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Abstract

1. Introduction
Our submission is a collaborative effort of BUT, Politecnico di
Torino, Universidad Autonoma de Madrid and Phonexia. The
main body of work was conducted during end of September and
beginning of October 2017 when the whole team met in Brno
and all members were closely working together with common
datasets.

All of our individual systems rely on the bottleneck features[1,
2] (BNF) as frontends. Most of our systems are still based on
i-vectors and subsequent generative classifier. We also comple-
ment the classical i-vector based systems with a system based
on embeddings obtained from discriminatively trained end-to-
end LRE system. Finally, the primary submission is a fusion
of four systems where we utilize two different BNF extractors,
non-linear processing of i-vectors and embeddings obtained from
the discriminative system.

2. Data
We have utilized all data supplied by NIST (training and dev)
for primary (fixed) condition. All data were downsampled to
8kHz.

The annotated Switchboard and Fisher I and II databases
were used to train the bottleneck NN. These databases were pro-
vided for all participants to allow the use of techniques requiring
annotated speech corpora for system development.

The LRE17 training data were used to train the i-vector sys-
tem (UBM, i-vector extractor). LRE17 development data were
split into two parts. First part was used added to the classifier
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training data and the second part was used as a held-out set to
monitor the performance during development and for calibra-
tion and fusion during development. For the final calibration
and fusion before submission, we have re-calibrated and fused
all systems on the full LRE17 dev set. We denote LRE17 train-
ing data as Fixed set later in this document.

For the open condition and only for the classifier training
data, we tried to design an alternative dataset with an emphasis
on large channel variability and amount of data. We used data
from previous evaluations and other publicly available sources.
We denote this as Open set later in this document.

2.1. Primary Data

We used a mix of LRE17 train and dev for training our classi-
fiers.

As the training data provided by NIST contained many rather
long segments, we have decided to prepare two versions of the
training data. First, we used the lre17 training data as is without
any modification (we denote this version as full, and second we
cut all of the files containing more than 40s of speech into cuts
ranging from 2.5 to 40s (we denote this version as cuts. We did
not include the original long segment in the resulting training
list then. We chose this approach to simplify the processing of
data in subsequent classifiers.

In the lre17 dev. we split segments that contain more than
40s of speech into multiple short cuts ranging from 2.5 to 40
seconds of speech. We also kept the original long segments that
we cut. This way, we obtained 6090 segments, while the orig-
inal NIST dev set contains 3660 segments. We decided to put
2/3 of this data into the training set and leave the remaining 1/3
as a held out test data. We did not attempt to detect overlapping
segments (nested cuts) between the two splits of lre17 dev data,
but we ensured that the short cuts created by us do not overlap
w.r.t. their original long segments.

2.2. Data for Open condition

We designed an independent dataset for the open-data condi-
tion, where we concentrated on obtaining a large diversity in
channels and a large amount of training data. We have reused
data from previous NIST evaluations and all of the LRE17 train-



ing data. We did not attempt to filter the LRE17 training data
to remove the overlapping segments with the remaining train-
ing data. We have also added part of KALAKA-3 database [3]
(British English, European Spanish) and human annotated part
of Al Jazeera Dialectal Speech Corpus for the Arabic dialects [4].
As in the training data for fixed condition, we added the two
thirds of lre17 dev data.

The training data for the open condition reached the size
of 67779 segments (2346 hours of speech). Here, we did not
produce any additional short cuts from the long segments.

Table 1: Sources of data used for open training data condition
and their statistics. Rows are sorted according to amounts of
detected speech.

Database #files hours

OGI 22 languages 1987 3
unknown broadcast news 64 3.9
LRE17 dev MLS14 1854 6.3
OGI multilingual 1640 8.8
KALAKA-3 409 9.9
Radio Free Europe 478 11.2
Foreign Accented English 4239 13.6
HKUST Mandarin 276 17.2
Al Jazeera Dialectal Speech Corpus 4423 21.8
LRE17 dev VAST 2242 22.1
SpeechDat-East 6202 30.6
NIST SREs 3722 88.6
Callfriend 838 144
Levantine Arabic and Iraqi CTS1 3606 168
Previous NIST LREs 3015 256
Fisher English, Arabic 5804 337
VOA broadcasts 10775 366.7
LRE17 train 16205 837.3

Total 67779 2346

2.3. Training data for Bottleneck features

2.3.1. Fisher English

Fisher English database Part 1 and 2 was used for training as no
other data was allowed. The final training data was composed
of 1800 hours of clean Fisher data augmented with another 3
copies of artificially corrupted Fisher data. We used fant tool [5]
to mix reverberated speech and reverberated noise with given
SNR with original clean audio file.

