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TaggedPAbstract

Multilingual training of neural networks has proven to be simple yet effective way to deal with multilingual training corpora. It

allows to use several resources to jointly train a language independent representation of features, which can be encoded into low-

dimensional feature set by embedding narrow bottleneck layer to the network. In this paper, we analyze such features on the task

of spoken language recognition (SLR), focusing on practical aspects of training bottleneck networks and analyzing their integra-

tion in SLR. By comparing properties of mono and multilingual features we show the suitability of multilingual training for SLR.

The state-of-the-art performance of these features is demonstrated on the NIST LRE09 database.

� 2017 Elsevier Ltd. All rights reserved.
TaggedPKeywords: Multilingual training; Bottleneck features; Spoken language recognition

1. Introduction

TaggedPNeural networks (NN) have become a widely used technique for state-of-the-art Large Vocabulary Continuous

Speech Recognition (LVCSR) systems and are rapidly expanding to other fields of speech recognition. Notably, bot-

tleneck (BN) features (Kramer, 1991), extracted from a narrow layer of NN, have brought speech signal parametriza-

tion to a quantitatively different level (Gr�ezl et al., 2007). These features convey information about phonetic content

in a nonlinearly compressed form which can be directly used for the task of spoken language recognition (SLR),

where they have demonstrated state of the art performance (Mat�ejka et al., 2014; Jiang et al., 2014a; Ferrer et al.,

2016).

TaggedPDespite the excellent results, these features exhibit strong coupling to a language used during the NN training.

This can be circumvented by means of multilingual training (Schultz and Waibel, 2001; Scanzio et al., 2008) and

that is also the main focus of this paper. The term multilingual means that the NN is trained on several languages

simultaneously. The NN thus learns (to some extent) a language independent representation of speech that gets
I This paper has been recommended for acceptance by Roger Moore.
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TaggedPencoded into bottleneck features. Such features were used for the LVCSR task and they were found to be superior to

the ones trained on a single language (Scanzio et al., 2008; Vesel�y et al., 2012; Gr�ezl et al., 2014).
TaggedPIn this paper, we extend our previous work (F�er et al., 2015) by showing more detailed results and further analysis

of multilingual bottleneck features. Specifically, we focus on differences in mono- and multi-lingual features that

should be addressed in context of SLR. We add experiments with different NN architectures and output layer setup.

The SLR metrics are reported together with ASR related measures to see the level of their correlation. Note that all

experiments from the original paper were re-scored using different SLR backend, so the corresponding values will

not be the same.

TaggedPThe approach is tested on (clean) NIST LRE 2009 database (NIST, 2009), comparing the performance of mono-

lingual (i.e., trained on single language) and multilingual systems. The results obtained with widely used Mel-

frequency Cepstrum Coefficients (MFCC) Shifted Delta Cepstra (SDC) features (Torres-Carrasquillo et al., 2002)

are included for reference.

1.1. Related work

TaggedPSeveral different approaches to allow use of multilingual training corpora in SLR has been proposed. Zissman and

Singer (1994) used six phoneme recognizers running in parallel, each producing a language-dependent likelihood

based on an N-gram phonotactic model. Final score was obtained by averaging corresponding log-likelihoods. This

is known as Parallel Phone Recognition followed by Language Modeling (PPRLM). Corredor-Ardoy et al. (1997)

reported similar error rates to PPRLM approach when language dependent phonotactic models were trained on a

merged phoneme set of four languages. The merging was done using Agglomerative Hierarchical Clustering with

phoneme similarity based on Hidden Markov Model (HMM) phone likelihoods.

TaggedPBig effort has been carried out for multilingual resource collection. Namely GlobalPhone, a high-quality multilin-

gual database, was developed by the team from University of Karlsruhe (Schultz, 2002). In Schultz and Waibel

(2001), International Phonetic Alphabet (IPA) was used to create a cross-lingual phoneme set by unifying the pho-

neme sets of different languages from this database.

TaggedPThe need for explicit phoneme set unification was mitigated in Scanzio et al. (2008) by dividing the output soft-

max layer of a NN into a set of independent softmax output layers, one for each training language. The authors show

that for ASR, despite a lower word accuracy of multilingually trained features over baseline language-specific

features, the multilingual features are more robust in conditions with non-native speakers.

TaggedPThe idea of language independent features based on universal speech attributes was investigated in Siniscalchi

et al. (2013). They used manner and place of articulation to fully describe parts of speech in any language. In their

SLR system, the sequences of these attributes were then modeled using a vector space modeling techniques. By

using such articulatory features, there is no need for (language-dependent) phonetic transcriptions and the features

can be also considered as language-independent.

TaggedPThe use of bottleneck features for SLR was investigated in Mat�ejka et al. (2014); Jiang et al. (2014a). The authors

of Mat�ejka et al. (2014) report a 45% relative improvement to acoustic features baseline on DARPA RATS database.

The authors of Jiang et al. (2014a) trained two deep bottleneck neural networks on English and Mandarin. The result-

ing features are then fused either on feature or score level.

