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Ondřej Glembek1, Niko Brümmer2, Albert Swart2, Jesús Jorrı́n-Prieto2, Paola Garcı́a2, Luis Buera2,

Patrick Kenny3, Jahangir Alam3 and Gautam Bhattacharya3

1Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Brno, Czech Republic
2 Nuance Communications, Inc.

3CRIM, Montreal (Quebec), Canada
{iplchot, matejkap, isilnova, inovoton, mireia, rohdin, glembek}@fit.vutbr.cz
{Niko.Brummer, Albert.Swart, Jesus.Jorrin, Paola.Garcia, Luis.Buera}@nuance.com

{patrick.kenny, jahangir.alam, gautam.bhattacharya}@crim.ca

Abstract
We present a condensed description and analysis of the joint
submission for NIST SRE 2016, by Agnitio, BUT and CRIM
(ABC). We concentrate on challenges that arose during devel-
opment and we analyze the results obtained on the evaluation
data and on our development sets. We show that testing on
mismatched, non-English and short duration data introduced in
NIST SRE 2016 is a difficult problem for current state-of-the-
art systems. Testing on this data brought back the issue of score
normalization and it also revealed that the bottleneck features
(BN), which are superior when used for telephone English, are
lacking in performance against the standard acoustic features
like Mel Frequency Cepstral Coefficients (MFCCs). We of-
fer ABC’s insights, findings and suggestions for building a ro-
bust system suitable for mismatched, non-English and relatively
noisy data such as those in NIST SRE 2016.
Index Terms: speaker recognition, i-vector, DNN, fusion

1. Introduction
Four years have passed since the last NIST SRE in 2012 and
researchers in the field have been developing and advancing
speaker recognition technology, often training and testing on
the data released by NIST and LDC. As the test sets of NIST
SREs usually serve as a common benchmark in scientific publi-
cations, researchers often direct their work to tune their systems
to perform well on these tasks.

Since the last NIST SRE evaluations in 2012 and 2010,
there was only a moderate progress in the general speaker
recognition system design. Most of the state-of-the-art systems
rely on i-vectors [1] that are modeled by Probabilistic Linear
Discriminant Analysis (PLDA) [2] or its variations [3, 4, 5].

We have however seen an advance in using Deep Neural
Networks (DNN) in various fields of speech processing, includ-
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ing ASR [6], language recognition [7, 8, 9] and speaker recog-
nition [10, 11, 12].

In the field of speaker recognition, DNNs are often used
for extracting frame-by-frame speech bottleneck features (BNF)
taken from a narrow hidden layer compressing the relevant
information into low dimensional feature vectors [13, 7, 14].
Using these features, especially in combination with standard
MFCCs lead to excellent results [15, 16] on NIST SRE 2010.
All of these great results are however achieved on English
data (and mostly telephone). We have recently published a
study [17] that analyzes the BNF performance on non-English
data and the results were mixed. Indeed, the results that most
participants achieved in NIST SRE 2016 [18] have confirmed
these disturbing conclusions.

SRE’16 brought a completely new non-English dataset and
a tough challenge in the domain adaptation. It revealed the weak
side of current BNF that are tuned for English, brought back the
issue of score normalization [19, 20] and in general significantly
increased the difficulty which will undoubtedly inspire a lot of
research.

We present our SRE’16 submission, which can be taken as
an inspiration to tackle these problems. The raw, but more de-
tailed description of our systems can be found in [21].

2. Datasets and Feature Extraction
At the beginning of the development, all three labs (Agnitio,
BUT and CRIM) had agreed to use the data from previous
NIST evaluations (NIST SRE 2004 - 2008, Fisher English and
Switchboard) for training and to leave out the labeled NIST
SRE16 development data for testing, final calibration and fu-
sion. Each site had partitioned the training data in a different
way: Agnitio used all of the data for UBM, i-vector extractor,
NDA and the PLDA. BUT split the data in order to develop ad-
ditional dev and test sets. CRIM split them to define their Ori-
ental Background data that included recordings from Chinese,
Mandarin and Tagalog, and Primary Background data that con-
tained the rest of the data.

