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Abstract

In this paper, we describe the system designed and developed
by team ELISA for DARPA’s LORELEI (Low Resource Lan-
guages for Emergent Incidents) pilot speech evaluation. The
goal of the LORELEI program is to guide rapid resource de-
ployment for humanitarian relief (e.g. for natural disasters),
with a focus on “low-resource” language locations, where the
cost of developing technologies for automated human language
tools can be prohibitive both in monetary terms and timewise.
In this phase of the program, the speech evaluation consisted of
three separate tasks: detecting presence of an incident, classify-
ing incident type, and classifying incident type along with iden-
tifying the location where it occurs. The performance metric
was area under curve of precision-recall curves. Team ELISA
competed against five other teams and won all the subtasks.

1. Introduction

Efficient and timely resolution of emergency incidents is of crit-
ical importance for those affected. Collecting and analyzing in-
formation regarding those incidents is essential for providing
the appropriate response. This task, though challenging in it-
self, becomes more complicated when emergencies occur in lo-
cations where language resources and tools are scarce. Hence,
rapid creation or adaptation of technologies for information ex-
traction on low-resource languages is crucial to guide relief ef-
forts. DARPA’s LORELEI program [1] aims to facilitate devel-
opment of human language technologies for low-resource lan-
guages, with a focus on emerging volatile situations like natural
disasters, food shortage, etc, and assist in the deployment of
humanitarian relief teams or resources by providing situational
awareness.

In the LORELEI program, situational awareness is repre-
sented through Situation Frames (SF) [2]. In the pilot speech
evaluation task, a SF contains information regarding the type
of incident and location. In this phase of the program, there
are 11 different types of interest: Evacuation, Food Supply, Ur-
gent Rescue, Utilities-Energy-Sanitation, Infrastructure, Medi-
cal Assistance, Shelter, Water Supply, Civil Unrest-Widespread
Crime, Elections-Politics, and Terrorism-Extreme Violence. In-
formation about location might not be available for the incident
of the frame. A “document” may contain zero or multiple SFs.
For the purposes of the pilot speech evaluation task, a document
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is an audio clip (no more than than 2 minutes) with speech in
some low-resource language of interest.

APPEN [3] collected and annotated data from multiple lan-
guages. The process resulted in data packs for 7 languages, 5
for training purposes and 2 for evaluation, each corresponding
to roughly fourteen hours of audio. The training languages were
Ambharic, Hausa, Russian, Turkish, and Uzbek containing SF
annotations and no transcriptions, subsets of which were used
to train or adapt the components of our system. The evalua-
tion languages were Mandarin Chinese, and Uyghur. Mandarin
was considered an unconstrained scenario, with teams being al-
lowed to use any resource available to them. On the other hand,
Uyghur was a constrained scenario, in which teams could only
use resources that were collected before the announcement of
the evaluation languages, along with a parallel text corpus cre-
ated by LDC [2], and resources from other languages. More-
over, in the constrained scenario, each team had access to a
native informant (NI), a native Uyghur speaker, for a total of
2 hours. Although, the NI was not allowed access to the eval-
uation data, teams could use the NI in any other way to im-
prove their systems. Finally, development data sets were re-
leased for both the evaluation languages during the evaluation
period. These datasets included only audio, without any anno-
tations (transcripts, SF annotations, etc).
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Figure 1: General system pipeline

Type
classifier

Teams were required to submit results within 10 days of
data release. The submitted SFs contained 4 fields, Documen-
tID, Type, PlaceMention, and TypeConfidence, where TypeCon-
fidence is a confidence score [0-1] referring to the SF itself.
Evaluation consisted of 3 separate tasks. The first, Relevance
Classification, was a binary classification task. Given a docu-
ment the system should decide if it contained at least 1 SF or
not. Type Detection was the second task, in which we were
asked to produce SFs whose Type field matched the ground
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truth. Last, the Type+Place detection task required to produce
SFs whose Type and PlaceMention fields matched the ground
truth.

For every document in the evaluations sets, we had to pro-
duce SFs containing information about the type of the incident,
the location, along with a confidence score. Extracting the nec-
essary information from low-level acoustic features can be chal-
lenging given the difference in languages and the complexity of
the problem. Thus, the strategy we followed was to go from
audio to some level of semantic representation. To achieve this
task, team ELISA built a sophisticated system combining ex-
pertise from different domains.