TaggedPAnother approach to use neural networks in SLR was proposed by Lopez-Moreno et al. (2014, 2016): the NN was

trained for frame-by-frame language classification. The final decision is based on language log-posteriors averaged

over frames. This approach works great for short utterances. However, for long utterances the conventional i-vector

approach (Lopez-Moreno et al., 2016) is still superior.

TaggedPThe use of Long Short Term Memory (LSTM) cells to directly classify languages has been investigated by

Gonzalez-Dominguez et al. (2014); Zazo et al. (2016). The advantage of recurrent architectures is in natural handling

of time context by memorizing internal state over time and also very small number of parameters compared to stan-

dard i-vector system. As it happens with other DNN approaches, this technique outperforms conventional i-vectors

only in short durations.

TaggedPA nice summary of neural network approaches for SLR can be found in Ferrer et al. (2016). The paper compares

three types of features (SDC, bottleneck and probabilistic/posterior ones) that are modeled using two different

approaches: standard GMM/UBM i-vector system and i-vector system using statistics collected using DNN alignment.

The results show that for SLR, standard GMM/UBM i-vector system using bottleneck features performs the best.
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1.2. Outline

TaggedPThe paper is organized as follows. We start with a description of bottleneck networks and bottleneck features.

Multilingual training of NNs and its variants is introduced in Section 3. Experimental protocol, training and evalua-

tion corpora and a description of our SLR system are in Section 4. The results are presented in Section 5, with con-

clusions in Section 6.

2. Bottleneck features

TaggedPBottleneck NN refers to such topology of a NN, where one of the hidden layers has significantly lower dimension-

ality than the surrounding layers Kramer (1991). It is assumed that such layer � referred to as the bottleneck � com-

presses the information needed for mapping the NN input to the output, making the system more robust to noise and

over-fitting. A bottleneck feature vector is generally understood as a by-product of forwarding a primary input feature

vector through the bottleneck network and reading the vector of values at the bottleneck layer. In other words, after a

network is trained for its primary task (e.g., phone state classification), the bottleneck layer is declared to be the out-

put layer and all succeeding layers are ignored. Such NN then maps the primary features to the bottleneck features.

TaggedPAlthough we use the NN for SLR purpose, the NN itself is entirely trained for phone state classification. We do

not use direct NN optimization for the SLR task, as is done, for example, in Lopez-Moreno et al. (2014). The whole

SLR system is then run subsequently utilizing the trained NN just for bottleneck feature extraction.

TaggedPWe use context independent phoneme states as NN training targets for the output layer. The other possibility is to

use more widely used senones. The comparison of these two unit types is given in Section 5.6. Both are taken from

an alignment with a conventional HMM PLP-based LVCSR system.

2.1. Primary feature extraction

TaggedPThe NN input features are 24 log Mel-scale filter bank outputs augmented with fundamental frequency features.

The fundamental frequency features consist of f0 and probability of voicing estimates computed according to Talkin

(1995), f0 estimates obtained by Snack tool1 function getf0, seven coefficients of Fundamental Frequency Variations

spectrum according to Laskowski and Edlund (2010) and f0 computed using Kaldi2 with its delta coefficients and

probability of voicing. Together, we have 13 f0 related features, see Karafi�at et al. (2014) for more details.

TaggedPThe conversation-side based mean subtraction is applied on the whole feature vector. 11 frames of log filter bank

outputs and fundamental frequency features are stacked together. Hamming window followed by DCT consisting of

0th to 5th bases are applied on the time trajectory of each parameter resulting in ð24þ 13Þ � 6 ¼ 222 coefficients

on the NN input (see Fig. 1).
Fig. 1. Block diagram of Stacked Bottle-Neck (SBN) feature extraction. The blue parts of neural networks are used only during the training. The

green frames in context gathering between the two stages are skipped. Only frames with shift�10,�5, 0, 5, 10 form the input to the second stage

NN. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 http://www.speech.kth.se/snack/.
2 http://kaldi.sourceforge.net.

http://www.speech.kth.se/snack/
http://kaldi.sourceforge.net
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2.2. Neural network architecture

TaggedPThe configuration for the feed-forward NN is 222£DHL£DHL£DBN£DHL£ K, where the K is the number of

targets (see Table 6). The dimensionality of bottleneck layer, DBN, was fixed to 80 in all experiments. This setting

was shown as optimal in Mat�ejka et al. (2014). According to our experience, larger dimensionality of bottleneck fea-

tures (e.g., 80) tends to improve SLR system on short test segments and small bottleneck features give better perfor-

mance for long ones. Therefore we use larger feature dimensionality to boost performance for very short segments.

This phenomenon is clearly a consequence of available feature resolution. With conservative dimensionality, the

information about phonetic content is predominant in feature space. By increasing the size of the bottleneck layer,

we allow the other variability present in signal (like speech prosody or noise information) to be more widely repre-

sented in features. This can help to distinguish between very short segments where sufficient phonetic content is

scarce.