All labs used to some extent also the unlabeled SRE16 data.
This data found most use in the score-normalization cohort and
other domain adaptation techniques like NAP or WCC. In case
of CRIM, adding this data into the Oriental Background set re-
sults in obtaining their Oriental set.

The English part of the Fisher database was used by both
Agnitio and BUT to train DNNs for BN feature extraction.
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2.1. Additional BUT Sets

To provide more analysis and discussion later, we also describe
the datasets that BUT created to obtain independent develop-
ment and test sets which reflect as close as possible the SRE’16
evaluation data. The main motivation for this work was the
small size and design of the labeled minor data. First of all,
we did not want to base all of our development decisions on the
results obtained with data that contains only 20 speakers and
different languages that we would be facing in the evaluation
set. Next, we believed that the labeled SRE’16 dev data con-
tains dangerously small amount of trials to reliably train both
calibration and fusion.

In order to obtain the BUT’s split between training (for
PLDA, LDA, NDA, SNORM ...) and development (testing, cal-
ibration, fusion), we followed the split designed in the PRISM
dataset [22]. To obtain the initial trial set for both BUT dev and
test sets, we take the lan-lan condition of the PRISM set and we
cut all of the enrollment and test segments into shorter pieces.
The duration of short cuts reflects the evaluation plan for NIST
SRE 2016 - more precisely we based our cuts on the actual de-
tected speech in the NIST SRE 2016 development labeled data.
We chose the cuts to follow the uniform distribution between
25− 50 seconds of speech for enrollment segments and 3− 40
seconds for test segments.

When doing the cuts, we also added short versions (10−60
seconds of speech) of non-English telephone training data into
our training set.

2.2. Voice Activity Detection

Each lab used their own pre-processing: Agnitio used a com-
bination of Long-Term Spectral Divergence (LTSD) VAD and
energy-based VAD to compute speech/nonspeech labels. The
first 50ms of every audio was removed to avoid inconsistent
VAD behavior. BUT used a phone recognizer trained on Fisher
with with added noise at different levels of SNR. All frames that
were marked as silence or noise were dropped. CRIM removed
all non-speech frames using an unsupervised GMM-based voice
activity detector.

2.3. Feature Extraction

As each lab in the ABC system has their proven VAD and fea-
ture extraction recipes, the detailed description of every single
feature that was used in our submission would take too much
space and we refer the reader to our system description[21] for
more details. In general, the core feature extraction for each lab
was the acoustic features such as MFCCs. We always extract 20
static coefficients including either C0 or Energy together with
their deltas and double deltas. Afterwards we apply normal-
ization. Agnitio applies Cepstral Mean Normalization (CMN),
RelAtive SpecTral Amplitude (RASTA) processing and warp-
ing (3 seconds window), BUT and CRIM apply short-term
Cepstral Mean and Variance Normalization (sCMVN). On top
of the standard MFCCs, CRIM and BUT extracted also other
types of acoustic features and applied the same normalization.
BUT developed systems based on Perceptual Linear Prediction
coefficients (PLP) and Perseus[23], while CRIM used Linear
Frequency Cepstral Coefficients (LFCC) and Linear Prediction
Cepstral Coefficients (LPCC).

Agnitio and BUT used Fisher data to train a DNN for ex-
traction of bottleneck features (BNF)—for BUT the stacked
bottleneck features (SBN). For exact configuration of Agnitio’s
BNF, please refer to [21], BUT’s SBN features are well de-

scribed in our analysis of DNN-based SRE systems [17]. Di-
mensionality of these features was set to 60 and 80 for Agnitio
and BUT, respectively. In line with the recent research [15, 16],
BUT has concatenated SBNs with MFCCs in the hope of ob-
taining the best possible results. Agnitio used the BNF on their
own and performed the concatenation with MFCCs at the i-
vector level.