In Figure 1, we present the general architecture of our sys-
tem. The document, containing speech in some language, goes
through an Automatic Speech Recognition (ASR) component
producing a transcript in that language. The transcript is pro-
cessed by a Name Tagger (NT) and a Machine Translation (MT)
component translating the ASR output into English. Following
this, the outputs of the NT and MT components pass through
a Type Classifier to produce SFs. A Type Classifier produces
frames for each of the 11 types with a corresponding confi-
dence score as well as location information, if available. Our
Type Classifier accepts input in English. The reason we made
this decision is the public availability of large amounts of data
and corpora in English which enables us to build robust systems
and check their validity instead of directly relying on informa-
tion of low-resource languages. Finally, a Relevance Classifier
(RC) can optionally be applied to determine if the document is
in-domain or out-of-domain, i.e., if it contains information re-
garding any of the 11 situation types of interest or not. In the 2
evaluation languages, we made slight modifications to accom-
modate specific conditions. Team ELISA competed against 5
other teams and won all the subtasks for both of the evaluation
languages.

The rest of the paper is organized as follows. In section 2
we describe the individual components of our system. In sec-
tion 3 we present the systems for the 2 languages, and how we
engineered the components for each case. In section 4 we show
the results for all the tasks and finally in section 5 we draw our
conclusions.

2. System Components

In this section we give an overview of the individual compo-
nents presented in Figure 2.

2.1. Relevance Classification (RC)

For the RC task, we extract low-level audio features in or-
der to generalize across different languages. We first extract
OpenSmile audio features [4], which include various statistical
functionals of speech properties (such as pitch, energy, and jit-
ter) and then appended ivectors [5] to the OpenSmile features.
We perform feature selection using recursive feature elimina-
tion and leave-one-language out cross-validation to discard low-
value features, reducing feature dimensionality from 6,773 to
71. Finally, we train an SVM classifier on the reduced feature
set with LibSVM [6] using a 2" degree polynomial kernel.

2.2. Automatic Speech Recognition (ASR)

We use the Kaldi toolkit [7] to build the ASR systems used in
our work. We built ASR systems for different languages. Dur-
ing the training phase the ASR outputs are used to train or adapt
the rest of the components, while in the evaluation phase, ASR
output goes through the rest of the pipeline to produce Situation
Frames. Depending on data availability and quality of language
packs the systems were built using different feature sets and
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models.

2.3. Name Tagging (NT)

The goal of situation frame localization is to identify a geo-
political entity (GPE) or a natural location (LOC) where a
situation occurs. To achieve this goal we use bi-directional
Long Short Term Memory networks (LSTMs), which can lever-
age long distance features with a Conditional Random Fields
(CRFs) layer to capture classification dependencies [8]. NT and
MT performance were used to guide the design of ASR, by en-
riching vocabulary and expanding the language models (LM),
on both the evaluation languages.

2.4. Machine Translation (MT)

Our machine translation engine is a syntax-based statistical
system that applies weighted foreign string-to-English subtree
rules in order to form a fluent and adequate English transla-
tion of the input [9, 10]. The training procedure consists of ex-
tracting rules from example foreign-to-English sentence trans-
lations, upon which syntactic analysis trees are automatically
induced [11], and then collecting statistics over those rules to
obtain thousands of per-rule feature functions. We also use a
flexible rule-based system for translating numbers, dates, and
quantities, using manually constructed rules. The integration of
both automatically and manually constructed rules is governed
by learning the relative weights of each rule’s feature functions
with custom machine learning methods that optimize the non-
convex BLEU (bilingual evaluation understudy) evaluation met-
ric [12].

2.5. Type Classification (TF) and Situation Frame Produc-
tion

The final component in our system pipeline is the type clas-
sifiers. We used 2 neural networks designed to be applied to
English text.

The first model is a compositional topic model that ac-
cepts documents as input, uses a convolutional layer (CNN) to
compose word embeddings into sentences and a forward uni-
directional recurrent layer with gated units (GRU) to compose
sentences into documents. This architecture is called CNN-
GRU and has been used in literature for text classification [13].
GloVe word embeddings [14] were used to initialize neural net-
work embeddings. The model was trained using about 250,000
disaster-related documents retrieved from ReliefWeb [15] and
the final layer acts as 40 independent binary classifiers, each
corresponding to a topic or disaster type in the ReliefWeb in-
ventory. Application of this model to the SF task was facilitated
by creating a deterministic mapping from ReliefWeb to SF cat-
egories, e.g., “Food and Nutrition” to “Food Supply”.