TaggedPThe dimensionality of full hidden layers, DHL, was set to 1500, if not stated otherwise. We use logistic sigmoids

as non-linearities for these layers. The bottleneck layer has a linear activation function which was shown to provide

good performance (Vesel�y et al., 2011). As discussed in Kramer (1991), bottleneck layer can be linear without

loss of generalization, because the non-linear mapping transformations are already covered by full hidden

layers.

2.3. Stacked Bottleneck features

TaggedPIn most of the experiments, we have used a cascade of two bottleneck NNs (see Fig. 1). The outputs of the first

network are stacked in time, defining broader context input features for the second NN, hence the term stacked bot-

tleneck features (SBN).

TaggedPThis stacked architecture was designed specifically for the ASR task (Gr�ezl et al., 2009, 2013). The first BN net-

work operates on a short context of several frames (typically 11 frames, see Section 2.1), producing input features

for the second network. These are sampled at times t�10; t�5; t, t þ 5 and t þ 10; where t is the index of

the current frame. As there are 11 acoustic frames on the input of the first stage NN, this 1:5 sub-sampling corre-

sponds to one-half context (5 frames) overlap and results in total context of 4 £ 5 + 11 = 31 frames (325 ms). The

resulting 5 £ 80 = 400-dimensional features are input to the second stage NN with similar configuration of

400£DHL£DHL£DBN£DHL£K.

TaggedPThe 80 bottleneck outputs from the first NN (referred to as BN features) or from the second NN (referred to as

SBN features) are taken as features for the conventional GMM UBM i-vector based SLR system described below in

Section 4.3.

3. Multilingual training of neural networks

TaggedPThe basic idea is to train NN in a multilingual manner� on more than one language (Schultz and Waibel, 2001),

so that the final bottleneck features cover richer acoustic space than when trained for one language only. There are

several possible multilingual training schemes based on a setup of the NN output layer:

TaggedP� One softmax� the output layer of NN is created as a concatenation of language-tagged3 phoneme sets for individ-
3

ual languages, without any mapping or clustering of individual phonemes. It discriminates between all target units

of all languages. The resulting NN has fairly large output layer containing all speech units from all languages with

a single softmax. From our previous experiments in ASR (Vesel�y et al., 2012), we know that the single softmax

approach does not work well, as very similar phones from different languages are considered as different targets

and part of the “bottleneck encoding capacity” is wasted to discriminate between them. This evidently holds for

the ASR. For the SLR, however, the single softmax scheme could be a better option, as the network has to learn

(internally), how to discriminate between languages and choose the target unit from an appropriate language.
TaggedP� I
PA mapping� the per-language phoneme sets are mapped to a global phoneme set according to prior expert pho-

netician knowledge or by means of clustering using a confusion matrix. Similar approach to what we describe in
Tagged for example like English_A, German_A, Turkish_A ...



Fig. 2. Schematic illustration of block and one softmax output layer for multilingual training.
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TaggedPthis paper is presented in Dupont et al. (2005). We do not consider this scheme in our work. See Schultz (2002)

for more detailed description.
TaggedP�
 Block softmax � divides the output layer into parts according to individual languages (Vesel�y et al., 2012).

During the training, only the part of the output layer corresponding to the language of the actual target is acti-

vated. We use this block softmax approach in our experiments because of the better performance (see

Section 5.4).

As there is an inductive transfer between output blocks and data representation is shared among languages, this

approach is very similar to multi-task learning (MTL) (Caruana, 1997). With only a small difference: in MTL,

there are output targets of all blocks available for each training sample, whereas in block softmax approach there

is only one block active per training sample.

TaggedPSimplified illustrations for one and block softmax output layers are in Fig. 2. Detailed description can be found

in Vesel�y et al. (2012).
TaggedPFor the sake of completeness, there are other possibilities to obtain a multilingual system. It is always possible to

build several parallel systems trained on specific languages and then fuse them on feature or score level. This was

used, for example, in successful P-PRLM approach (Zissman and Singer, 1994), where multiple streams from differ-

ent phoneme recognizers were used to form N-gram statistics fused in score domain.

TaggedPA disadvantage of such approaches is the computational cost, as many systems must run in parallel. In our case,

the block-softmax approach performs such a parallelization on the level of the output layer, and rather than hand-

merging the phone inventories (IPA mapping) it manages to fuse the phone systems of individual languages by the

internal representation of the network.

4. Experimental setup

4.1. Multilingual training data

TaggedPFor training the neural networks, we used mainly the IARPA Babel Program data.4 This data simulates a case of

what one could collect in limited time from a completely new language. It consists mainly of telephone conversa-

tional speech (CTS), but scripted recordings, as well as far field recordings, are present as well.