3. Classifier Schemes
All of our systems are based on i-vectors [1] that are used as
features for various classifiers. Each site trained a Universal
Background Model (UBM) as a GMM with 2048 components
and subsequently also the i-vector extractor on their own train-
ing data. In the following paragraphs, we will describe the
approaches taken to build the final classifiers. We include the
full description of classifiers as the described architecture was
tuned for SRE’16 and we believe that the nuances that differen-
tiate them from the usual PLDA recipes are important and might
serve for additional research.

3.1. Agnitio

MFCC-PLDA: This system is based on a full covariance UBM,
using MFCCs in the whole process. 400 dimensional i-vectors
are extracted consequently. Nearest-neighbor Analysis (NDA)
performs a dimensionality reduction of those ivectors from 400
to 250. This process is followed by mean normalization, which
is adapted to the use case employing unlabeled development
data, and length normalization. Scoring between i-vectors is
achieved by using gender dependent PLDA (speaker space di-
mension is fixed to 120).

AGN-MFCC-BNF-PLDA: Two feature extractors are used:
MFCC and BottleNeck Features (BNF). Two variants of this
system are created by allocating the bottleneck layer as second
or fourth hidden layer.

Two separate full covariance UBMs are trained on MFCC
and BNF features. For each audio, two 400-dimensional i-
vectors are extracted, respectively. They are then stacked to
obtain a single 800-dimensional i-vector per audio. Once again,
NDA is employed, but this time it performs a dimensional-
ity reduction of those ivectors from 800 to 500. The process
is followed by mean normalization, and length normalization.
Scoring between i-vectors is achieved using gender dependent
PLDA (speaker space dimension fixed to 200).

Finally, gender-dependent s-norm is applied, assisted by au-
tomatic gender recognition. The cohorts are obtained from the
SRE16 unlabeled development data.

3.2. BUT

All of BUT’s systems are based on UBM with diagonal covari-
ance components and i-vector extractors with 600 dimensions,
both trained in gender independent fasion only on telephone
data from MIXER collections, Fisher English and Switchboard
2. The following paragraphs describe three classifier architec-
tures that were used on top of i-vectors obtained by means of
different front-end features.

PLDA: For PLDA model training, telephone data and non-
English short cuts were used. All i-vectors were mean (mean
was calculated using all training data) and length normalized.
Then the Linear Discriminant Analysis (LDA) with Within
Class Covariance Correction (WCC) was applied, decreasing
dimensions of i-vectors from 600 to 200. The WCC is based on
weighted addition of the within-class covariances of different
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languages and datasets into the within-class covariance of LDA.
We also removed the shift between the training data and the mi-
nor and major datasets. Resulting scores were normalized using
speaker dependent s-norm with a cohort created from our train-
ing data and unlabeled SRE16 data. Speaker dependent means
for the s-norm were computed on the 500 closest i-vectors for
each speaker.

Discriminative PLDA: For training the DPLDA model [3],
telephone data from Mixer+Fisher+Switchboard was used
along with unlabeled data from NIST SRE’16. Unlabeled data
were used to form non-target trials with labeled telephone data
only (e.g. no trials between two unlabeled utterances were used
for training). First, NAP was performed on top of all ivectors.
As classes for NAP, 20 languages from training list were se-
lected along with one class corresponding to both major and
minor unlabeled data. After NAP all ivectors were mean (mean
was calculated using all training data available) and length nor-
malized. After the mean normalization, we performed LDA,
decreasing the dimensionality of vectors to 250. As an initial-
ization of DPLDA training, we used a corresponding PLDA
model. During the DPLDA training, we set the prior proba-
bility of target trials to reflect the SRE’16 evaluation operating
point (exactly in the middle between the two operating points
of SRE’16 DCF).

