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ABSTRACT

Recent work on Acoustic Unit Discovery (AUD) has led to the
development of a non-parametric Bayesian phone-loop model
where the prior over the probability of the phone-like units is
assumed to be sampled from a Dirichlet Process (DP). In this
work, we propose to improve this model by incorporating a
Hierarchical Pitman-Yor based bigram Language Model on
top of the units’ transitions. This new model makes use of the
phonotactic context information but assumes a fixed number
of units. To remedy this limitation we first train a DP phone-
loop model to infer the number of units, then, the bigram
phone-loop is initialized from the DP phone-loop and trained
until convergence of its parameters. Results show an absolute
improvement of 1-2 % on the Normalized Mutual Information
(NMI) metric. Furthermore, we show that, combined with
Multilingual Bottleneck (MBN) features the model yields a
same or higher NMI as an English phone recogniser trained
on TIMIT.

Index Terms— Bayesian non-parametric, Variational
Bayes, acoustic unit discovery

1. INTRODUCTION

Whereas Automatic Speech Recognition (ASR) systems are
more and more frequently used in daily life applications, the
need of labeled data has never been so high. With the ever-
growing use of Internet a huge amount of unlabeled audio
data coming from many different countries is now available.
Semi-supervised training is de facto the current standard tech-
nique to cope with unlabeled data. This method is however
unsatisfactory as it requires a large amount of untranscribed
data for a significant improvement [1] and is not applicable
in cases where no transcribed data is available. Alternatively
to semi-supervised training, a nonparametric Bayesian model
to automatically segment and label audio data has been pro-
posed In [2]. The model was later refined in [3] in order to
be trained using the Variational Bayes (VB) method. An at-
tempt to tackle the problem by means of neural networks as
also been investigated in [4]. In [3], the Acoustic Unit Dis-
covery (AUD) is done by clustering temporal sequences with
a Dirichlet Process (DP) based mixture model where, follow-
ing the Variational treatment of the DP mixture model [5],
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the probability of the component of the mixture is approxi-
mated by a finite Categorical distribution. This distribution
functions as a unigram phonotactic Language Model (LM)
over the units. This generative process is quite inaccurate as
the probability of a phone (and by extension any phone-like
unit) strongly depends on the previous phones. In the present
work, we extend the AUD model described in [3] by replac-
ing the naive unigram phonotactic LM by a non-parametric
Bayesian bigram phonotactic LM. The article is organized as
follows: Section 2 and 3 describes the original model and its
extension respectively, Section 4 details the training of the
extended model, Section 5 details how we evaluate the AUD
task and finally, results are presented in Section 6.

2. INFINITE PHONE-LOOP MODEL

Our model aims at segmenting and clustering unlabeled
speech data into phone-like categories. It is similar to a
phone-loop model in which each phone-like unit is modeled
by an HMM !. This phone-loop model is fully Bayesian in
the sense that:

e it incorporates a prior distribution over the parameters
of the HMMs

e it has a prior distribution over the units modeled by a
Dirichlet process [6].

Informally, the Dirichlet process prior can be seen as a stan-
dard Dirichlet distribution prior for a Bayesian mixture with
an infinite number of components. However, we assume that
our N data samples have been generated with only M compo-
nents (M < N) from the infinite mixture. Hence, the model
is no longer restricted to have a fixed number of components
but instead can learn its complexity (i.e. number of compo-
nents used M) according to the training data. The generation
of a data set with M speech units can be summarized as fol-
lows:

1. sample the vector v = v, ..., vps with

v; ~ Beta(1,7)

IBy abuse of notation we write HMM for the complete HMM/GMM
model.
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where +y is the concentration parameters of the Dirichlet
process

2. sample M HMM parameters 61,...,0); from the base
distribution of the Dirichlet process

0, ~H

3. For a sequence of, say, L phone-like units, the sequence
of features associated to the unit [ is sampled with the
following scheme:

(a) sample the cluster index ¢; from the distribution
7 (v) defined as:

i—1

mi(v) =v [J(1 =)

Jj=1

(b) From the HMM’s parameters 6.,

i. sample a sequence of state s = s1, ..., S,

ii. for each state s;, sample a Gaussian compo-
nent m; and generate data point x; from it.

The graphical representation of this model is shown in Figure
la. The priors over the GMM weights, Gaussian mean and
(diagonal) covariance matrix are a Dirichlet and a Normal-
Gamma density respectively. A similar model has been ap-
plied in [2], however, two major differences should be noted:
first, we have chosen to consider the stick-breaking construc-
tion [5] of the Dirichlet process (step 1 and 2 of the genera-
tion) rather than the Chinese Restaurant Process (CRP). See
[7] and [2] for training Bayesian models with the CRP. This
allows us to use variational methods to infer the distribution
over the parameters rather than sampling methods. Secondly,
our model does not have any boundary variable. The seg-
mentation of the data is carried out by seeing this mixture of
HMMs as a single HMM and using the standard Viterbi algo-
rithm. See [3] for the Variational Bayesian treatment of this
model.