TaggedPAll training data from the full language packs from the collections shown in Table 1 were used in our experi-

ments. More details about the characteristics of the individual languages can be found in Harper (2013). The speech

was force-aligned using our Babel ASR system (Karafi�at et al., 2013).
TaggedPFor NN training, we used either one language (monolingual networks) or subsets of Babel data with different

number of languages. We denote these multilingual training sets according to number of languages used as multi5,

multi6, multi11 and multi17. See Table 1.
Collected by Appen, http://www.appenbutlerhill.com.

http://www.appenbutlerhill.com


Table 1

Data used to train bottleneck networks. The proportion of silence varies from 15 to 20% depending on language.
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TaggedPFor experiments where we needed a lot of training data for a single language, we used Fisher English Training

Part 1/2, containing 2043 h of clean speech. We created two random subsets of lengths 60 h and 250 h to simulate

the average length of language packs from Babel and the length of the multi5 set, respectively.

4.2. NIST LRE 2009 evaluation database

TaggedPWe present our results on NIST LRE 2009 database in terms of average detection cost as defined in NIST

(2009). To train our systems (parameter estimation for UBM, total variability subspace and backend), we used the

same data setup as in Jan�c�ık et al. (2010): Callfriend, Fisher English Part 1 and 2, Fisher Levantine Arabic,

HKUST Mandarin, Mixer (data from NIST SRE 2004, 2005, 2006, 2008), Foreign Accented English, OGI Multi-

Language Telephone Corpus, OGI 22 languages, Voice of America radio broadcasts and development data for

LRE 2005 and LRE 2007.

TaggedPFour datasets were used for training:

TaggedP� full54� all data from the databases (54 languages, 75 thousand files, 2500 h of speech). This was used for i-vector
subspace training.
TaggedP� f
ull23� subset of 23 target languages for LRE09 from the full54 set (23 languages, 51 thousand files, 1550 h).

This was used to train backend classifier.
TaggedP� b
alanced23�maximum of 500 utterances were selected from full23 set for each language (23 languages, 9.8

thousand files, 360 h). This balanced set was used for UBM training.
TaggedP� d
evel� data from all pre-2009 NIST LRE evaluations, OGI-multilingual, OGI 22 languages, Foreign Accented

English, SpeechDat-East, Switchboard and VoA broadcasts (23 languages, 38.5 thousand files, 117 h). This set

was used for calibration/fusion parameter estimation.
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4.3. SLR system description

TaggedPWe based our experiments on the i-vector based system (Mart�ınez et al., 2011). I-vectors provide an elegant way

of reducing the variable-length input data (time sequence of features) to a small fixed-dimensional feature vector

while retaining most of the relevant information (Dehak et al., 2010). Combination of the i-vector paradigm with bot-

tleneck features is a state-of-the-art technique for SLR (Ferrer et al., 2016; Jiang et al., 2014b; Richardson et al.,

2015).
TaggedP4.3.1. Feature extraction

TaggedPFor the bottleneck feature extraction, please refer to Sections 2 and 3, where it is described in detail. As the refer-

ence features, we used SDC features (Torres-Carrasquillo et al., 2002) with usual configuration 7-1-3-7,

concatenated with 7 original MFCC coefficients (including C0). The frame rate is 10 ms. Vocal Tract Length Nor-

malization (VTLN) (Welling et al., 1999), Cepstral mean and variance normalization (CMVN) and RASTA filter-

ing (Hermansky and Morgan, 1994) was applied before SDC.

TaggedPAfter feature extraction, voice activity detection (VAD) was performed by our Hungarian phoneme

recognizer�we simply drop all frames that are labeled as silence or speaker noises.
TaggedP4.3.2. Estimation of total variability subspace

TaggedPOur i-vector extractor was trained in 5 iterations of jointly applying the Expectation-Maximization (EM)

algorithm and the Minimum Divergence (MD) step (Brummer, 2014). If not stated otherwise, sufficient statis-

tics for i-vector extraction were collected using a 512 component GMM with diagonal covariance matrices

trained on balanced23 set. The i-vector dimensionality was set to 400.
TaggedP4.3.3. SLR backend

TaggedPWe used Gaussian classifier with shared covariance matrix (Mart�ınez et al., 2011) trained on our full23 set to pro-

duce language log-likelihoods. The shared covariance matrix was computed as an average of covariance estimates

for each class. The motivation for this was a class imbalance in the training set. It is in principle the same as a

weighted Gaussian backend described in Ferrer et al. (2016). This classifier was also used to calibrate the scores of

individual systems on the development set.

TaggedPThe fusion was performed by training a linear logistic regression, where every subsystem has a tunable scalar

weight and every target language a tunable scalar offset. The fusion can be written as:

sk ¼
XM

m¼1

amskm þ b;

where M is the number of subsystems to fuse, skm is vector of calibrated log-likelihoods for segment k and

subsystem m and a and b are fusion parameters (scale and offset). These parameters are trained on the devel-

opment set to minimize the multiclass cross-entropy (Van Leeuwen and Brummer, 2006). The trial weights

(appearing in cross-entropy objective function) are set again to be inversely proportional to class frequencies,

to compensate for language imbalance.

