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Abstract
Not all the questions related to the semi-supervised training of
hybrid ASR system with DNN acoustic model were already
deeply investigated. In this paper, we focus on the question
of the granularity of confidences (per-sentence, per-word, per-
frame), the question of how the data should be used (data-
selection by masks, or in mini-batch SGD with confidences as
weights). Then, we propose to re-tune the system with the man-
ually transcribed data, both with the ‘frame CE’ training and
‘sMBR’ training.

Our preferred semi-supervised recipe which is both sim-
ple and efficient is following: we select words according to the
word accuracy we obtain on the development set. Such recipe,
which does not rely on a grid-search of the training hyper-
parameter, generalized well for: Babel Vietnamese (transcribed
11h, untranscribed 74h), Babel Bengali (transcribed 11h, un-
transcribed 58h) and our custom Switchboard setup (transcribed
14h, untranscribed 95h). We obtained the absolute WER im-
provements 2.5% for Vietnamese, 2.3% for Bengali and 3.2%
for Switchboard.
Index Terms: semi-supervised training, DNN, word selection,
granularity of confidences

1. Introduction
The current ASR systems require relatively large data-sets to be
trained on. These need to be recorded and manually transcribed,
which is slow and costly. For some rare languages it might be
even difficult to find native annotators.

On the other hand, we can save a lot of time and other re-
sources, if only a part of the data is transcribed manually and a
larger part is transcribed automatically by decoding. The decod-
ing is done with a ‘seed’ ASR system trained with the manually
transcribed data, while typically we also generate some confi-
dences. Of course, the automatic transcripts are not perfect, but
still, they can be used to improve the performance of the acous-
tic model by the semi-supervised training (i.e. training with
the mixed data: manually transcribed and automatically tran-
scribed). This is sometimes also referred as ‘self-learning’, as
the ASR system is re-trained with its own outputs. The confi-
dences express the certainty of the decoded labels, and we will
use them to filter or assign weights to the training data.

The self-training was initially studied by NLP community
for ‘word-sense disambiguation’ [1] or for ‘syntactic parsing’
[2]. Then, for the GMM-HMM systems it was studied in the
journal article [3]. In the proposed scenario, the GMM-HMM
model is trained, while the per-word confidences are used to se-
lect the frames for which the word-confidence was higher than
a threshold. The word-boundaries are dynamic as the alignment
is updated during the training.

Whereas in [4, 5] the GMM-HMM training data are se-
lected per-sentence, choosing the sentences which are believed
to have the WER smaller than the overall WER of the devel-
opment set. An interesting observation was made that the self-

training is more efficient if the automatic transcripts are gener-
ated with the larger language model.

The semi-supervised training of the NN-based bottleneck-
feature extractors was studied in [6, 7, 8, 9], here the data were
selected per-sentence. In the mismatched scenario of US En-
glish and European English, it was found helpful to reduce the
number of NN-outputs [9]. Also, it is good to post-process the
NN after the semi-supervised training by ‘re-tuning’, in which
we train only with the manually transcribed data. We can either
train a new output layer [6] or re-train the network with a small
learning rate [8].

In our earlier work with self-training of hybrid DNN-HMM
system [10], we obtained good results with the frame selection
done according to the per-frame ‘lattice-posterior’ confidences.
The frames with confidence above a threshold were selected for
the ‘frame CE’ training (mini-batch SGD training with cross-
entropy loss), while the DNN was ‘re-tuned’ with the manually
transcribed data by the ‘sMBR’ training.

Eventually, instead of ‘re-tuning’, we could use a topology
with 2 output layers, where the 1st output layer is trained by the
manually transcribed data and the 2nd output layer is trained
with the automatic transcripts [11, 12].

In [12], the untranscribed data are used even for the
sequence-discriminative training. The sMBR loss function is
used for the manually transcribed data and the ‘Negative Con-
ditional Entropy (NCE)’ is used for the untranscribed sentences.
The NCE reduces the confusion of the lattice-paths by fostering
the more likely paths. However, we did not achieve any im-
provement by adding NCE training to our setup.

Yet another possibility to improve the semi-supervised
training is to use the multi-system transcripts from system com-
bination [13], or for the ‘agreement analysis’ [14]. Also having
the ‘captions’ available can be helpful [15, 16].