The second model (MLP-LSA) is a bag-of-words feed-
forward network with Latent Semantic Analysis (LSA) vec-
tors as inputs. LSA vectors are produced by creating term fre-
quency (TF) vectors, transforming to term frequency - inverse
document frequency (TF-IDF) vectors and then to LSA vectors
[16]. The transformation matrices for TF-IDF and LSA were
learned on the ReliefWeb corpus. The actual network was ini-
tially trained on the ReliefWeb corpus, then the final layer was
replaced and the entire network was re-trained with SF anno-
tated data, hence the final layer acted as 11 independent binary
classifiers.

In order to produce localized frames (frames whose Place-
Mention field is not empty) we follow a simple approach:
Given a detected location mention (done by the NT compo-
nent), we collect all sentences containing that mention and form
a “dummy” document out of them. This dummy document is



passed through the same model and generates types which are
filtered by the complete document labels (i.e., a dummy doc-
ument is not allowed to contain a type that was not contained
in the complete document). If no entity mention is connected
to a type that was detected at the document level, then a non-
localized frame is created for the specific type.

Models were trained using different data based on the eval-
vation language. However, the following sets were common
across both evaluation languages: The ReliefWeb corpus of
disaster-related documents and an internal dataset of about 4000
annotated English tweets was used to train models.

3. Evaluation Systems

In the following, we present the specific system configurations
which address task-specific challenges.

3.1. Mandarin Chinese System

For the Chinese Mandarin evaluation, we were allowed to use
any resource available at our disposal. Hence, we were able to
build two different ASR systems. The ASR outputs are pro-
cessed by the rest of the pipeline producing intermediate SFs
which are finally combined to provide document level SFs. This
architecture is presented in Figure 2.

“

:
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|

Figure 2: Chinese Mandarin system architecture

For this system, we use the MLP-LSA type classifier since
the performance of the CNN-GRU network or their combina-
tion was found to be worse than MLP-LSA. We use the cor-
pora described in Section 2.5 as well as the Turkish, Uzbek, and
Ambharic languages from the LORELEI training languages pack
to train the MLP-LSA network. Since the network accepts En-
glish input, we create ASRs for those languages to decode the
utterances and use MT to get English translations. However,
the performance of the Amharic ASR was not satisfactory and
reduced type classification performance, hence it was dropped
from our training corpus. This observation indicates that a ro-
bust ASR can enhance the overall pipeline.

The MT engine is trained on a Mandarin-English corpus of
200 million words (per language), according to the procedure
described in Section 2.4. The training data consisted of news
text, discussion forum data, and SMS informal chat. The NT
component is a Chinese name tagger [8] applied on Mandarin
ASR output. To address out of vocabulary (OOV) ASR issues,
we expand the vocabulary to include name gazetteers adding
17,491 entries, and a list of 112 incident related keywords de-
rived from the Leidos corpus released by the DARPA LORELEI
program and translated by bi-lingual dictionaries.

The first ASR is built using the GALE Mandarin
corpus[17]. We augment this dataset through speed and vol-
ume perturbations. A Time-Delay Neural Network (TDNN)
[18] with 6 hidden layers (with context windows of 1 for the
first three layers, 3 for layers four and five, and 6 for the final
one) handled acoustic modeling. The network is trained using
the log-probability of the correct phone sequence as the objec-
tive function, also known as “chain models” [19]. The train-
ing set consists of high resolution mel-frequency cepstral coef-
ficients (MFCCs), with labels produced from alignments gener-
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ated from an HMM-GMM model trained on MFCCs and Pitch.
The second ASR is trained on the HKUST corpus [20]. For
acoustic modeling we use an HMM-GMM model optimizing
the minimum phone error (MPE) [21] criterion on two feature
streams. The first stream is represented by 52-dimensional per-
ceptual linear predictor (PLP) features (13 PLP and up to 3™ or-
der derivatives), which is reduced to 39 dimensions using Het-
eroscedastic Linear Discriminant Analysis (HLDA) [22]. The
second stream was represented by 30-dimensional features pro-
duced by a Stacked Bottleneck Network (SBN) [23]. In both
ASRs the lexicon is built by converting the LM character vo-
cabulary first to Pinyin and then to SAMPA. The LMs of the
two ASRs are created based on their respective corpora. We re-
fine ASR LMs by computing the frequency of each name token
in a large monolingual corpus consisted of Chinese Gigaword
and TAC-KBP source collection, and then merge this name un-
igram LM with the original LMs by linear interpolation.