TaggedPIt is important to optimize the fusion parameters a and b also for single systems (i.e., train one-way

fusion). Otherwise, the comparison of single and fused systems is biased towards fused ones because of miss-

ing final discriminative score calibration (training a fusion for one single system can be regarded as a score

calibration).
5. Results

5.1. Multilingual features

TaggedPWe performed a set of experiments to see how multilingual training affects the SLR performance of SBN fea-

tures. Intuitively, we should see an improvement, as more different speech units are used as targets during NN



Table 2

Comparison of systems based on monolingual and multilingual SBN fea-

tures. All the NNs were trained using the same network architecture (except

for the difference in the output layer). We used 2048 component diagonal

UBM for the experiments in this table.

ID Features Cavg£ 100

3 s 10 s 30 s

sdc SDC 14.68 4.66 2.16

1 Cantonese 10.77 3.12 1.54

2 Tagalog 10.45 3.03 1.51

3 Vietnamese 10.27 3.00 1.48

4 Turkish 9.53 2.71 1.42

5 Pashto 9.17 2.54 1.33

English 60 h 8.92 2.43 1.20

English 250 h 8.74 2.35 1.15

English 2043 h 8.43 2.20 1.15

m5 multi5 (284 h) 7.17 2.01 1.14

m6 multi6 (360 h) 6.81 1.83 1.08

m11 multi11 (640 h) 6.71 1.80 1.05

m17 multi17 (1070 h) 6.44 1.81 1.05
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TaggedPtraining, which should lead to the ability to better discriminate languages. Moreover, it was already proven to be

effective for ASR (Vesel�y et al., 2012) so the expectation was high.
TaggedPWe trained five monolingual systems for each language from the multi5 set and one multilingual system using all

data from this set, see Table 2.

TaggedPNote, that all monolingual systems for languages from multi5 set use less data (cca 60 h each) compared to multi-

lingual system multi5 (284 h) and multi11 (640 h). We did not have more data for these languages, so to do a fair

comparison, we trained another monolingual network on a comparable random subset of Fisher English database.

We can see from Table 2, that the multi5 system outperforms the monolingual system (Fisher 250 h) by more than

10% relative. We also show a system trained on a 60 h subset of Fisher English, that is, in turn, comparable to other

monolingual systems from the multi5 set. This system is superior to all monolingual systems from the multi5 set.

Finally, we show results for the system trained on all data from Fisher database (2043 h). Especially for short test

durations, we can see, that the multilingual features are still superior.
5.2. Analysis of monolingual features

TaggedPBased on results from previous section, it would be hard to select the best single language for training the

monolingual NN. Some of the training languages are target languages for LRE09 and proportions of test trials

for different target languages vary a lot. For example, English SBN features trained on the 60h subset of Fisher

seem to be the best choice among monolingual features, but this is biased by the fact that English is dominant

target language for LRE09 and probably because of a better quality of transcriptions in Fisher database. In this

section we analyze the behavior of monolingual features further. Firstly we show how the language used to train

bottleneck features affects per-language SLR scores. Secondly we show how the language used affects the vari-

ance of resulting i-vectors. We do this to illustrate the weaknesses of monolingual features and to motivate the

multilingual training paradigm.
TaggedP5.2.1. Per-language SLR performance of bottleneck features

TaggedPThe main goal of multilingual training is to produce language-independent or “universal” features. In Fig. 3 we

show how per-language recognition performance behaves for language-dependent (monolingual) and multilingual

features. We can see that for these 5 target languages, the best performance is achieved by using SBN features

trained on the same language. This makes sense and demonstrates the language bias of monolingual features.

TaggedPIf we compare this best performance with that of multilingual features, we can see that they can be very similar.

For example, the best SLR performance on Pashto language using monolingual features is achieved with Pashto



Fig. 3. Per-language multiclass cross-entropy (lower is better) evaluated for different SBN features. We show only the languages from

LRE09 matching with languages used to train monolingual SBN features. Dotted lines are here to separate mono- and multi-lingual

features.

260 R. F�er et al. / Computer Speech & Language 46 (2017) 252�267
TaggedPfeatures. And that this is almost equal to the performance of multi5 features on that language. The line reaches mini-

mum (the best performance) for multi11 SBN features.

TaggedPFor some languages we can see a degradation of performance when using more languages in multilingual training

of SBN features (see per-language scores for multi11 and multi17 features in Fig. 3). This is probably due to a lower

proportion of this particular language in multilingual training dataset. Regardless of this, overall performance gets

better with more languages added to training (see Table 2).
TaggedP5.2.2. Differences in variance of i-vectors

TaggedPInterestingly, the variance of i-vectors for a language that was used for NN training can increase. The analysis of

this behavior is illustrated in Fig. 4. We used i-vectors from the development set, as it is balanced in terms of dura-

tion and number of segments. The i-vectors for individual features were normalized to have zero mean and unit vari-

ance (mean and variance was computed on all data, i.e., on merged train, devel and eval set). To measure differences

in within-class i-vector distribution, we used average variance of i-vectors of given language, computed as:

sl
avg ¼

traceðSl
wcÞ

D
;

Fig. 4. Average variance of i-vectors for a subset of languages from LRE09 devel set (vertical axis) generated from SBN features trained on differ-

ent languages (either mono- or multi- lingually). The SDC features are also shown in the first column. Note the diagonal pattern when languages

match.
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TaggedPwhere S
l
wc is within-class covariance matrix for language l and D (i-vector dimensionality, in our case 400) is used to

normalize the sum inside the trace.