We generated artificial room impulse responses (IR) using
Room Impulse Response Generator tool from E. Habets 2.

IRs were generated for rooms where each dimension was
limited to the range of 2–22 meters and other parameters in the
tool were set randomly.

Noises were added at SNRs ranging from 0dB to 45dB. The
noises are downloaded from Freesound.org library with these
types:

• real fan stationary noises - fan, AC, hvac, street, ventila-
tion - 115 samples from Freesound.org

• real background transient noises - dishes, motor, work-
shop, doors, city, keyboard, library, office. The character

1LDC2007S01, LDC2006S45, LDC2005S14, LDC2005S07
2http://www.audiolabs-erlangen.de/content/05-fau/professor/00-

habets/05-software/01-rir-generator/rir generator.pdf

is mainly transient, with some minor portion of station-
ary noises - 60 samples from freesound.org

• babbling noises: each created by merging speech from
100 random speakers from Fisher database using speech
activity detector - 25 samples

• artificially generated noises - various spectral modifica-
tions of white noise + 50 and 100 Hz hum - 7 samples

2.3.2. Babel Multilingual

We used the IARPA Babel Program data3. This data simulates
a case of what one could collect in limited time from a com-
pletely new language. All training data from the full language
packs from the 17 languages (Assamese, Bengali, Cantonese,
Cebuano, Haitian, Kazakh, Kurmanji, Lao, Lithuanian, Pashto,
Tagalog, Tamil, Telugu, TokPisin, Turkish, Vietnamese, Zulu)
were used. There is 1070 hours of speech data in total with
approximately uniform distribution of speech duration per each
language. More details about the characteristics of the individ-
ual languages can be found in [6].

3. Voice Activity Detection
Our VAD consists of two carefully designed parts: a neural
network (NN) which produces per-frame scores, and a post-
processing stage which builds the segments based on the scores.

The NN was trained on the Fisher English. The input di-
mension is 288, while there are 2 hidden layers, each of 400
sigmoid neurons, and the final softmax layer has 2 outputs, cor-
responding to the classes: speech, non-speech. The NN has
277k parameters.

The input features for the NN consist of 15 log-Mel filter-
bank outputs and 3 Kaldi-pitch features [7]. We apply per-
speaker mean normalization estimated on the whole unsegmented
recordings. Then we apply frame splicing with 31 frame-long
context, where the temporal trajectory of each feature is scaled
by a Hamming window and reduced to 16 dimensions by Dis-
crete Cosine Transform. The final 288-dimensional features are
globally mean and variance normalized on the NN input.

In the post-processing, we bypass the NN output softmax
function (allowing us to interpret the outputs as log-likelihoods),
then we convert the two outputs to logit-posteriors, and then we
smooth the score by averaging over consecutive 31 frames. In
the final step, the speech segments were extracted by threshold-
ing the posterior at the value of -0.5.

4. Feature extraction
4.1. Stacked Bottleneck Features (SBN)

A bottleneck feature vector is generally understood as a by-
product of forwarding a primary input feature vector through
a NN and reading off the vector of values at the bottleneck
layer. We have used a cascade of two such NNs for our experi-
ments. The output of the first network is stacked in time, defin-
ing context-dependent input features for the second NN, hence
the term Stacked Bottleneck Features (SBN). The NN input fea-
tures are 24 log Mel-scale filter bank outputs augmented with 2
fundamental frequency based features based on [8]. In sum-
mary, 24 log filter bank outputs and 2 fundamental frequency
features form 26-dimensional feature vectors.

Mean subtraction is applied at the utterance level. Ham-
ming window followed by DCT consisting of 0th to 5th base

3Collected by Appen, http://www.appenbutlerhill.com



are applied on the time trajectory of each parameter resulting in
(24 + 2)× 6 = 156 coefficients on the first stage NN input.

The dimensionality of the bottleneck layer was set to 30 or
80. The dimensionality of the other hidden layers was set to
1500. The bottleneck outputs from the first NN are sampled at
times t−10, t−5, t, t+5 and t+10, where t is the index of the
current frame. The resulting 150 or 400-dimensional features
are inputs to the second stage NN with the same topology as
first stage. The 30 or 80 bottleneck outputs from the second NN
(referred as SBN) are the final features.

The basic idea in multilingual training of BN is to train NN
on more than one language [9] so that the final bottleneck fea-
tures cover richer acoustic space than when trained for one lan-
guage only. We used block softmax to divide the output layer
into parts according to individual languages [1, 2]. During the
training, only the part of the output layer corresponding to the
language of the actual target is activated.

We used several type of SBN features.