Support Vector Machines: One SVM per speaker was trained
using the enrollment ivector(s) as positive samples and unla-
beled major and unlabeled minor data as negative samples.
Length normalization, WCCN and NAP were applied to ivec-
tors and zt-norm was applied to the scores [21].

The following BUT subsystems were used in the final fu-
sion: 2 DPLDA systems trained on PLP and MFCC, 4 PLDA
systems trained on MFCC, Perseus, PLP, MFCC-SBN and a
single SVM system trained on PLP.

3.3. CRIM

All CRIM’s systems are also based on 600 dimensional
i-vectors obtained by means of a diagonal covariance UBM
that was trained on the primary background data and iteratively
adapted to the oriental data using relevance MAP. The i-vector
extractor was first trained using sufficient statistics from all of
the primary background data and later adapted by performing
several iterations of minimum divergence training on the Orien-
tal data.

Instead of using the i-vectors in the well-known and stan-
dard i-vector/PLDA pipeline, they are used as inputs to train a
speaker classifier neural network (SCN). At the time of NIST
SRE 2016, the architecture presented below was novel and in-
terested readers can consult [24] for more details and results on
NIST SRE 2010.

The inner representation of SCN is then used to obtain
inputs into three classifiers - cosine distance (CD), PLDA
and Latent Dirichlet Allocation (LDA). CRIM’s final sys-
tem combines 4 sub-systems based on the inner representa-
tion of SCN: MFCC-DNN1, MFCC-DNN2, MFCC-DNN3 and
MFCC-DNN-LDA. Additionally 4 sub-systems were also cre-
ated using just i-vectors: LFCC-CD, LPCC-CD LFCC-PLDA
and MFCC-CD.

MFCC-DNN Systems: In order to train a speaker classifier
network (SCN), a feed-forward neural network was used to
learn a mapping between i-vectors and speaker labels. This ap-
proach can be viewed as a projection of the i-vectors into high-
dimensional label-space which allows for easier discrimination

between speakers [25]. The SCN is two layers deep and uses
a sigmoid nonlinearity in the hidden layers. Each hidden layer
consists of 2000 hidden units. The softmax function is used
at the output layer, which represents a probability distribution
over the speakers in the training set (Primary Background Data
+ Oriental Background Data). The speakers were filtered in
such a way that each speaker had at least 5 recordings/i-vectors.

The input i-vectors are length normalized before being pro-
cessed by the SCN. After the model is trained, it is used as a
feature extractor for the background, enrollment and test data.
Specifically, the activations of the last hidden layer were treated
as feature vectors (d-vectors) for speaker verification.

In the case of SRE’16 data (development and evaluation)
we only force the d-vectors to be of unit norm and do not per-
form any mean-centering. Speaker verification is performed
using a cosine distance classifier with the SCN-projected fea-
tures (i.e., d-vectors). We developed three system variations:
MFCC-DNN1: For speaker models with 3 enrollment d-
vectors (2000-dimensional) we average the individual scores
during cosine scoring. In all other systems, for speaker models
with 3 enrolment i-vectors/d-vectors a single score is produced
by averaging the i-vectors/d-vectors. MFCC-DNN2: NAP pro-
jection is applied to all the d-vectors produced by the SCN.
MFCC-DNN3: In this case we reduce the dimension of the
NAP projected d-vectors using a principal component analysis
(PCA) technique.

MFCC-DNN-LDA System: In this system we model the hid-
den activations of the DNN speaker classifier using Latent
Dirichlet Allocation (LDA). The system MFCC-DNN-LDA dif-
fers from MFCC-DNN1 in replacing the cosine distance back-
end with a probabilistic backend which was trained blindly
on the unlabeled training data. (We did not attempt to assign
speaker, language or gender labels to the training data.)