TaggedPWe can then compare these variances among languages and features. Fig. 4 displays only selected subset of

LRE09 target languages, that were also available to us for SBN NN training (Cantonese, Fisher English, Pashto,

Turkish, Vietnamese). We can clearly see a diagonal pattern, which tells us, that i-vectors are more variable for lan-

guages matching the ones used to train SBN feature extractor.

TaggedPFor the multilingually trained SBN features, we can see that the variance is more uniform across target languages.

TaggedPThe first two columns in Fig. 4 display also i-vector variances for SDC features (which should be a good reference

for language-independent features) and SBN features trained on the Tagalog language from Babel. Tagalog is not a

target language in LRE09 and we can see the expected behavior: the i-vectors extracted from these features are more

or less “uniform” across our 5 language subset.

TaggedPWe assume that increased i-vector variance is caused by richer feature space for linguistically matching phrases.

This then propagates to i-vector space through the UBM alignment statistics. In practice, we want to avoid differen-

ces in i-vector variance for different languages as this violates our assumption about shared within class covariance

of i-vectors in case of linear Gaussian backend.

5.3. Fusion of mono- and multi-lingual systems

TaggedPBy looking at the gains from adding different systems to the fusion, we can roughly estimate the complementary

information conveyed by different features. Note that the gain is not solely dependent on features. Each subsystem

has different UBM alignment and different i-vector subspace (both UBM and i-vector subspace training start from

random initialization and are not guaranteed to converge to global minimum), which necessarily extracts different

and possibly complementary cues about the recording.

TaggedPTable 3 shows the fusion of five monolingual systems (F1) and the same fusion with multi5 system included (F2).

When we compare the multi5 multilingual system and the fusion of five corresponding monolingual systems (first

two lines in Table 3), we can see that the five-fold fusion performs better across all conditions. Having several spe-

cialized (language dependent) features seems to be more appropriate than using some universal (language indepen-

dent) feature set. On the other hand, the single multi5 system is 5£ smaller. Interestingly, we can see from fusion

F2, that the multi5 system brings on average additional gain of 5% to the fusion F1, which demonstrates that multi-

lingual features convey yet another kind of information to the final fusion.

TaggedPWe also tried adding the MFCC/SDC system to the fusion to find out, whether standard cepstral features still con-

tain useful complementary information. As we can see from fusions F3, F4a and F4b, this yields only minor

improvement, mainly for short durations. Such behavior can be expected, as a system based on spectral features may

fetch valuable information when the duration of test segment is limited to just a few seconds.

5.4. One softmax

TaggedPMultilingual training of NN using block softmax (as described in Section 3) was originally designed for ASR. The

network is trained to predict posterior probabilities of speech units (phoneme states in our case). By using the block

softmax output layer, we are able to train NN on different phoneme sets. Each of these phoneme sets contains unique
Table 3

Selected fusions of systems based on monolingual and multilingual SBN features

from Table 2.

System combination Cavg£ 100

3 s 10 s 30 s

m5 /single system/ 7.17 2.01 1.14

F1 1+2+3+4+5 6.38 1.87 1.12

F2 1+2+3+4+5 + m5 6.10 1.73 1.07

F3 1+2+3+4+5 + m5 + sdc 5.92 1.66 1.07

F4a 1+2+3+4+5 + sdc 6.34 1.83 1.13

F4b m5 + sdc 6.61 1.85 1.10



Table 4

Comparison of block- and one-softmax output layers for multilingual training on multi5 set. We used

30-dimensional bottleneck layer for the stacked architecture (SBN30). For the single stage experi-

ments (BN80), we use 80-dimensional features with input temporal context increased to 51 frames.

Features Output Cavg£ 100

3 s 10 s 30 s All

SBN30, 31 frames Block 9.62 2.54 1.30 4.46

SBN30, 31 frames One 10.45 2.85 1.42 4.88

BN80, 51 frames Block 9.18 2.57 1.37 4.35

BN80, 51 frames One 10.18 2.86 1.54 4.84
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TaggedPunits, but they are not necessarily disjoint between the sets. If we used just one softmax with targets concatenated

from phoneme sets of multiple languages (see Fig. 2b), then the network would need to extract also some language

discriminating information from the temporal context and encode it into bottleneck activations to be able to properly

select the correct output unit. This information, encoded in bottleneck features, could be advantageously used in

SLR. The motivation is similar to that of anchor models (Sturim et al., 2001).