1. FSH-30 - trained on Fisher English corpus. First bot-
tleneck is 80 dimensional and the second bottleneck is
30 dimensional. There are 3 hidden layers before BN
layer in both NN. The output layer has 9824 outputs -
triphones. During training the BN layer is connected di-
rectly to the output layer.

2. FSH-80 - trained on Fisher English corpus. First and
second bottleneck layers are 80 dimensional. There are
2 hidden layers before BN layer in both NN. The output
layer has 9824 outputs - triphones. There is one hidden
layer between bottleneck and output layer during train-
ing.

3. BabelML17-80 - trained on 17 languages from BABEL
project. First and second bottleneck layers are 80 di-
mensional. The output layer has 15558 outputs - tied
triphones per each language. This NN is trained in multi-
lingual fashion where we used block softmax as the out-
put layer [2] . This features are only for OPEN condition.
The NN topology is same as for FSH-80.

4.2. NN embeddings

For one of the systems submitted, we use a DNN embedding
based architecture, which consists of a sequence summarizing
DNN trained to learn an utterance (or segment) level represen-
tation from the frame-by-frame input features.

The structure of the system was inspired by the embedding
DNN system presented in [10] for speaker verification. We can
be split the DNN into two parts separated by the pooling (sum-
marizing) layer. The first part of the DNN, up to the pooling
layer, works in a frame basis, and consists of two BLSTM lay-
ers followed by a fully connected layer, with 256 hidden units
(or cells) each. These recurrent layers based on BLSTM have
proven their ability to deal with temporal information, espe-
cially over short utterances for LID, without stacking of frames
in the input features but taking into account the information
learnt from previous (and following) frames in the same se-
quence. Then, mean and standard deviation stats over the tem-
poral dimension of the sequence are pooled together in the se-
quence summarizing layer. Two fully connected layers follow,
which correspond to the embeddings used as sequence (or ut-
terance) level representation for the LID system (concatenation
of both is used for the embedding system submitted). Finally, a
softmax output layer is used to discriminate among the 14 tar-
get languages. This way, from the summarizing layer up to the

output layer, the DNN acts over sequences instead of frames.
Sigmoid activation was used as non linear function for all

hidden units. Categorical cross-entropy loss function was opti-
mized via Adam optimizer, using 200 samples per minibatch.
Dropout of 0.3 was used in recurrent units and gates of the
BLSTM layers, and sequences of 3 seconds were considered
during training. However, in order to extract embeddings for
each utterance, we do not constraint the length of the segment
to 3 seconds, but forward the whole segment to obtain one em-
bedding per utterance.

The network was fed with the FSH-30 SBN features de-
scribed in the previous section, and trained using a balanced
dataset from the training list which contained up to 15 hours
per language, prioritizing the development segments included
as training. The model selection was performed according to
validation accuracy in the 1/3 held out test data (with no more
than 200 epochs allowed for training). The Gaussian Linear
Classifier (GLC) described in section 5.1 was used as a back-
end, trained on the full training list.

5. Classifiers
5.1. Gaussian linear classifier / Multi-Gaussian classifier

Generative modeling of i-vector point–estimates for language
recognition has proven to be an effective alternative to discrim-
inative classifiers based on Logistic Regression or Support Vec-
tor Machines. In [11], we have proposed a simple linear clas-
sifier based on Gaussian distributions which provides accura-
cies similar to those of linear discriminative approaches. The
model assumes that, for each language, the corresponding i-
vector point–estimates µi are generated according to:

µi ∼ N
(
m`,Λ

−1) , (1)

where m` is a language–dependent mean vector and Λ−1 is
a covariance matrix, shared among all language distributions.
The model parameters can be easily obtained by Maximum–
Likelihood estimation. The class–conditional log–likelihood
for µi given language ` can be computed as:

logP (µi|`) =
1

2
log |Λ| − 1

2
(µi −m`)

TΛ(µi −m`) + k ,

(2)
where k is a data–independent constant. We denote this classi-
fier as GLC.

Since development and evaluation data comprise different,
possibly mismatched, data sources, and we also observed a rel-
evant mismatch between development data and previous LRE
data, we also propose a modified Gaussian classifier, named
Multi-Gaussian Classifier (MGC), able to better model these
different sources. The MGC classifier assumes that i-vectors of
each language-source combination are generated by a different
Gaussian distribution according to

µi ∼ N
(
m`,s,Λ

−1) , (3)

where s denotes the source. For this evaluation, we considered
three sources, namely, VAST, MSL14 and previous LRE data.
At test time a language score is computed from a GMM whose
components are the Gaussian distributions associated to the tar-
get language, assuming uniform weights over the data sources.

