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TaggedPAbstract

Inspired by the success of Deep Neural Networks (DNN) in text-independent speaker recognition, we have recently demon-

strated that similar ideas can also be applied to the text-dependent speaker verification task. In this paper, we describe new advan-

ces with our state-of-the-art i-vector based approach to text-dependent speaker verification, which also makes use of different

DNN techniques. In order to collect sufficient statistics for i-vector extraction, different frame alignment models are compared

such as GMMs, phonemic HMMs or DNNs trained for senone classification. We also experiment with DNN based bottleneck fea-

tures and their combinations with standard MFCC features. We experiment with few different DNN configurations and investigate

the importance of training DNNs on 16 kHz speech. The results are reported on RSR2015 dataset, where training material is avail-

able for all possible enrollment and test phrases. Additionally, we report results also on more challenging RedDots dataset, where

the system is built in truly phrase-independent way.

� 2017 Elsevier Ltd. All rights reserved.
TaggedPKeywords: Deep Neural Network; Text-dependent; Speaker verification; i-Vector; Frame alignment; Bottleneck features

1. Introduction

TaggedPDuring the Deep last decade, text-independent speaker recognition technology has been largely improved in terms

of both computational complexity and accuracy. Channel-compensation techniques, such as Joint Factor Analysis

(JFA) (Kenny et al., 2008; 2007), evolved into the i-vector paradigm (Dehak et al., 2011), where each speech utter-

ance is represented by a low-dimensional fixed-length vector. To verify a speaker identity, similarity of i-vectors can

be measured as a simple cosine distance or by using a more elaborate Bayesian model such as Probabilistic Linear

Discriminant Analysis (PLDA) (Prince and Elder, 2007; Kenny, 2010).

TaggedPRecently, there has been an increased effort in applying these techniques also to the problem of text-dependent

speaker verification, where not only the speaker of the test utterance but also the (typically very short) uttered phrase

have to match with the enrollment utterance in order to get the utterance correctly accepted (see Table 1 for types of
I This paper has been recommended for acceptance by Roger Moore.
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Table 1

Trial types in text-dependent speaker verification (Larcher et al., 2014). We can

report performance of the text-dependent systems based on the combination of

Target-Correct trials with one of the other trial types (or all other types).

Target speaker Imposter speaker

Correct pass-phrase Target-Correct Imposter-Correct

Wrong pass-phrase Target-Wrong Imposter-Wrong
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TaggedPerrors). A typical application is a voice-based access control. Unfortunately, the techniques used for text-independent

speaker recognition were initially found ineffective for the text-dependent task. Similar or better performance was

usually obtained using slight modifications of simpler and older techniques such as Gaussian Mixture Mod-

el�Universal Background Model (GMM-UBM) (Larcher et al., 2013; 2012) or NAP compensated GMM mean

super-vector scored using a SVM classifier (Aronowitz, 2012; Novoselov et al., 2014). Only limited success was

observed with i-vectors/PLDA (Larcher et al., 2014; Stafylakis et al., 2013) or with JFA, which mainly served as an

i-vector-like feature extraction method (Kenny et al., 2014b; 2014c).

TaggedPIn Zeinali et al. (2015), we proposed a Hidden Markov Model (HMM) based i-vector approach for text-prompted

speaker verification, where the phrases are composed of a limited predefined set of words. In this approach, an

HMM is trained for each word. For each enrollment or test utterance, word specific HMMs are concatenated into a

phrase specific HMM. This HMM is then used to collect sufficient statistics for i-vector extraction instead of the con-

ventional GMM-UBM. This HMM based approach was further extended to text-dependent task in Zeinali et al.

(2017), where the HMMs are trained for individual phonemes rather than words. Given the known transcriptions of

enrollment and test utterances, the phrase-specific HMMs are constructed from the phoneme HMMs. Note that,

while there is a specific HMM built for each phrase, there is only one set of Gaussian components (Gaussians from

all the HMM states of all phone models) corresponding to a single phrase-independent i-vector extraction model.

The i-vector extractor is trained and used in the usual way, except that it benefits from a better alignment of frames

to Gaussian components as constrained by the HMMmodel. This approach was found to provide state-of-the-art per-

formance on the RSR2015 dataset (Larcher et al., 2014). However, its drawback is that we need to know the phrase

specific phone sequence for constructing the corresponding HMM.