To our best knowledge, the literature does not compare the
‘Data selection’ strategies done on the level of a) sentences,
b) words or c) frames. All the three approaches are possible.
We previously compared the sentence-selection with frame-
selection in [10]. However, the sentence confidences contained
a bug and we present the updated results in table 1. In this arti-
cle, we will also compare the training with the ‘Data selection’
or the ‘Data weighting’. To make sure we get the best improve-
ments from the self-training, we ‘re-tune’ the models with the
manually transcribed data before the final conclusions are for-
mulated.

2. Confidences
2.1. Per-word confidence (MBR statistics)
We use the ‘MBR confidence’, which is calculated as the statis-
tics γ(q, s) from the Minimum Bayes Risk (MBR) decoding
[17, section 7.1]. The quantity γ(q, s) is the probability with
which the word-symbol s is present at position q in the out-
put word-sequence. We simply take the words from the best-
path in lattice and calculate their γ’s as their confidences. This
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MBR confidence is the default word confidence implemented
in Kaldi. Yet another method to obtain word-confidences is the
‘NN-posterior’ confidence [9]. This is based on averaging of
frame-by-frame log-posteriors of senone states along the state-
sequence of the word. These were in [9] averaged into per-
sentence confidences.

2.2. Per-sentence confidence (average word-confidence)
The per-sentence confidence csent is typically calculated as
the average of the word confidences [4, 5, 6, 9]: csent =
1
N

∑N
i=1 cwi It is good to think about it as an estimate of the

word accuracy in a sentence. For the analysis, we use both the
‘MBR confidences’ and the ‘NN-posterior’ confidences. For
self-training experiments we use only ‘MBR confidences’.

2.3. Per-frame confidence (lattice-posterior)
In our previous work [10], we advocated for using the frame-
by-frame ‘lattice-posterior’ confidences and SGD training with
frame-selection. The frame-level confidence cframei is ex-
tracted from the lattice posteriors γ(i, s), which express the
probability of being in state s at time i. For each frame i, the
confidence is cframei = γ(i, s1best,i), where the state s1best,i
is taken from the best-path in lattice. The posteriors γ are com-
puted using the forward-backward algorithm on the lattice.

2.4. Analysis of confidences
In figure 1, we compare the accuracy of the automatic tran-
scripts, which are selected according to various confidences.
We are selecting words starting from the high confidence (hor-
izontal axis) and we measure the WER in the selected subset
(vertical axis). As can be seen, the sentence selection (words
are added per whole sentences) with ‘NN-posterior’ confidence
is not ideal (yellow curve). In our system we have a DNN with
4599 outputs, which make it difficult to obtain good confidences
from NN-posteriors. Much better results are obtained with the
MBR confidences, which are either used for sentence-selection
(red curve) or for word-selection (blue curve). We clearly see
that the best subset is obtained by individual selection of words
(blue curve). The dashed ‘lower bound’ curve is obtained by
selecting all the correct words first.

3. Experimental setup
3.1. Dataset
In this paper, we report experiments on the Vietnamese dataset
from the IARPA Babel program, release babel107b-v0.7. The
training data consist of conversational telephone speech and a
small part of prompted speech. The development set consists
of conversational speech only. The data come from various
telephone channels: landlines, different kinds of cellphones, or
phones embedded in vehicles.

For the semi-supervised training we consider the Limited
Language Pack (LimitedLP) scenario, in which 11 hours of data
are transcribed, and 74 hours are ‘untranscribed’ (but we have
the transcripts available for the analysis). The results are shown
on the development set composed of 9.8 hours of data.

The Vietnamese phone set consists of 29 phonemes, which
are marked with six different tones. For the triphone-tree clus-
tering, we introduced a ‘position in a word’ feature and shared
states across phonemes. The syllabic lexicon for LimitedLP
condition contains 3k records, and the OOV rate on the dev-
set is only 1.19%. We used a trigram language model with
Kneser-Ney smoothing built on the training transcripts from the
11 hours, the model has 12k 3-grams and 47k 2-grams.
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Figure 1: WER in data selection according to per-sentence or
per-word confidence (WER is computed without deletions and is
normalized by #hyp-words. We can’t select the ‘deleted’ word)

3.2. The seed system
The DNN-HMM seed system is trained with the 11 hours of
manually transcribed data. First, an auxiliary GMM system is
used to generate the fMLLR features, which are the input of the
main DNN model.