As in MFCC-DNN1, the feature vector used to represent an
utterance consisted of the sigmoid activations of the last hid-
den layer of the DNN. We viewed these features as noisy bi-
nary vectors and modeled them by a hidden vector of Bernoulli
probabilities. If speaker labels were available, we would asso-
ciate one Bernoulli probability vector with each speaker. Since
we did not have speaker labels for the training set, we treated
the recordings as if they all came from different speakers. We
treated the components of the feature vector as being statisti-
cally independent and we placed a Beta prior on each of the
Bernoulli probabilities. We “estimated” the priors by appeal-
ing to the maximum likelihood II principle, using the methods
in [25].

4. Fusion
The final submission strategy was a three-way fusion of one
system per lab, trained on the labeled minor data. Each lab
provided a pre-fused system that went into the final fusion.

For Agnitio, normalized scores for the three subsystems
are linearly fused by a simple weighted addition. Weights are
0.5, 0.25 and 0.25 for MFCC-PLDA, MFCC-BNF-4-PLDA and
MFCC-BNF-2-PLDA, respectively. The scores are assumed to
be of comparable scales because of score normalization.

To train the parameters of CRIM’s fusion, we used the la-
beled minor SRE’16 development data. After training, the fu-
sion was then applied: (i) to this same data (test-on-train) to
pass as training scores for the final ABC fusion; and (ii) to the
SRE’16 evaluation data, also as input to the final ABC fusion.

Because of data scarcity and to combat over-training, we
used generative fusion and calibration strategies, with as few as

1350



Table 1: BUT subsystems and ABC fusions on NIST SRE 2016,
CPrm

min and CPrm
act are resp. minimum and actual DCF’16.

SRE16 BUT test
System Name EER CPrm

min CPrm
act EER CPrm

min CPrm
act

DPLDA PLP 13.46 0.73 0.76 4.31 0.47 0.47
PLDA PLP 12.6 0.74 0.74 6.2 0.42 0.44
PLDA MFCC 12.55 0.72 0.73 6.05 0.42 0.43
PLDA MFCCSBN 15.00 0.82 0.82 9.30 0.48 0.49
SVM PLP 12.91 0.76 2.78 5.63 0.48 0.71

AGNITIO NIGCAL11.62 0.70 0.72 - - -
AGNITIO QCAL 11.62 0.70 0.89 - - -
BUT FIX NIGCAL 9.99 0.66 0.69 3.48 0.28 0.29
BUT FIX QCAL 9.99 0.66 0.68 3.47 0.27 0.28
CRIM NIGCAL 9.84 0.68 0.75 - - -
CRIM QCAL 15.71 0.68 0.69 - - -
ABC NIGCAL 8.68 0.62 0.76 - - -
ABC QCAL 8.68 0.62 0.63 - - -

possible parameters. The fusion strategy was linear-Gaussian
pre-calibration of each sub-system, followed by equal-weighted
summation. Separate gender-independent calibrations were
done for 1-call and 3-call enrollment. The linear-Gaussian cali-
bration is done by computing the log-LR obtained from a gener-
ative model with two univariate Gaussians for targets and non-
targets, with different means and shared covariance. The param-
eters were estimated with maximum-likelihood. Pre-calibration
was applied before summation, so that (i) missing scores could
be replaced by log-LR = 0 and (ii) sub-system scores were
roughly at the same scale, with better system contributing a bit
more than weaker systems.

Fusion and calibration of the BUT subsystems were trained
with logistic regression, optimizing the cross-entropy, on the
BUT development set. Our objective was to improve the error-
rates on the independent BUT test set, but we were also mon-
itoring error-rate trends on the labeled minor SRE’16 develop-
ment set.

4.1. Primary ABC fusion for fixed condition

The input to the final ABC fusion consisted of 3 sets of scores,
each produced by the labs Agnitio, BUT and CRIM. The train-
ing scores consisted of SRE’16 minor labeled development
data. In the case of CRIM, this constituted a second use of
this data. For the Agnitio and BUT systems, this data was un-
exposed.