TaggedPMore recently, techniques that make use of DNNs have been devised to improve text-independent speaker veri-

fication. In one of them, a DNN trained for phone classification is used to partition the feature space instead of the

conventional GMM-UBM. In other words, DNN outputs are used to define the alignment for collecting the suffi-

cient statistics for the i-vector extraction (Lei et al., 2014; Garcia-Romero et al., 2014; Garcia-Romero and

McCree, 2015; Dahl et al., 2012; Hinton et al., 2012; Kenny et al., 2014a). In this work, we experiment with the

DNN-based alignment in the context of text-dependent speaker verification. We are mainly interested in comparing

this method with the aforementioned i-vector method (Zeinali et al., 2017) relying on the HMM alignment. Note

that, unlike in the HMM-based method, we do not need the phrase phonetic transcription in order to obtain the

DNN alignment.

TaggedPAnother DNN-based approach, successful in text-independent speaker verification—as well as in other fields of

speech processing (Grezl et al., 2009; Yaman et al., 2012; Matejka et al., 2014; Vesely et al., 2012; Matejka et al.,

2016)—is using DNNs for extracting frame-by-frame speech features. Typically, a bottleneck (BN) DNN is trained

for phone classification, where the features are taken from a narrow hidden layer that compresses the relevant infor-

mation into low-dimensional feature vectors (Richardson et al., 2015; Matejka et al., 2016). Such features are then

used as the input to a usual i-vector based system. The good speaker recognition performance with such BN features

is somewhat counter-intuitive as the DNN trained for phone classification should learn to suppress the “unimportant”

speaker related information. However, it seems that a GMM-UBM trained on such BN features partitions the feature

space into phone-like clusters. This seems to be important for the good speaker recognition performance just like in

the case of the previously mentioned DNN approach (Lei et al., 2014), where the feature space partitioning is per-

formed directly by the DNN outputs. This hypothesis is in agreement with the analysis in Matejka et al. (2016),

where the best performance was obtained with standard i-vector system, where BN features were concatenated with

standard MFCCs. While the BN features guaranteed good feature space partitioning, MFCCs contributed with the

speaker information that may have been suppressed in BN feature extraction.
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TaggedPAlthough BN features can partition the feature space well, we still have to use MFCCs together with BN features

to achieve the best performance. Another method of using BN features is BN Alignment (BNA) (Tian et al., 2015;

Matejka et al., 2016): similarly to the DNN alignment described above, a GMM-UBM trained on BN features is

used to align speech frames to Gaussian components, while another feature set is used to collect the sufficient statis-

tics for i-vector extraction. This method will be explained in detail in Section 4.4.

TaggedPFor completeness (although not studied in this work), let us mention that DNNs have also been used to extract

speaker identity vectors in a more direct way (compared to the DNN based i-vectors) (Variani et al., 2014; Heigold

et al., 2016; Liu et al., 2015) or to classify i-vectors in a speaker recognition task (Ghahabi and Hernando, 2014).

TaggedPIn this paper, we verify that BN features—combined with MFCC features—provide an excellent performance

also for text-dependent speaker verification. Although the BN features are already expected to provide good align-

ment, we show that further improvement can be obtained when combined with the HMM-based i-vector extraction.

To our knowledge, this method provides the best performance obtained with a single i-vector based system on

RSR2015 data. We investigate two scenarios: (1) all evaluation phrases are seen in the training data (i.e. RSR2015),

(2) most of the evaluation phrases do not appear in the training data (i.e. RedDots). We report results for both scenar-

ios as our previous experiments have shown that the performance of DNN based systems can differ from one sce-

nario to another (Zeinali et al., 2016b).

TaggedPThis paper is an extension of our previous conference paper presented in Odyssey 2016 (Zeinali et al., 2016a). It

provides more extensive presentation and analysis of the results and brings up the following issues not investigated

in Zeinali et al. (2016a):

TaggedP� Performance of DNNs trained on 16 kHz and 8 kHz data is compared in the text-dependent speaker verification
task.
TaggedP� P
erformances of different DNNs configurations (namely numbers of senones used and DNN targets) are com-

pared in the text-dependent speaker verification task.
TaggedP� I
nvestigation into Bottleneck Alignment (BNA).
TaggedP� B
eside Imposter-Correct trials, results on Target-Wrong trials are also included as this trial type is very important

in text-dependent speaker verification (see Table 1 for trial types).
TaggedP� I
n addition to RSR2015, all results are reported also on RedDots (Zeinali et al., 2016b).

TaggedPThe rest of this article is organized as follows: in Section 2, we introduce i-vectors and the corresponding scoring

methods. Bottleneck features and network topologies are described in Section 3. In Section 4, we show different

frame alignment methods and in Section 5, the experimental setups and datasets are presented. Section 6 reports the

results and finally, the conclusions of this study are given in Section 7.