3. BIGRAM PHONE-LOOP MODEL

The model previously described is able to learn the appropri-
ate number of units for a given data set thanks to the Dirichlet
Process prior. The learnt probabilities of each unit to occur
can be seen as a simple unigram phonotactic language model.
It is well known however, that each language has a specific
phone distribution and moreover a specific n-gram phone se-
quence distribution. Hence, the simple phone-loop model is
limited in the sense that it does not make use of the phono-
tatic context information. To remedy this problem, we can
replace the Dirichlet Process prior by a Hierarchical Pitman-
Yor process based Language Model (HPYLM) [8] [9]. The
HPYLM prior guarantees that the probability of each unit to
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occur depends on the previous O units, where O is the or-
der of the hierarchy of the HPY. The data generation with a
bigram based HPYLM is summarized as follows:

1. sample the HMM parameter sets 61, ..., 0 from the
prior distribution:

0; ~ ¢

2. sample a Categorical distribution from the top level
Pitman-Yor process (PY)

G1 ~ PY(Go, 0, do)
where G, vy and dj are the base distribution, the con-
centration and the discount parameters of the PY re-
spectively. In our case, we assumed G to be a uniform

Categorical distribution

3. sample K context-dependent distributions over the units
G2)1, ceny GQ’K:

Ga,i ~ PY(G1,7,d1)
where (G1, 71 and d; are the base distribution, the con-
centration and the discount parameters of the second-

level PY respectively

4. A sequence of L units cy, ..., cr, and the associated se-
quence of features is sampled as follow :

(a) sample the lth unit index for the ¢;:

Cl ~ G2,cl_1
(b) finally, sample the state path si,...,s,, the
state’s mixture components my, ..., m, and the

features vectors x1,...,x, from the HMM with
parameters 6., as described in section 2

The graphical model corresponding to this generation process
is depicted in Figure 1b. We draw the reader’s attention to the
fact that, contrary to the model presented in Section 2, we as-
sume here a finite number of units. Hence, while the HPY
based phone-loop can model context-dependent unit transi-
tions, it is not suitable to infer the number of units. Eventu-
ally, this limitation could be resolved by assuming the HMM
parameters 6 to be sampled from the top level base distribu-
tion GGy of the HPY. However, because there is no known an-
alytic form for the stick-breaking representation of the HPY
[10], and therefore no simple VB inference algorithm adapted
to this model, it would require to train the HMM parameters
using Gibbs sampling losing the benefits of the VB inference,
as discussed in [3].



Fig. 1: Two different AUD models

Q)

(a) Phone-Loop model with a Dirichlet Process prior

4. TRAINING

In section 2 and 3 we presented two phone-loop models, the
first one learning the complexity (i.e. the number of units)
needed to model the data whereas the latter one makes use
of the phonotactic context information. Figure 2 shows the
evolution of the number of units during the VB training of the
DP based phone-loop model. As we can see, the number of
units stabilizes very quickly at the beginning of the training.
This suggests that we can proceed in two stages: first learn-
ing the number of units with the DP based phone-loop model
and then refining the HMMs’ parameters using the bigram
phone-loop model. The DP phone-loop model is trained us-
ing VB inference as described in [3]. Once the training of the
DP phone-loop model has converged we switch to a 3-steps
training procedure that we repeat until convergence:

1. label the data with Viterbi algorithm using the current
phone-loop model

2. train the HPY based language model on the labeled data
using the Chinese Restaurant Franchise (CRF) [8]

3. set the unit-to-unit transitions according to the trained
phonotactic LM and retrain the HMMs’ parameters
while keeping fixed the aforementioned transitions.