5.2. NonLinearTransform

Following the success of Non–Linear PLDA (NL–PLDA) [12]
for speaker verification, we propose to apply the technique for



language recognition tasks. To this extent, we trained a NL–
PLDA model using the formulations given in [12], assuming
that the classes are languages rather than speakers. Although
PLDA models (including NL–PLDA) can be directly used to
compute language recognition scores, due to lack of time we
did not directly use NL–PLDA for scoring, but rather to simply
compute a transformation of i–vectors. It is worth noting that, in
contrast with our previously proposed i-vector Gaussianization
approach [13], the NL–PLDA transformation is aware of lan-
guage labels. Finally, GLC and MGC classifiers were trained
over the transformed i-vectors.

5.3. Neural Network classifier

For one of submits, we used a small Neural network (NN) as
one of fused systems. The NN takes i-vectors as input and gen-
erates posteriors of language classes at the output softmax layer.
The NN has a single hidden layer which works as a Variational
information bottleneck [14] of size K = 64. When trained on i-
vector sets with cuts, the NN shows slightly better performance
than GLC and these two models are complementary – they fuse
well. We found no way to train successfully the NN on data
without cuts (because of over-fitting). Source code of the NN is
available at https://github.com/JosefSlavicek/LRE-VIB

6. Calibration and fusion
After the first stage, where produced a vector of scores for each
segment, we continued with other two stages that do pre-calibration
and fusion in score-space and are both trained on the dev sub-
set (NIST LRE17 dev) for both the Fixed or Open condition.
During development, we were calibrating and fusing on the 2/3
of LRE17 dev that we also added into the training data, for the
final submission, we calibrated and fused on the whole LRE17
dev including our short cuts. Both stages are implemented by
multiclass logistic regression [15].

Our logistic regression solutions to calibration and fusion
were simple, to avoid over-training. For pre-calibration, an in-
dividual system has a trainable scale factor and an offset vector.
In fusion, every system gets a single trainable scale factor, while
every language gets a trainable score offset. The parameters are
trained via optimizing prior-weighted multiclass cross-entropy.
We used an uniform prior (flat) over all 14 languages for both
pre-calibration, and fusion.

Later on in this document we report actual equalized cost
obtained by the means of NIST scoring tool on the held out part
of our development set.

6.1. Cluster-dependent system fusion

Some of our systems use cluster dependent subsystems [16]
fused into one system by means of a simple average of their
scores, which simplifies the development and provides suffi-
cient robustness. Such system is then denoted by CD.

Basically it is a simple fusion of 5 (as there are 5 language
clusters) i-vector based systems, where the individual UBMs
are trained only on data belonging only to the particular cluster
(Arabic, Chinese, English, Iberian, Slavic). The training data
for T-matrix were however common for all individual cluster-
dependent subsystems.

7. Submitted systems and Results
Most of our systems were based on the 30 dimensional bottle-
neck features trained on Fisher English (FSH-30). We varied

the topology and size of GMM and ivector extractor, we added
delta coefficients at the input, we experimented with postpro-
cessing of the ivectors and used different classifiers. The Table 2
summarizes the components of separate systems together with
results and also the fusion and submitted systems. All ivector
based system were trained on the full list only on LRE17 train-
ing data. Only systems 5 and 6 were trained also on Fisher and
Switchboard data.

8. Processing Speed
Our code is a development code and was not optimized for
speed. The measurement is done for one channel of the file
fe 03 04835 from Fisher English 1 corpus with length 597 sec-
onds and 216 seconds of detected speech. The most time con-
suming part of the system is bottleneck extraction. The pro-
cessing time of bottleneck feature extraction including loading
all models is 50 and 70 seconds for 80 and 30 dimensional bot-
tleneck extractors respectively. GMM and ivector extraction for
big model (4096G/800ivec) including loading models is 15sec.
Evaluating NN/GLC/MGC is at most 1sec. The processing time
for extracting NN embeddings from bottleneck features to em-
beddings is 39 seconds from 30 dimensional bottleneck features
FSH-30. The VAD is negligible to the processing time of the
whole system so we compute the realtime factors to the detected
speech. The results are in the Table 4. The single best system is
3.27 times faster than RT and the primary fusion is 0.79 times
faster than RT.

Processing was run on Intel(R) Core(TM) i5-2500 CPU @
3.30GHz and each process with less then 8G of RAM.

9. Conclusion
We have built over 30 systems for this evaluation with the main
focus to build a single best system. We experimented with
denoising NN, automatic discovery units, different flavors of
phonotactic systems, different backends, different sizes of ivec-
tor systems, different BN features, NN embeddings and frame
level language classifiers.

The evaluation plan stated “Teams are encouraged to report
whether and how having access to the development set helped
improve the performance”. The development data helped mainly
in the final classifier and also helped in the decision process
which techniques to use and which to fuse because our test set
consisted of this data.
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