2. i-Vector based system

2.1. General i-vector extraction

TaggedPAlthough thoroughly described in the literature, let us review the basics of i-vector extraction. The main principle

is that the utterance-dependent Gaussian Mixture Model (GMM) super-vector of concatenated mean vectors s is

modeled as

s ¼ mþ Tw ; ð1Þ
where m ¼ ½mð1Þ0 ; . . . ;mðCÞ0 �0 is the GMM-UBM mean super-vector (of C components), T ¼ ½Tð1Þ0 ; . . . ;TðCÞ0 �0 is a
low-rank matrix representing M bases spanning subspace with important variability in the mean super-vector space,

and w is a latent variable of sizeM with standard normal distribution.

TaggedPThe i-vector f is the Maximum a Posteriori (MAP) point estimate of the variable w. It maps most of the relevant

information from a variable-length observation (utterance) X ¼ ½x1; . . . ; xN � to a fixed-dimensional vector, where xt is

a feature vector corresponding to tth frame of the utterance. The closed-form solution for computing the i-vector can be

estimated as a function of the zero- and first-order statistics: nX ¼ ½Nð1Þ
X ; . . . ;N

ðCÞ
X �0 and fX ¼ ½f ð1Þ0X ; . . . ; f

ðCÞ0
X �0; where

N
ðcÞ
X ¼P

t g
ðcÞ
t ð2Þ
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TaggedP f
ðcÞ
X ¼P

t g
ðcÞ
t xt ; ð3Þ

where g
ðcÞ
t is the posterior (or occupation) probability of frame xt being generated by the mixture component c. The

tuple g t ¼ ðgð1Þ
t ; . . . ; g

ðCÞ
t Þ is usually referred to as frame alignment. Note that these variables can be computed either

using the GMM-UBM or using a separate model (Lei et al., 2014; Tian et al., 2015; Matejka et al., 2016). In this

work, we compare the standard GMM-UBM frame alignment with BNA, HMM and DNN-based approaches,

described in the following sections. The i-vector is then expressed as

fX ¼ L�1
X T

0
fX ; ð4Þ

where LX is the precision matrix of the posterior distribution of w, computed as:

LX ¼ Iþ
XC
c¼1

N
ðcÞ
X T

ðcÞ0
T
ðcÞ

; ð5Þ

with the ‘bar’ symbols denoting normalized variables:

f
ðcÞ
X ¼SðcÞ�1

2 f
ðcÞ
X � N

ðcÞ
X mðcÞ

� �
ð6Þ

T
ðcÞ ¼SðcÞ�1

2 TðcÞ ; ð7Þ

where SðcÞ�1
2 is the square root (or another symmetrical decomposition such as Cholesky decomposition) of an

inverse of the GMM-UBM covariance matrix S(c). Note that the normalization GMM-UBM (i.e. the m(c) and S(c)

parameters) should be computed via the same alignment as used in Eqs. (2) and (3).
2.2. i-Vector normalization and scoring

TaggedPWe used several different i-vector normalizations. In our experiments on RSR2015, i-vectors are length-

normalized (Garcia-Romero and Espy-Wilson, 2011), and further normalized using phrase-dependent regularized

Within-Class Covariance Normalization (WCCN) (Hatch et al., 2006). In the case of standard WCCN, i-vectors are

transformed using the linear transformation S�1=2
wc in order to whiten the within-class covariance matrix Swc, which

is estimated on training data. For the text-dependent task, we only found WCCN effective when applied in the

phrase-dependent manner (i.e. for trials of a specific phrase, Swc is estimated only on the training utterances of that

phrase) (Zeinali et al., 2017). With RSR2015 dataset, however, this leaves us only very limited amount of data

for estimating phrase specific matrices Swc. For this reason, we found it necessary to regularize Swc by adding a

small constant to the matrix diagonal (Zeinali et al., 2017; Friedman, 1989) (i.e. adding aI to Swc where I is the

identity matrix and a is a small constant like 0.001). We called this method Regularized WCCN (RWCCN).

Simple cosine distance scoring is then used in all RSR experiments followed by phrase-dependent s-norm score

normalization (Kenny, 2010).

TaggedPThe RedDots evaluation data comes without any development set, which would contain recordings of the same

phrases as used for enrollment and test. Therefore, we have to use training data from other datasets with mismatched

phrases. In Zeinali et al. (2017), we have shown that such mismatch makes the channel compensation and score nor-

malization techniques ineffective for the case of text-dependent speaker verification with very short enrollment and

test utterances. Therefore, all the reported results for the RedDots dataset are based on simple cosine distance scoring

without any score normalization.
3. Bottleneck features

TaggedPBottleneck neural network refers to a DNN with a specific topology, where one of the hidden layers has signifi-

cantly lower dimensionality than the surrounding layers. A bottleneck feature vector is generally understood as a

by-product of forwarding a primary input feature vector through the DNN, while reading the vector of values at the
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TaggedPoutput of the bottleneck layer. In this work, we use more elaborate architecture for BN features called Stacked Bot-

tleneck Features (Karafi�at et al., 2014). This architecture is based on a cascade of two such bottleneck DNNs. Several
frames of the bottleneck layer output of the first network are stacked in time to define contextual input features for

the second DNN (hence the term Stacked Bottleneck Features). The input features to the first stage DNN are log