While this algorithm was experimentally proven to be effi-
cient (see Section 6) it is worth mentioning a couple of possi-
ble variations. First of all, training the HPYLM on the Viterbi
path can be seen as an approximation of the VB training. This
approximation could be refined by sampling paths instead of
using the most likely one. Sampling several paths for an ut-
terance would account for the uncertainty of the sequence
unit. It was found experimentally that doing so considerably
slows down the training and yields the same results as the
method proposed above. Another important point is that we
retrained from scratch the full HPYLM each time we update
the HMMs’ parameters. Indeed, the CRF assumes a fixed
training data whereas in our case the sequences of units pos-
sibly change each time we update the acoustic model. This
limitation could be tackled by removing all the customers of

[T

(b) Phone-Loop model with a bigram phonotactic HPYLM

# units,
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Fig. 2: Evolution of the number of units during the training
of the DP model. The number of units was found by labeling
(Viterbi decoding) the data and counting how many different
units occurred.

one utterance and then re-sampling a new sitting arrangement
for this utterance. This approximation of the CRF is slightly
inaccurate for very small data set but works well for any rea-
sonable size data set. The possible speed up of this approx-
imation is however counterbalanced by some memory over-
head as we have to store the utterance corresponding to each
customer in the CRF. No performance difference between the
two approaches was found experimentally.

5. EVALUATION

The evaluation of the discovered acoustic unit is not as
straightforward as it may seem since the usefulness of the
discovered units is highly task dependent. In this work, we
use the mutual information between the human expert la-
beling and the discovered units. The mutual information
between two random variables X and Y is defined as

I(X;Y) = H(X) - H(X]Y) (D

where H (X) is the entropy of X and H (XY") is the entropy
of X given Y. Note that it is a symmetric measure. Infor-
mally, this metric can be understood as a “correlation” mea-
sure between the the discovered untis and the true phones.
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The mutual information gives a result in bits, however, since
the maximum amount of bits to learn depends on the data and
the task, we divide by the entropy of the true labels:

I(X;Y)
H(X)

where NMI stands for Normalized Mutual Information. This
quantity is also known as the uncertainty coefficient. Note
that the NMI version is not symmetric anymore and range
from 0 to 1. Practically, we generate a sequence of units for
each utterance of some test data using the Viterbi algorithm
and then, we map each unit to its closest label in time. Us-
ing this one-to-one mapping the computation of the NMI is
straightforward.

NMI = )

6. RESULTS

The experiments were conducted on the TIMIT database
[11]. We used two different set of features: the mean nor-
malized MFCC + A + AA generated by HTK [12] and the
Multilingual BottleNeck (MBN) features [13] trained on the
Czech, German, Portuguese, Russian, Spanish, Turkish and
Vietnamese data of the Global Phone database. As shown in

model features | NMI

DP phone loop MFCC | 33.94
Bigram phone loop | MFCC | 34.82
DP phone loop GP BN | 42.06
Bigram phone loop | GP BN | 42.63

Table 1: Normalized Mutual Information of the DP phone-
loop and the bigram phone-loop for MFCC and MBN features

Table 1, the bigram phone-loop model improves the NMI for
both sets of features. The improvement is relatively smaller
with the MBN features. This is to be expected as the MBN
features are trained and computed using some temporal con-
text which reduces the influence of the bigram LM. Note that
the results of the DP phone-loop model are slightly worse
than the ones reported in [3] as we have used a separate test
set rather than evaluating the NMI on the training data.

In standard ASR systems, it is a common practice to scale
down the acoustic scores to alleviate the influence of the
wrong assumptions of the HMM. Scaling down the acoustic
score (in our case, this corresponds to multiply Equation 5 in
[3] by some scaling factor) reduce the dynamic range of the
log-likelihood of the emissions’ density and thus strengthen
the influence of the state transitions and the language model.
We found out experimentally that scaling the acoustic scores
during the bigram phone-loop model training can signifi-
cantly improve the final NMI. Figure 3 shows the absolute
NMI improvement over the simple DP phone-loop model
for various acoustic scale. The optimal scaling differs for

the MFCC and the MBN features as the dynamic range of
both feature sets are rather different. Final results including

Fig. 3: Absolute improvement of the NMI when scaling down
the acoustic scores.

the optimal acoustic scale for MFCC and MBN features are
shown in Table 2. For comparison, we computed the NMI

model features | ac. scale | NMI

DP phone loop MEFCC - 33.94
Bigram phone loop | MFCC 1.0 34.82
Bigram phone loop | MFCC 0.1 35.86
DP phone loop GP BN - 42.06
Bigram phone loop | GP BN 1.0 42.63
Bigram phone loop | GP BN 0.2 43.25
English phone rec. - - 42.21

Table 2: NMI of the DP phone-loop and the bigram phone-
loop for MFCC and MBN features with optimal scaling

from the output of a phone recogniser trained with Kaldi [14]
using the standard TIMIT recipe. Interestingly, the NMI of
this baseline is similar to the MBN DP phone-loop and the
bigram MBN phone-loop is about one percent better (see Ta-
ble 2). Even though care has to be taken as the NMI is not a
perfect metric it is a promising results which let us hope that
the research field of AUD will soon be mature enough to be
applied to low-resource languages that are so far out of reach
of speech technologies.
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