The GMM-HMM features are obtained by splicing +/- 4
frames of the 13-dimensional PLPs (includes C0) extended by
3 kaldi-pitch features [18]. All features are cepstral mean-
variance normalized. The spliced features are projected to 40
dimensions with a global LDA+MLLT [19] linear transform and
per-speaker fMLLR [20] linear transform. The auxiliary GMM-
HMM system has 4599 cross-word triphone tied states and 5.6
Gaussians per state. It is used to prepare the initial DNN train-
ing targets.

The DNN has a standard feed-forward topology with 6 hid-
den layers of 2048 sigmoidal neurons. There is 440 dimen-
sional input and 4599 dimensional softmax output. The 40 di-
mensional fMLLR features are spliced by +/- 5 frames and re-
normalized to have zero mean and unit variance. We used RBM
pre-training [21] to initialize the 6 hidden layers. Then, the
‘frame CE’ training, was done with mini-batch SGD (Stochas-
tic Gradient Descent), in which the learning rate is halved from
3rd epoch till the convergence of the held-out loss. Finally, the
network is re-trained by 4 epochs of sMBR training [22].

The seed system should be as good as possible to obtain the
most accurate transcripts. The WER of our sMBR-DNN seed
system is 59.6, measured on development set. This is a very
competetive and fair baseline for the difficult Babel data.

4. Data selection
A new DNN is trained by ‘frame CE’ training with the mixed
data: manually transcribed and automatically transcribed (de-
coded by the seed system). In the first set of experiments, we in-
vestigate into the question of the granularity of the confidences.
We want to know, what is the ideal size of the ‘data selection
unit’.

Intuitively we expect that with smaller units, the data are
selected more precisely. But, it might become more difficult
to compute a reliable confidence value. In our ‘Data selection’
experiments, we use the weighted mini-batch SGD training with
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Table 1: Sentence selection (average MBR word-confidence)

Added sentences 0% 30% 50% 70% 90% 100%
WER% 60.9 60.1 59.8 59.8 60.0 60.1

Table 2: Word selection (per-word MBR confidence)

Added words 0% 30% 40% 50% 100% Seed
WER% 60.9 59.2 59.1 59.2 60.1 59.6

Table 3: Frame selection (lattice-posterior confidence)

Added frames 0% 50% 60% 70% 80% 100%
WER% 60.9 59.3 59.1 59.1 59.3 60.1

binary weights, which select the frames. The binary weights
are multiplying the frame-by-frame gradients. We select the top
N% of the units with the best confidence, while the selected
frames have weight 1 and the rejected frames have weight 0.

4.1. Sentence selection

The most common approach in the literature is the selection of
whole sentences [4, 5, 6, 9]. From table 1, we see that it is good
to leave out 30-50% of sentences, which brings a 0.3% WER
improvement compared to adding all the sentences.

4.2. Word selection

The word-selection can be found in GMM experiments from
Wessel [3]. In our work, we select the top N% words. In table
2, we see that the word-selection leads to 0.7% better results
than the sentence-selection in table 1. It is also interesting that
the optimal amount of added words roughly corresponds to the
word-accuracy of the seed system, which is 100−59.6 = 40.4.
Intuitively, this should select most of the correct words, and
only some of the wrong words. Because this result might be
by chance, we validate this ‘simple word-selection’ rule in sec-
tion 7 with a very different experimental setup. In table 2, the
WER of the seed system 59.6 is better than the training with 0%
added words 60.9. This is because the seed system is trained
with ‘sMBR’, while the other results are with ‘frame CE’ train-
ing.

4.3. Frame selection

The smallest possible unit for data-selection is the ‘frame’, the
frames are produced with 10ms steps. In table 3 we select the
frames according to the ‘lattice-posterior’ confidence. We see
that the best frame-selection result is on-par with the best word-
selection system in table 2. Nevertheless, it is more convenient
to do the word-selection by word-confidences, as the word-
confidences are represented more compactly than the frame-
confidences.

Table 4: ‘Data selection’, re-tuning the initial models. Re-
tuning is done with 11 hours of manually transcribed data,
the initial model is built with mixed transcribed+untranscribed
data.