Mel-scale filter bank outputs (36 filters for 8 kHz data and 40 filters for 16 kHz) augmented with 3 fundamental fre-

quency features (Karafi�at et al., 2014) and normalized using conversation-side based mean subtraction. The first

stage DNN has 4 hidden layers (each with 1500 sigmoid units except for the 3rd linear bottleneck layer with 80 neu-

rons) and the final softmax layer trained for classification of senone targets. The bottleneck outputs from the first

stage DNN are sampled at times t � 10; t � 5; t, t þ 5 and t þ 10 and stacked into single 400-dimensional feature

vector (5� 80 ¼ 400), where t is the index of the current frame. The resulting features are input to the second stage

DNN, which has the same topology as the first stage. With this architecture, each output is effectively extracted

from 30 frames (300 ms) of the input features in the context around the current frame. The outputs from the bottle-

neck layer of the second stage DNN are then taken as the final output features (i.e. the features to train the i-vector

model on). In all our experiments, the extracted BN features are 80-dimensional. See Matejka et al. (2016) and

Karafi�at et al. (2014) for more details on the exact structure. We have used this architecture as it proved to be very

effective in our previous text-independent speaker recognition experiments (Matejka et al., 2016). However, our

more recent experiments indicate that similar results can be obtained with simpler single stage bottleneck neural

networks (e.g. compare results in Matejka et al., 2016; Lozano-Diez et al., 2016).

TaggedPThe bottleneck DNNs are trained to discriminate between triphone tied-state targets. Using a pre-trained GMM/

HMM ASR system, a decision tree based clustering is used to cluster triphone states to the desirable number of tar-

gets (DNN outputs also called senones) (Karafi�at et al., 2014). The same ASR system is used to force-align the data

for DNN training in order to obtain the target labels. We use several different DNNs in our experiment, two of them

trained on Switchboard data (8 kHz, conversational telephone speech) and the others trained using LibriSpeech

dataset (16 kHz, read speech).

TaggedPFor 8 kHz, the primary DNN for extracting BN features is trained to classify 8802 triphone tied states (senones).

The second DNN with 1011 senones is primarily intended for DNN based alignment as described in Section 4.3. For

the 16 kHz case, we trained 4 DNNs (different senones counts, 920, 3512, 6198 and 9418) and used them all for

extracting BN features. The network with 920 senones was used for DNN alignment as well. Unless indicated other-

wise, the primary BN features extracted from the largest network (i.e. with 9418 senones) trained on 16 kHz speech

data are used in all our experiments.

4. Frame alignment methods

4.1. GMM-based

TaggedPThe simplest and conventional alignment method uses a GMM (i.e. UBM) to align frames to Gaussian

components (Reynolds et al., 2000). This method is widely used in text-independent speaker verification and also

has been used in the text-dependent task (Larcher et al., 2014; Stafylakis et al., 2013). The GMM training is totally

unsupervised process, so it does not use any information about speakers and phrases. However, this method

completely ignores the left-to-right temporal structure of phrases, which is important for the text-dependent speaker

verification, especially to reduce the vulnerability to replay attacks. GMM alignment is used as the baseline in this

paper.

4.2. HMM-based

TaggedPIn Zeinali et al. (2017), an HMM based method is proposed for text-dependent speaker verification, where a pho-

neme recognizer is first trained with 3-state mono-phone HMMs with the state distributions modeled using GMMs.

The parameters of the recognizer (i.e. transition probabilities and state distribution mixture weights, mean vectors

and diagonal covariance matrices) are trained in the conventional way using the embedded Baum�Welch

training (Young et al., 1997). Let F be the total number of mono-phones (i.e. 39), S ¼ 3F be the number of all states,

G the number of Gaussian components per state, and C ¼ SG the number of all individual Gaussians, and let (s, g)

denote the Gaussian component g in state s. Then, a new phrase-specific HMM is constructed for each phrase by
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TaggedPconcatenating the corresponding mono-phone HMMs.1 The Viterbi algorithm is then used to obtain the alignment of

the frames to the HMM states, and within each state s, GMM alignment g
ðs;gÞ
t is computed for each frame t. We can

now re-interpret the pair (s, g) as one out of C Gaussians and we can substitute g
ðcÞ
t in Eqs. (2) and (3) by g

ðs;gÞ
t ; so

that the zero and first order statistics can be written as:

nX ¼ ½Nð1;1Þ
X ; . . . ;N

ðs;gÞ
X ; . . . ;N

ðS;GÞ
X �0

fX ¼ ½f ð1;1Þ0X ; . . . ; f
ðs;gÞ0
X ; . . . ; f

ðS;GÞ0
X �0 ;

where:

N
ðs;gÞ
X ¼P

t g
ðs;gÞ
t ð8Þ

f
ðs;gÞ
X ¼P

t g
ðs;gÞ
t xt ; ð9Þ

TaggedPNote that, in Eqs. (8) and (9), due to the typically short duration of phrases, not all phonemes are used in the

phrase-specific HMM. Therefore the alignment of frames to the Gaussian components is often sparse and most of

the g
ðs;gÞ
t values are zero. Also, it is worth mentioning that after calculating the zero- and first-order statistics for the

training set, a single (phrase-independent) i-vector extractor is trained.
4.3. DNN-based

TaggedPIn this approach, a DNN is trained to produce frame-by-frame posterior probabilities of senones (context-depen-

dent phone states). It is assumed that such posterior probabilities can be interpreted as the probabilistic alignment of

speech frames to UBM components. These posteriors can be then directly used for i-vector extraction in Eqs. (2)

and (3). As described in Section 1, for the text-independent task, excellent results were previously reported for this

approach, which can better represent different pronunciations of the same phoneme as produced by different

speakers (Lei et al., 2014).

TaggedPCompared to the HMM alignment, this method does not take into account the true transcription of the desired

phrase. Instead, the phonetically-aware DNN provides the alignment. Therefore, it is to be expected that the

DNN-based approach provides worse performance for rejecting Target-Wrong trials as compared to the HMM

alignment.

TaggedPNote that the output of this system has to be used for computing the normalization UBM parameters in (6) and (7).

In our experiments, the topology of this network is identical to the one used for BN feature extraction except for the

number of output nodes (see Section 3). Note also that the DNN is usually trained on a separate set of speech features

(log Mel filter bank outputs in our case), which is different from the features used in (3) for collecting the sufficient

statistics (MFCC, etc.).
4.4. BN alignment (BNA)

TaggedPIn this approach, a GMM is trained on BN features. For the i-vector extraction, however, this GMM is only used

to obtain the alignment of frames to UBM components (i.e. to calculate the posteriors g
ðcÞ
t ). Just like in the DNN-

based approach, different set of features is used to collect the sufficient statistics (3). Similarly to the DNN-based

approach, a consistent BN-based alignment has to be also used to compute the normalization parameters (6) and

(7). When BN features are used for both the alignment and the sufficient statistics collection, then there is no differ-

ence between BNA and the standard GMM-UBM approach.

TaggedPBNA was first proposed in Tian et al. (2015) and afterward analyzed in Matejka et al. (2016). A GMM trained

using BN features seems to partition the feature space into phone-like clusters and leads to an alignment similar

to the DNN-based one. Again, this method does not take into account the true phrase transcription, which can be det-

rimental for rejecting Target-Wrong trials.
1 We assume that (phonetic) transcriptions of the enrollment phrases are known, which is the case for our evaluation data.
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5. Experimental setup

5.1. Data

TaggedPFor the sake of performing a comprehensive analysis, we did our experiments in two different scenarios. In the

first one, all enrollment and test phrases are seen also in the data for system training. For this scenario, the RSR2015

dataset (Larcher et al., 2014) is used. In the second one, there is a mismatch in phrases between the training and eval-

uation data. Here, Part-01 of the RedDots dataset (Lee et al., 2015) is used for the evaluation. This dataset does not

come with any training set. Therefore, we have to use a different dataset for the training and, as a result, (most of)

the evaluation phrases do not appear in the training data.

TaggedPThe RSR2015 dataset comprises recordings from 300 speakers (157 males and 143 females), each in 9 distinct

sessions. The data is divided into three disjoint speaker subsets: background, development and evaluation. It is fur-

ther divided into three parts based on different lexical constraints. Since the focus of this paper is text-dependent

speaker verification, we only use RSR2015 Part-1, where the enrollment and test phrases are the same. In this part,

each speaker uttered 30 different TIMIT phrases in 9 sessions. For each phrase, three repetitions from different ses-

sions were used to enroll a single i-vector as a speaker model and other phrases were used for testing based on

RSR2015 trial definition.

TaggedPIn all experiments on RSR2015, the background set was used for UBM (both the GMM based and the mono-

phone phoneme recognizer for the HMM-based alignment described in Section 4.2) and i-vector extractor train-

ing. All results are reported on the evaluation sets. The development set is not used at all. The training was

done in a gender-independent manner. We used all speakers from the background set for gender-independent

RWCCN and gender-dependent score normalization. Based on our experimental results, we decided to use

phrase-dependent RWCCN and score normalization in all experiments. Note that we use exactly the same train-

ing and test sets as Kenny et al. (2014b).2 Therefore, our results should be directly comparable with the best

results reported in Table 6 in Kenny et al. (2014b). We also use the same HTK-based MFCC features as

in Kenny et al. (2014b). However, we use our own voice activity detection (VAD) different from the one

in Kenny et al. (2014b).