TaggedPEarlier experiments with this type of output in ASR domain have shown its inferiority to block softmax approach

(Vesel�y et al., 2012). Our results in Table 4 indicate, that this holds also when the bottleneck features are used for

SLR. It is clear that during the training, the NN is not able to handle situations when two similar units from different

languages compete. This is even worse when one softmax is used in the stacked architecture.

TaggedPFor these reasons we tried to limit the network to the first stage only (no stacking) and we also tried to increase the

input context (from 31 to 51 frames). The results are in the second part of Table 4. We see that even with this modi-

fied network, the one-softmax output does not give us any improvement over the block-softmax. Both NN configura-

tions (SBN with the default context and BN with increased context) suffer about the same relative degradation from

using the one-softmax output layer.
5.5. Input context for BN and SBN features

TaggedPAs we have already mentioned, the hierarchical two-stage topology of Stacked Bottleneck (SBN) NN was origi-

nally designed for ASR task, where it outperformed the single-stage configuration (Gr�ezl et al., 2009). We performed

a set of experiments to see SLR performance of bottleneck features from both single-stage (BN) and two-stage

(SBN) networks. Different configurations can be directly compared by looking at the total temporal context the net-

works have access to.

TaggedPWe shall start with a description of our notation we use to denote input temporal context for NN. Three numbers

separated by colon denote the number of frames for left context, step and number of frames for right context. For

example,�5:1:5 means that together with central frame, we take 5 frames of the left context and 5 frames of the right

context and we take every frame (no sub-sampling), resulting in 11 frames.

TaggedPThe second stage network works effectively as a merger of the first stage network bottleneck features from differ-

ent regions of time context. As the first network sees 125 ms of time context with 10 ms frame shift, we sub-sample

these first stage bottleneck features 1:5 and stack them again to extend the global context to about 300 ms. The infor-

mation would be highly redundant without the sub-sampling.

TaggedPThe same context span can be accessed with only one NN simply by correspondingly extending its input. This

results in a smaller network with input temporal context span preserved. On the other hand, it leads to more shallow

network, without any hierarchy and possibility of parameter sharing. The results are shown in Fig. 5. For the two-

stage SBN features, the position on the x-axis was determined as the largest time context the network has access to

(overall context, measured in frames).

TaggedPWe can see that the difference between stacked architecture and simpler single stage NN is not big in terms of

SLR performance. In several cases, the SBN features outperform the BN features, but on average simpler BN NN
5 Note that the frame error rates were taken from networks in the final training epoch. The plot thus does not display training evolution on cross-

validation set for different epochs (as usually), but in our case for networks with different input temporal context.



Fig. 5. Performance of BN and SBN features with different temporal context. On the left the figure shows SLR performance of 4 monolingual sys-

tems (BN NNs trained on Tagalog, Vietnamese, Turkish and 60h subset of Fisher English). The right part shows ASR-related metrics: final frame-

and word-error rates on cross-validation set (only for the Turkish language).
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TaggedPwith increased context performs almost the same. On the other hand, both ASR metrics (right part of Fig. 5, only

Turkish features are shown) are apparently better for the stacked NN architecture.

TaggedPFor the single stage BN features, there is a significant improvement in Cavg between �5:1:5 (11 frames) and

�10:1:10 (21 frames) and except Vietnamese, BN features seem to get progressively better when using longer tempo-

ral context. This is not the case for the stacked architecture, as the performance of SBN features starts getting worse

when using more than 21 frames of (stacked) global context.

TaggedPInterestingly, when we look at the final frame error rates (FER) of the Turkish NNs (top-right part of Fig. 5), we

can see that adding more frames of temporal context to the NN input helps to improve the per-frame accuracy5. The

FER and WER on cross-validation set seems to saturate when using input context of 31 frames and more (that is

why 31 frames is our default context for the SBN architecture).

5.6. Using senones as NN training targets

TaggedPOur experiments in Mat�ejka et al. (2014) and F�er et al. (2015) have shown, that we can obtain the best features by

using senones (context-dependent tied triphone states) as NN training targets. Senones also dominate other recent

works making use of bottleneck NNs (Jiang et al., 2014a; Ferrer et al., 2016). In the case of senones, however, the

output layer can become very large when training the NN multilingually on many languages. It can even exceed the

size of the whole rest of the network several times (see Fig. 6), requiring a lot of memory during the NN training.

This is because the number of senones is an order of magnitude higher compared to the number of phoneme states

(see Table 6).

TaggedPIn this section, we show that the amount of parameters in the output layer can be lowered down by moving the

bottleneck layer to the very end of a network, so the block-softmax output is immediately following the bottleneck.

This eliminates a majority of the weights in the output layer, but also limits the decoding power of a bottleneck-to-

softmax transformation to be just linear . We show that this can degrade the SLR performance, mainly for short test

segment durations.

TaggedPNote that placing the bottleneck to the end of a network was shown to be disadvantageous in McLaren et al.

(2016). The authors evaluate five-layer NN with the bottleneck layer at different positions, both on LRE09 and noisy

RATS database. They achieved the best results on LRE09 with bottleneck layer being the last but one in the network.