WER% Initial Re-tuned
model + frame CE + sMBR

Sentence selection 59.8 58.7 57.5
Word selection 59.1 58.4 57.1
Frame selection 59.1 58.3 57.1
No confidence 60.1 58.7 57.6

Table 5: Weighted sentences (average MBR word-confidnce)

Scale α 1.0 2.0 2.5 3.0 3.5 4.0
WER% 59.8 59.6 59.6 59.5 59.3 59.5

Table 6: Weighted words (per-word MBR confidence)

Scale α 1.0 2.0 4.0 8.0 10.0 12.0 14.0
WER% 59.5 59.2 59.1 58.9 59.0 58.8 59.0

Table 7: Weighted frames (lattice-posterior confidence)

Scale α 1.0 2.0 3.0 4.0 5.0 6.0
WER% 59.4 59.1 59.0 59.1 58.9 59.0

5. Data weighting
Another possibility is to add all the untranscribed data, while
the confidences are used as weights in the SGD training. The
weights are used to scale the gradients from the individual
frames. However, in this case, we need to be more careful about
the actual values of the confidences. We found helpful to use the
confidences c that reside in interval (0, 1), while we tune the ex-
ponential scale α, that is applied as: ĉ = cα. The optimal α is
found by training several NNs with different values α in a grid
search. This may not be ideal in practical scenarios, but it is
good for the analysis.

The α, which leads to the best results does not necessar-
ily correspond to the ‘ideally calibrated’ confidences (i.e. the
probability that the label of the unit is correct). For example,
the ratio of the transcribed and untranscribed data might play
an important role: In [10, table 5], it was helpful to repeat the
manually transcribed sentences. However, the data repetition
is no longer helpful after we start tuning the scale α. The re-
sults of weighting with per-sentence, per-word and per-frame
confidences are in the tables 5, 6, 7. We see that ‘weighted sen-
tences’ from table 5 are better than ‘selected sentences’ in table
1 (WER 59.8 → 59.3). Even better results are achieved with
the per-frame or the per-word weights (WER 59.3 → 58.9 →
58.8).

The best result 58.8 was obtained with the per-word con-
fidences, that were scaled by α = 12.0. Such high value is
leading to a ‘soft’ data-selection: a word with the original con-
fidence 0.68 gets the training weight wi = 0.6812.0 .

= 0.01,
which almost removed 43% words from the training by having
the weight ≤ 0.01.

If we compare the results of the ‘selected words’ in table 2
with the ‘weighted words’ in table 6, the improvement is 59.1
→ 58.8. Both approaches use a grid search. We either searched
the N% words to add, or the optimal scale α. However, if we
knew the correct N%, the word-selection would become more
practical by avoiding the grid search, despite the 0.3% worse
result. At the same time, it is unlikely for the best α = 12.0 to

Table 8: ‘Data weighting’, re-tuning the initial models. Re-
tuning is done with 11 hours of manually transcribed data,
the initial model is built with mixed transcribed+untranscribed
data.

WER% Initial Re-tuned
model + frame CE + sMBR

Sentence weighting 59.3 58.3 57.2
Word weighting 58.8 58.2 56.9
Frame weighting 58.9 58.1 57.0
No confidence 60.1 58.7 57.6
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generalize for other datasets, which makes it difficult to remove
the grid search from the word-weighting.

6. Re-tuning the systems
In literature, we can find that it is beneficial to ‘re-tune’ the self-
trained ‘initial model’. In Thomas [6], the DNN output layer
was discarded and trained again from random initialization with
the manually transcribed data (in [6], the DNN was a bottleneck
feature extractor).

We found that even better approach is to keep the output
layer ‘as-is’ and continue training with the 11 hours of the man-
ually transcribed data and a smaller initial learning rate (0.001
instead of original 0.008). This post-processing was described
in Grézl [8] as ‘fine-tuning’ (we intentionally renamed it as ‘re-
tuning’ to avoid the confusion with the fine-tuning of RBMs
that we used to build our seed system).

As can be seen in table 4 with ‘Data selection’ and ta-
ble 8 with ‘Data weighting’, we repeated the same two-stage
re-tuning, first with the ‘frame CE’ objective and then with
‘sMBR’ training. Both were done with the 11 hours of man-
ually transcribed data. To verify that the confidences were help-
ful even after re-tuning, we also trained from the initial model
(marked as ‘No confidence’). Here we added all the automat-
ically transcribed data, while we did not use any confidences.
We clearly see that the confidences helped us get better results.

7. Finding a generic recipe
Ideally, we are interested in finding such semi-supervised train-
ing recipe, that will be effective for a broad range of scenarios.
Until now, we explored the behavior for one language (Babel
Vietnamese) and one scenario (11 transcribed hours, 74 hours
are untranscribed).