TaggedPNote that, in some studies, authors prefer to report results on the more challenging development set. We have also

found this set more difficult. However, the results and conclusions drawn from the experiments on the development

set are very consistent with those reported here on the evaluation set, which we have chosen for the sake of compari-

son with Kenny et al. (2014b).

TaggedPThe current snapshot of RedDots dataset contains 62 speakers (49 males and 13 females). 41 speakers are the tar-

get ones (35 males and 6 females) and the others are considered as unseen imposters. RedDots consists of four parts.

In this paper, we used only Part-01 with the official evaluation protocol. In this part, each speaker uttered 10 common

phrases. RedDots was used for evaluation and both RSR2015 (Part-1 of all sets including development set) and Lib-

riSpeech were used as training data. We only report results for male trials and omit the unreliable results on the very

limited number of female trials. For RedDots system, we used gender-dependent UBM and i-vector extractor. No

channel compensation or score normalization was used for the reasons explained in Section 2.2. UBM and i-vector

extractor were trained on a subset of freely available LibriSpeech data (i.e. Train-Clean-100) (Panayotov et al.,

2015) with 251 speakers and about 100 h of speech. In this dataset, each speaker reads several books and each

recording was split to short segments ranging from one to several sentences. For each segment, there is a word-level

transcription.

TaggedPWhen training DNNs on 8 kHz speech, the Switchboard-1 training data (Phase-1 Release 2) is used as described

in Section 3. From this dataset, about 255 h of speech were used for DNNs training. When training DNNs on 16 kHz

speech, we use two parts of LibriSpeech called Train-Clean-100 and Train-Clean-360 with about 460 h of speech.

About 416 h are used for DNN training and the rest is used for cross-validation.

TaggedPA summary of the contents and specifications of RSR2015, LibriSpeech and RedDots data sets is shown in

Table 2 (Zeinali et al., 2017).
2 We thank the authors for sharing their enrollment and trial lists.



Table 2

Datasets, parts and numbers of speakers (Larcher et al., 2014; Panayotov et al.,

2015; Lee et al., 2015).

Dataset Subset # Males # Females

RSR2015 Background 50 47

Development 50 47

Evaluation 57 49

LibriSpeech Train-Clean-100 126 125

Train-Clean-360 482 439

RedDots Part-01 49 13
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5.2. Features

TaggedPAs the baseline speech features for our experiments, 60-dimensional MFCCs are extracted from 16 kHz signal

using HTK (Young et al., 1997) with a standard configuration: 25 ms Hamming windowed frames with 15 ms over-

lap. Unlike in text-independent systems, non-speech frames cannot be simply dropped as VAD errors would harm

the Viterbi alignment. Therefore, we used a silence HMM to model the non-speech regions at the beginning and the

end of each utterance. The frames aligned to this silence model are dropped (i.e. not used in the following estimation

of statistics and i-vector extraction). We assumed that there is no silence in the middle of utterances; this is a

plausible assumption as the utterances are very short.3 Finally, cepstral mean and variance normalization is applied

to the trimmed utterances.

TaggedPBesides the cepstral features, several versions of 80-dimensional DNN based bottleneck features (one 8 kHz and

four 16 kHz BN features as described in Section 3) are used in our experiments. Note that 8 kHz features are

extracted from data down-sampled to 8 kHz.
5.3. Systems

TaggedPAll reported results are obtained with i-vector based systems. Based on two evaluation datasets, we used two dif-

ferent system configurations. For RSR2015, the 400-dimensional i-vectors are length-normalized (Garcia-Romero

and Espy-Wilson, 2011), and further normalized using phrase-dependent RWCCN as described in Section 2.2.

Cosine distance is then used to obtain speaker verification scores, which are further normalized using phrase-

dependent s-norm. For RedDots, we used 600-dimensional i-vectors extracted from a gender-dependent system. The

scoring was done using cosine distance.