3.2. Uyghur System

For the Uyghur evaluation, our resources were highly con-
strained. Hence we had to change the configuration of our sys-
tem, both in terms of its architecture and its design of its com-
ponents. The system pipeline used for obtaining SFs on Uyghur
data is presented in Figure 3. Since WER for the Uyghur ASR
system was expected to be high, we decided to use the RC in
order to reduce the dependence on ASR output.

Relevance
classifier

Type classifier 1
SF Output

CNN-GRU
Figure 3: Uyghur system architecture

Type classifier 2
MLP-LSA

The RC estimates the probability P(r = 1) that a document
is relevant (contains at least 1 incident). The type classifiers
estimate the probabilities P(t; = 1|r = 1) that a type ¢; is
present in the utterance, given that it is relevant. Ultimately, the
probability P(t; = 1) that a type is present in an utterance is
obtained as :

Pt;=1) = P(r=1)P(t;=1r=1)+
P(r=0)P(t; =1r=0)
=Plr=1)P{t;=1r=1)
where the last equality follows from the fact that a type can be
present only if the segment is relevant. Therefore, the probabil-
ity of occurrence of a type is just a product of outputs from the
relevance and type classifiers. Since, the type classifiers used in
this system estimate P(t; = 1|r = 1), they are trained only on
utterances that are relevant. Moreover, we combine CNN-GRU
and MLP-LSA type classifier outputs using the maximum pos-
terior probability per output class, meaning that the final output
is the union of the individual model outputs. In addition to the
corpora described in Section 2.5, we used Turkish, Uzbek, and
Mandarin to train our models. Turkish and Uzbek were part of
the LORELETI training languages pack, and DARPA allowed us
to use Mandarin for the Uyghur task. In each case, the outputs
of language-specific ASRs are translated to English.

Insufficient data prevented us from developing a robust
Uyghur name tagger (Uyghur speech localization F-score is
6.9%). Since Uzbek and Uyghur have phonetic and word sim-
ilarities, we run an Uzbek ASR (trained on 10 hours of speech
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transcribed by crowdsourcing) directly on Uyghur speech. Al-
though, our Uzbek name tagger achieves a 84% F-score on
clean Uzbek texts, only 194 name mentions were identified.
To overcome this issue, we translate the ASR output into En-
glish and use an English name tagger. Through various simi-
larity measures including string match, edit distance, soundex,
gazetteers, and word alignment, we project names from English
to Uzbek, increasing the number of name mentions to 1,014.
Finally, we convert names from Uzbek to Uyghur according to
the following procedure: First, we check if an identified Uzbek
name exists in our Uzbek-English name gazetteer and its En-
glish translation exists in our Uyghur-English name gazetteer.
Second, we calculate the edit distance between an Uzbek name
and a romanized Uyghur name in our gazetteer and if it is less
than 2 we adopt the Uyghur form. Finally, for the remaining
cases we rely on a joint source-channel converter [24] trained
on Uzbek-Uyghur name pairs mined from Wikipedia.

In order to train the MT engine we use a Uyghur-
English corpus of 2.3 million words (per language) provided
by DARPA. We also acquired 239, 000 entries by cleaning hu-
man lexicons. These entries were expanded, providing 578, 000
bilingual entries, and added in our training set. Moreover,
we employ an Uzbek-to-Uyghur transliteration scheme to fur-
ther increase our training corpus. This scheme was realized
by exploiting vocabulary and grammatical similarities between
Uzbek and Uyghur. We use Uzbek-English and Uyghur-English
dictionaries and, by pivoting on English, we create an Uzbek-
Uyghur dictionary. This was used to train a transliteration sys-
tem [25] and apply it to the 1.8 million words of available
Uzbek-English training data. Parameter optimization [12] was
performed to maximize BLEU on an in-domain parallel corpus
constructed by non-Uyghur speakers and validated by a native
Uyghur speaker (not the NI). Once ASR outputs and name en-
tities are acquired, we re-train our MT and re-decode the tran-
scriptions, which are then forwarded to the type classifier.

