs as those in the MTL frame-

work. In addition, it has a distinct output layer which is simply

an affine transform layer added on top of the final SHL of the

MTL. Thus, the SHL acts as the encoder and the affine trans-

form layer acts as the decoder. The DAE is trained using the

MSE loss computed between the input features and output of

the decoder.

We used about 4000 untranscribed utterances from the tar-

get language for training the DAE. First, fMLLR features were

generated for the untranscribed utterances through a two-pass

estimation of the fMLLR transforms. The PT adapted MAP

GMM-HMM model was treated as the alignment model. Fol-

lowing this, the fMLLR features were spliced across +/- 5

frames and then normalized to zero mean and unit variance. In

an identical fashion, the input features for all tasks in the MTL

are also spliced and normalized. This helps avoid the possibility

of generating large MSE errors at the DAE output. In addition,

we keep the value of the weighting term λDAE in (1) to low val-

ues between 0.001-0.005.

The number of frames used to train the DAE far outnum-

bers the number of frames for other tasks. This would result in

SGD minibatches getting biased toward the auto-encoder task.

In order to maintain a balance of frames across all tasks in the

minibatch, we create duplicate copies of frames for both the PT

and DT tasks. For the PT tasks we used 4-6 copies and 1-2

copies for the DT tasks. The number of copies and acceptable

values of λDT in (1) were found from the development set.

In Table 4, the columns under MTL-SSA (SSA = Senones

in PT + Senones in DT + Autoencoder) and MTL-SPA (SPA =

Senones in PT + Phones in DT + Autoencoder) report the PER

results when DAE was added as an additional task to MTL-SS

and MTL-SP respectively. Comparing MTL-SSA with MTL-

SS, the absolute decrease in PER is about 0.17-1.56%. Sim-

ilarly, comparing MTL-SPA with MTL-SP, the absolute de-

crease in PER is about 0.6-1.12%. The best systems for each

language are highlighted in bold. Comparing the best systems

with our previous work on MTL-SS [4], we observe an abso-

lute decrease in PER in the range 1.17-1.56%. According to

our knowledge, these are the best reported results for systems

trained with PTs and zero DTs in all the four target languages.

Despite these improvements, the PERs are still about 10-

25% (absolute) above the oracle system (MONO-DNN). Fu-

ture work includes compensating label noise by interpolating

PT labels with neural network predictions and estimating noisy

channel (misperception) models of the non-native turkers using

DNNs.

5. Conclusions
In this study, we report further improvements in training DNNs

with noisy probabilistic transcripts while having no access to

native transcripts in the target language. The central idea in this

study is to make use of large amounts of untranscribed data to

train a deep auto-encoder as an auxiliary task integrated with

the multi-task learning framework. We reported PER improve-

ments in the range 1.17-1.56% over the MTL system that does

not use untranscribed data. These improvements were found to

be consistent across all the four target languages.

2076



6. References
[1] L. Besacier, E. Barnard, A. Karpov, and T. Schultz, “Automatic

speech recognition for under-resourced languages: A survey,”
vol. 56, pp. 85–100, Jan 2014.

[2] M. Hasegawa-Johnson, P. Jyothi, D. McCloy, M. Mirbagheri,
G. Liberto, A. Das, B. Ekin, C. Liu, V. Manohar, H. Tang,
E. Lalor, N. Chen, P. Hager, T. Kekona, R. Sloan, and A. K. C.
Lee, “ASR for under-resourced languages from probabilistic tran-
scription,” IEEE Trans. Audio, Speech, Lang. Process., vol. 25,
no. 1, pp. 46 – 59, 2017.

[3] C. Liu, P. Jyothi, H. Tang, V. Manohar, R. Sloan, T. Kekona,
M. Hasegawa-Johnson, and S. Khudanpur, “Adapting ASR for
under-resourced languages using mismatched transcriptions,” in
ICASSP, 2016, pp. 5840–5844.

[4] A. Das and M. Hasegawa-Johnson, “An investigation on training
deep neural networks using probabilistic transcriptions,” in Inter-

speech, 2016, pp. 3858–3862.

[5] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,”
in ICML, 2008, pp. 1096–1103.

[6] A. L. Mass, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and
A. Y. Ng, “Recurrent neural networks for noise reduction in robust
ASR,” in Interspeech, 2012, pp. 22–25.

[7] Y. Qian, T. Tan, and D. Yu, “An investigation into using parallel
data for far-field speech recognition,” in ICASSP, 2016, pp. 5725–
5729.

[8] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting
deep bottleneck features using stacked autoencoders,” in ICASSP,
2013, pp. 3377–3381.

[9] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabi-
novich, “Training deep neural networks on noisy labels with boot-
strapping,” in arXiv:1412.6596, 2014.

[10] P. Jyothi and M. Hasegawa-Johnson, “Transcribing continuous
speech using mismatched crowdsourcing,” in Interspeech, 2015,
pp. 2774–2778.

[11] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz,
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