TaggedPResults are reported for individual i-vector based systems, which differ in the input features (MFCC, BN or their

combination), in the sampling rate of DNNs training data and in the method for aligning speech frames to the Gauss-

ian components as described in Section 2. The four possible alignment models are: (1) GMM with 1024 components

(i.e. the standard i-vector approach), (2) HMM with 3 states and 8 Gaussian components for each of 39 mono-phones

(resulting in total of 936 Gaussian components), (3) DNN with 1011 or 920 outputs (corresponding to 1011 or 920

Gaussian components in the i-vector extraction model for 8 kHz and 16 kHz DNNs, respectively) and (4) BNA

extracted from DNN with about 8000 outputs. The numbers of Gaussian components in GMM and HMM based sys-

tems and the number of DNN outputs (target senones) were selected so that the resulting i-vector extractors have

roughly the same number of parameters (size of total variability matrix T).
6. Results

TaggedPWe only report results for Imposter-Correct and Target-Wrong trials because the error rate on Imposter-Wrong

trials for all methods is close to zero. For each method, the results are reported in terms of Equal Error Rate (EER)

and Normalized Detection Cost Function as defined for NIST SRE08 (NDCFmin
old ) and NIST SRE10 (NDCFmin

new). In
3 Only slight improvement was obtained when properly modeling phrases with an optional silence after each word. Therefore, we decided to

report results with the simpler model dropping only initial and final silence regions.



H. Zeinali et al. / Computer Speech & Language 46 (2017) 53�71 61
TaggedPall DET curves, the square and star markers correspond to NDCFmin
old and NDCFmin

newoperating points, respectively. In

each section of tables, the best result is highlighted.

6.1. Comparison of GMM, HMM, DNN and BN alignments

TaggedPIn Tables 3 and 4, we analyze the performance of the four different alignment techniques for i-vector extraction

(see Section 2) on RSR2015. The DET curves for a few systems selected from Table 3 are also shown in Figs. 1

and 2. In addition, Table 5 and Fig. 3 show these analyses for RedDots dataset. In these experiments, DNN align-

ments were calculated using a DNN with 920 senone targets and BN features were extracted by a bottleneck DNN

with 9418 senone targets. All DNNs in these experiments were trained on 16 kHz speech.

TaggedPWe start our analyses on RSR2015 dataset and the most difficult Imposter-Correct condition (i.e. every non-target

trial comes from an imposter speaker uttering the correct phrase). The first section of Table 3 shows results with

MFCC features. The first line corresponds to the standard i-vector extraction model with GMM alignment as used in

text-independent speaker verification. From the second line, we can see that the HMM-based alignment significantly

improves the performance, which is in line with the results from Zeinali et al. (2017), where this method was pro-

posed and analyzed. DNN based alignment performs better than HMM, even though it does not rely on the phrase

transcription. Note that the nature of the DNN based alignment is rather different from (and perhaps complementary

to) the HMM one: Instead of relying on the transcription, DNN makes the decision locally based only on the acoustic
Table 3

Comparison of different features and alignment methods on Imposter-Correct trials of the RSR2015 data-

set. Note that all features are extracted from 16 kHz speech signal.

Features Alignment Male Female

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

MFCC GMM 0.67 0.0382 0.1983 0.62 0.0355 0.1991

HMM 0.37 0.0204 0.1142 0.49 0.0275 0.1533

DNN 0.32 0.0174 0.0985 0.37 0.0203 0.1282

BNA 0.32 0.0177 0.0697 0.27 0.0134 0.0730

BN GMM (BNA) 0.42 0.0234 0.1319 0.27 0.0136 0.0837

HMM 0.37 0.0206 0.1263 0.30 0.0136 0.0806

DNN 0.69 0.0336 0.1792 0.54 0.0240 0.1311

MFCC+BN GMM 0.22 0.0132 0.0790 0.18 0.0091 0.0477

HMM 0.20 0.0128 0.0901 0.25 0.0111 0.0655

DNN 0.41 0.0222 0.1404 0.42 0.0224 0.1211

BNA 0.21 0.0127 0.0888 0.22 0.0097 0.0540

MFCC Rel. MAP/GMM 0.40 0.0199 0.1061 0.15 0.0081 0.0354

MFCC+BN Rel. MAP/GMM 0.31 0.0161 0.0998 0.17 0.0091 0.0405

Table 4

Comparison of different features and alignment methods on Target-Wrong trials of the RSR2015 dataset.

Features Alignment Male Female

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

MFCC GMM 2.06 0.1301 0.6649 0.72 0.0468 0.3088

HMM 0.32 0.0179 0.1024 0.14 0.0058 0.0415

DNN 0.87 0.0584 0.4453 0.36 0.0221 0.1502

BNA 0.17 0.0101 0.0428 0.08 0.0034 0.0194

BN GMM (BNA) 0.04 0.0029 0.0143 0.05 0.0017 0.0158

HMM 0.09 0.0054 0.0359 0.07 0.0026 0.0111

DNN 0.22 0.0125 0.0574 0.16 0.0077 0.0260

MFCC+BN GMM 0.04 0.0025 0.0157 0.02 0.0013 0.0135

HMM 0.05 0.0028 0.0338 0.06 0.0016 0.0067

DNN 0.31 0.0195 0.1289 0.22 0.0139 0.0946

BNA 0.02 0.0017 0.0074 0.03 0.0012 0.0027

MFCC Rel. MAP/GMM 0.62 0.0361 0.1788 0.13 0.0058 0.0330

MFCC+BN Rel. MAP/GMM 0.29 0.0102 0.0322 0.09 0.0043 0.0227



Table 5

Comparison of different features and alignment methods on RedDots dataset for both Imposter-Correct

and Target-Wrong trials.