Finally, to train the ASR we used the NI. We held 2 ses-
sions, which were split into 2 parts: i) reading, and ii) tran-
scribing, each lasting 30 minutes (referred to as R1, T1, R2,
and T2, respectively), with T1 and T2 used for ASR internal
evaluations. For the reading parts we used sentences from the
LORELEI 2016 text evaluation (a previous phase of the pro-
gram) and from parallel text, while for the transcribing parts we
used the provided Uyghur development dataset. We combined
R1, R2, and 4 hours of data obtained by transliterating Uzbek
to Uyghur (U2U) to create our training set. We used data aug-
mentation on these 3 sets by introducing speed and vocal per-
turbations. The ASR acoustic models follow a DNN-HMM ar-
chitecture [26], specifically a feed-forward neural network with
2 hidden layers of 256 neurons. The network was trained on
features obtained by splicing 7 frames of 13-dimensional PLPs
appended by 69-dimensional Multilingual regional dependent
transforms (RDTs) [27]. Additional feature processing was per-
formed following the steps described in [28] to provide a label
set for DNN training. We used a trigram LM prepared from
Gazetteer words, an Uyghur text corpus of roughly 1.5 mil-
lion utterances, and a parallel text dataset. The lexicon con-
sisted of 58,917 unique words, whose contents were influenced
by NT and MT design and was based on a direct grapheme-to-
phoneme mapping.

4. Results

Since the desired operating point of a SF system is subject to
change, systems were evaluated at various operating points.
Area under the curve (AUC) of precision-recall (PR) curves was
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used as a summary statistic to rank system performance.

Teams were allowed to submit one primary (P) and two con-
trastive systems (C1 and C2) in both evaluation scenarios. The
primary systems were used for performance ranking, and the
contrastives for internal use. In the Mandarin evaluation, each
of the contrastive systems produced SFs using only 1 ASR in-
stead of their combination (Section 3.1). For Uyghur, the first
contrastive system used Uzbek ASR, and the second used the
same ASR as the primary (Section 3.2) but without NI input.
The results for all systems are presented in Table 1.

Table 1: System Results of team ELISA. P stands for primary,
C1 and C2 for contrastive 1 and 2 respectively.

Mandarin Uyghur
P Cl C2 P Cl C2
Relevance 0.673 0.677 0.622 0.701 0.654 0.699
Type 0.291 0.260 0.237 0.254 0.125 0.214
Type+Place 0.021 0.029 0.017 0.013 0.002 0.010

In the relevance task (which can be considered the simplest
of the three), all of our systems have similar performance, per
evaluation language. In Mandarin, we did not use the RC and
relied on SF confidence scores to make this decision, since we
had confidence on the robustness of our ASRs. In Uyghur, use
of RC boosted the performance of our system.

All of our primary systems outperformed the contrastive
ones for type classification. In Mandarin, C1 was using a more
advanced ASR than C2 and this is reflected on SF type perfor-
mance, with combination of the two ASRs providing a boost
over their individual performances. The P system in Uyghur
outperforms C1 and C2 for similar reasons, the ASR used in P
outperformed those of C1 and C2.

Finally, the Type+Place task was the most challenging of
all. Although, the underlying NT component was performing
well (e.g. 84% F-score on clean Uzbek), the errors of the other
components compounded heavily with NT errors. Further in-
vestigation is needed to improve our performance on this task.

Due to space limitations we are not able to provide perfor-
mance information of the individual system components. After
this evaluation was conducted, it also came to light that the pro-
vided SF annotations are very noisy, with large disagreements
amongst annotators, which adds an additional layer of diffi-
culty; and reflects the complexity of the task. However, team
ELISA outperformed 5 other competing teams on every task
for both the evaluation languages.

5. Conclusion

We presented the system developed by team ELISA for the pilot
speech evaluation of LORELEI The goal of this program is
to aid humanitarian assistance by guiding the deployment of
relief teams and resources. Our systems ranked first for all of
the 6 tasks of this evaluation. Our experiments indicate that
building a robust ASR is crucial to the whole pipeline since it
directly affects the performance of the other components. We
continue to investigate how to enhance the performance of the
individual components, and explore ways to reduce error effects
of components transferring to the overall system.
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