We are searching for a universal recipe without the com-
putationally expensive hyper-parameter tuning. In section 4.2,
we saw that the best percentage of added words corresponds
to the word accuracy of the seed system (in table 2 was good
to add 40% words, while the word accuracy of the seed sys-
tem was 40.4%). Surprisingly, this ‘simple word-selection’ rule
generalized to other databases, see Babel Bengali in table 9 and
Switchboard in table 10.

The initial Switchboard systems are re-tuned in table 11,
starting from initial systems with: a) word-selection with opti-
mal N = 70% words, b) word-weighting with optimal expo-
nential scale α = 7.0 or c) ‘No confidence’. For Switchboard,
the final performance of word-selection is 23.7, the same as if
we did not use the confidences. But with word-weighting, the
WER dropped to 23.5.

Table 9: Word-selection with Babel Bengali, 11 transcribed
hours, 58 untranscribed hours. Language model from 11 hours
of transcripts. Word accuracy of seed system: 37.1%.

Added words 0% 30% 40% 50% 60% 100%
WER% 64.2 62.5 62.3 62.3 62.4 63.2

Table 10: Word-selection with modified Switchboard setup,
14 hours transcribed, 95 hours untranscribed. LM trained on
Fisher transcripts. The results are for HUB5-2000 (Switch-
board + CallHome). Word accuracy of seed system: 73.1%.

Added words 0% 60% 70% 80% 90% 100%
hub5 WER% 28.0 25.1 24.4 24.7 24.5 24.8

Table 11: Re-tuning the self-trained models (Switchboard). Re-
tuning with 14 hours of manually transcribed data, the initial
models are trained with mixed transcribed+untranscribed data.

WER% Initial Re-tuned
model + frame CE + sMBR

a) Word selection 24.4 24.2 23.7
b) Word weighting 24.4 24.1 23.5
c) No confidence 24.8 24.3 23.7

Table 12: Final performance of the semi-supervised training
based on ‘simple word-selection’. The initial model is trained
with the mixed transcribed+untranscribed data. The re-tuning
is done with a smaller set of manually transcribed data.

[WER%] Vietnamese Bengali SWBD
Seed system (sMBR) 59.6 62.9 26.9
Initial model 59.1 62.3 24.4
+ re-tuned (frame CE) 58.4 61.6 24.2
+ re-tuned (sMBR) 57.1 60.6 23.7
∆ WER% 2.5 2.3 3.2

8. Conclusion
The overall WER improvements from the semi-supervised
training become clear after re-tuning the ‘simple word-
selection’ models for all the three databases (table 12). The ab-
solute WER improvement between the seed sMBR system and
the final sMBR systems is 2.5% for Babel Vietnamese, 2.3% for
Babel Bengali and 3.2% for Switchboard. For Bengali and Viet-
namese the seed WER is higher, so the absolute WER improve-
ment from the semi-supervised training is smaller than in the
case of Switchboard, which also had a larger language model
from the Fisher transcripts. Our observations are summarized
as follows:

• ‘Data selection’ is better done per words or frames, than
per whole sentences (∆ = 0.4% WER, see last column
in table 4)

• ‘Data weighting’ leads to little better results than ‘Data
selection’ (∆ = 0.2% WER), while for weighting we
tuned the exponential scale α (compare last columns in
tables 4 and 8)

• A ‘simple word-selection’ setup without hyper-
parameter tuning is as follows: We choose the amount
(%) of the selected words with highest confidence
according to the word accuracy on the development set.
This simple rule selected the optimal amount of words
for 3 databases: Babel Vietnamese, Babel Bengali,
Switchboard

• Another experiment on Switchboard revealed that after
the re-tuning, the system with ‘simple word-selection’
had the same performance as the ‘no confidence’ system
(see table 11). For Babel Vietnamese the ‘simple word-
selection’ was better by 0.5% than the ‘no confidence’
system (table 4)

Given this evidence, we conclude that the ‘simple word-
selection’ is still a preferred technique. It does not involve any
hyper-parameter tuning, and it is either helpful or causes no
harm in the ASR system compared to adding all data with no
use of confidences. We believe, that our findings are of high
practical value. The untranscribed data are abundant and easy
to obtain, while our proposed solution brings solid WER im-
provements and it is not difficult to replicate. � � �
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