For the noisy RATS data, positions in the center were found better.



Fig. 6. Amounts of free parameters of BN NN for different organizations of hidden layers (only the first stage of the SBN architecture is consid-

ered). Note that the light parts of both green and blue bars do not change for different output layer (either mono- or multi-lingual). The darker parts

of bars represent units of bottleneck NN not used during the bottleneck feature extraction. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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TaggedPConsidering phoneme states as our baseline NN training targets, we evaluate two systems based on senones. One

with a full hidden layer between bottleneck and output layer (denoted as “2+1” � the same topology as in baseline)

and a second system with proposed modification where the bottleneck layer is shifted to the very end of a network

(denoted as “3+0”). The results are in Table 5.

TaggedPWe can see that in the case of monolingual Turkish features, phoneme states as targets do not perform as good as

senones and that shifting bottleneck layer to the end of the network seems to have a minor effect on SLR perfor-

mance, with a degradation for short segments only. In the case of multilingual features, the situation is similar.
Table 5

Experiments with different training targets for monolingual and multilingual training (SBN archi-

tecture). The number of hidden layers before and after the bottleneck is indicated in the second

column.

Targets Full layers Cavg£ 100

3 s 10 s 30 s All

Turkish phonestates 2+1 9.53 2.71 1.42 4.53

Turkish senones 2+1 8.72 2.40 1.27 4.11

Turkish senones 3+0 9.02 2.39 1.26 4.20

multi5 phonestates 2+1 7.17 2.01 1.14 3.42

multi5 senones 2+1 7.09 1.90 1.06 3.33

multi5 senones 3+0 7.15 1.94 1.07 3.37

Table 6

Number of output layer targets for individual training languages and dif-

ferent kinds of speech units.

# Phones # Phonestates # Senones

Turkish 42 126 3805

Pashto 72 216 5541

Tagalog 84 252 3475

Vietnamese 101 303 7731

Cantonese 157 471 4718

multi5 456 1368 25,270
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TaggedPComparing the two network topologies based on senones, the system with layer configuration “2+1” is the best over

all conditions. The second configuration (“3+0”), especially for short segments, yields performance closer to the sys-

tem based on phoneme states. The use of senones as targets in multilingually trained networks thus still leads to very

large networks if we do not want to sacrifice any performance on short duration test segments. This might not be a

problem if we consider that the biggest part of a network can be discarded once the NN is trained for bottleneck fea-

ture extraction.

TaggedPAnother approach to scale down the number of parameters in the last layer could be forcing the state-tying algo-

rithm to cluster the triphone states to a very small number, comparable to the number of phonestates. Note that it

would probably end up with a very similar set of targets, most probably falling back to the same performance as

with phonestates.
6. Conclusions

TaggedPIn this work, we applied multilingual training paradigm of neural networks to extract rich features for SLR. On

the standard NIST LRE09 dataset, we have shown that features enriched in this way are more informative and better

fitting for a SLR task than monolingual ones. This corresponds with original results from ASR domain.

TaggedPWe showed that the multilingual features are complementary to the fusion of corresponding monolingual systems

as they bring additional gain in fusion. This confirms the hypothesis, that we can obtain more complex information

from multilingual bottleneck features than from fusion of “simple” parallel systems.

TaggedPWe briefly investigated the suitability of training the NN using only concatenated phoneme sets (one softmax out-

put). Although the final results are worse (compared to block softmax output), they are surprisingly good and compa-

rable to that of monolingual features. Our initial hypothesis that a network would be able to discriminate between

similar targets of different languages (based on such a short temporal context) turned out to be wrong. This confirms

a concept of poly-phonemes (phonemes common to more languages) as described in Anderson et al. (1994).

TaggedPA large part of the article was dedicated to practical aspects of multilingual training of bottleneck networks. We

showed and analyzed the main pitfalls arising from the increased size of the output layer for senones as targets and

we focused on the choice of the size of the input temporal context. The results were given in conjunction with per-

frame NN training objective to put more insight into the relation of SLR performance and NN training accuracy.

The results indicate, that even thought in ASR domain the stacked SBN architecture (used throughout this paper)

performs better than single stage architecture, SLR performance comparable to the stacked SBN architecture can be

achieved using only the first stage bottleneck network with extended input temporal context.

TaggedPPer-language results showed strong coupling of monolingual features to their training language, i.e., that lan-

guage-specific features produce the best scores for that particular language. Multilingual features performed either

that well or better, consistently and independently of the language. Note that ASR experiments in Scanzio et al.

(2008) resulted in the opposite behavior. In that paper, a baseline monolingual features trained on a language match-

ing a test language performed better than a multilingually trained features. These “specialized” features were simply

better fitting to that particular language. This does not apply for SLR, where the task is inherently multilingual. Our

subsequent analysis of i-vector variance demonstrated the language-independence of multilingually trained bottle-

neck features and suggested that such features are more appropriate when using a linear Gaussian backend.
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