Because of the scarcity of data, we did not judge fusion
strategies by EER or DCF’16. Instead we looked at regularity
of score histograms, DET-curves and normalized DCF curves.
We performed Linear-Gaussian generative fusion, followed by
non-linear post-calibration.

For post-calibration after fusion, we tried linear, quadratic
and NIG [26]. In all cases NIG gave better calibration as judged
on the SRE’16 minor labeled development data. The linear-
Gaussian calibration is the same as described for CRIM’s sys-
tems in section 4 above. The quadratic fusion is also generative
Gaussian, but with independent (rather than shared) variances
for targets and non-targets. The NIG calibration used inde-
pendent normal-inverse Gaussian (NIG) distributions for targets
and non-targets.

For NIG maximum-likelihood parameter estimation in [26],
we had used a trust-region Newton algorithm for direct op-
timization of the likelihood. This time, we used a modified
version of the EM algorithm in [27]. The modification is
similar to the minimum-divergence trick—the model is over-

parametrized during the M-step and then simplified again using
a reparametrization of the hidden variable. The EM algorithm
was initialized with moment matching. After a few hundred EM
iterations, training was completed using direct L-BFGS opti-
mization, which gives faster convergence during the end-game.

5. Experimental Results and Discussion
In table 1, we present results in terms of Equal Error Rate (EER)
and SRE’16 primary metric for part of the BUT subsystems
and individual fusions. The results on SRE’16 eval are com-
puted with all available trials without any filtering as it is per-
formed in the NIST scoring tool. The complete list of all sub-
systems evaluated on SRE’16 labeled development set can be
found in [21]. On the subsystem results we can observe several
trends that hold for us in SRE’16. First, let us mention the com-
petitive performance of discriminatively trained systems (com-
paring DPLDA PLP and PLDA PLP). Next we compare the
PLDA MFCC and PLDA MFCCSBN and notice the better per-
formance of MFCC-based system over the system with concate-
nated MFCCs and SBNs. Both observations hold over all oper-
ating points and two different datasets.

It is also worth to look at the performance of our SVM
system that has seen only enrollment segments and unlabeled
SRE’16 data for each trial. Other data were exposed only for
the purposes of the score normalization. This rather dated ap-
proach provided competitive results on calibration-independent
metrics. We were able to reasonably calibrate this system on
abundant number of trials and easier data of BUT dev set, but
the miscalibration on evaluation set was still too large. This
was the reason to exclude it later from the BUT fusion together
with one DPLDA system that had also issues with calibration
and produce the FIXED version of the BUT fusion. Excluding
these systems improved only the actual DCF.

Another important aspect of the whole SRE’16 is score nor-
malization. In fact all of the BUT subsystems presented here
contain score normalization. We have dedicated the whole pa-
per [19] to study the effects of score normalization. We also
encourage the interested reader to study the theory behind score
normalization that was partly inspired by SRE’16 in [20]. Per-
forming score normalization, more precisely the adaptive vari-
ant of s-norm was crucial to obtain good results both on SRE’16
labeled dev set and evaluation set.

To analyze the calibration, let us first look at the individual
systems and observe that with exception of the non-standard
SVM system, there were no problems with calibration as the
CPrm

min and CPrm
act are very close. All of the parameters were

trained with logistic regression on BUT dev set and the good
calibration has transferred also to the evaluation data.

Finally, we can analyze the individual fusions. For ev-
ery fusion, we list two post-calibration strategies: NIG and
QCAL. During our development, we had chosen NIG as our go-
to strategy for evaluation. Comparing NIG and quadratic post-
calibrations, we can observe that with the exception of Agni-
tio system, the simple QCAL was more effective on evaluation
data. Comparing fusions of the individual sites we see similar
performance of individual sites and a moderate gain from the
cross-site fusion.

6. Conclusions
We have presented various sytems of the ABC team that are
designed to cope with dataset mismatch and non-English data.
We have presented and compared several fusion and calibra-
tion strategies and we have uncovered and discussed problems
brought by SRE’16.
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