Features Alignment Imposter-Correct Target-Wrong

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

MFCC GMM 2.07 0.0899 0.3105 3.76 0.1762 0.4275

HMM 1.88 0.0809 0.2271 1.11 0.0338 0.0509

DNN 1.64 0.0820 0.3098 1.76 0.0806 0.1843

BNA 2.31 0.0938 0.2750 2.50 0.0989 0.3179

BN GMM (BNA) 5.15 0.2500 0.6790 0.37 0.0109 0.0164

HMM 5.18 0.2388 0.6752 0.28 0.0054 0.0074

DNN 4.81 0.2364 0.6635 0.25 0.0063 0.0111

MFCC+BN GMM 3.46 0.1446 0.5368 0.56 0.0189 0.0673

HMM 3.40 0.1354 0.4305 0.40 0.0059 0.0065

DNN 2.99 0.1342 0.4298 0.43 0.0127 0.0281

BNA 3.58 0.1659 0.5566 0.49 0.0165 0.0284

MFCC Rel. MAP/GMM 1.98 0.0848 0.2879 4.01 0.1733 0.4960

MFCC+BN Rel. MAP/GMM 2.59 0.1295 0.4423 0.46 0.0155 0.0549
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TaggedPcontext; the alignment units are tied triphone states (senones) rather than Gaussian components in mono-phone

states. Also, the DNN is discriminatively trained on a large amount of speech data and using different features, while

HMMs are trained only on the small amount of RSR2015 background set. On the other hand, the HMM-based

method leads to much more compact representation as there is just a single model (and features) used for both the

alignment and the rest of the i-vector extraction. From the last row of this section, it is clear that the BN Alignment

(BNA) performs comparably to the DNN one for males and is much better for females. Again, unlike with HMMs,

BNA does not rely on the phrase transcription.

TaggedPIt is worth mentioning that for the HMM-based alignment, each phrase must be uttered correctly. If a phoneme is

pronounced incorrectly, it affects the alignment accuracy of other phonemes during the Viterbi forced alignment.

We know that there are various mispronunciations in both RSR2015 and RedDots as both were collected mostly
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Fig. 1. DET curves for different methods of extracting posterior probabilities for Imposter-Correct trials of RSR2015 from Table 3. The fusion

system was selected from Table 10.
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Fig. 2. DET curves for different methods of extracting posterior probabilities for Imposter-Correct trials of RSR2015 from Table 3. The fusion

system was selected from Table 10.
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TaggedPfrom non-native English speakers. In addition, there are other human errors such as late starts or early terminations

of recordings, which generate cropped utterances. These errors harm HMM-based alignment more than the other

alignment methods, which we have observed when manually inspecting large portion of the errors made by the

HMM-based system.
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Fig. 3. DET curves for different methods of extracting posterior probabilities for RedDots from Table 5. The fusion system was selected from

Table 11.
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TaggedPThe second section of Table 3 reports the results obtained with the BN features. We can see that BN features

perform very well even in the standard i-vector setting with the GMM alignment (i.e. with the BN Alignment,

which is implicit in the case of BN features). Most likely, this can be attributed to the better phone-like feature

space clustering obtained with the GMM trained on BN features. For HMM-based systems, we see that replacing

MFCCs with BN features helps especially on female trials. However, the improvement is not as significant as in

the case of simple GMM-based alignment. Interestingly, BN features fail to perform well in combination with the

DNN based alignment.

TaggedPIn the third section of Table 3, results are shown for concatenated MFCC+BN features (60þ 80 ¼ 140

dimensions). In Matejka et al. (2016), superior performance was reported for i-vector based text-independent

speaker recognition with such more informative, higher dimensional features regardless of the alignment method

used. Here, we verify that concatenated MFCC+BN features provide excellent performance also for the text-depen-

dent task on RSR2015 dataset. This time, however, only small improvement is obtained from the HMM-based align-

ment compared to the GMM-based one. It seems that the presence of the BN features already guarantees an

appropriate feature space partitioning and alignment even with the GMM model. Again, the DNN based alignment

seems to fail in the presence of the BN features. The performance of BNA (i.e. where the GMM for alignment is

trained only on BN features rather than on MFCC+BN features) is also comparable to HMM- and GMM-based

alignments.

TaggedPFor comparison, the last two rows in Table 3 show results for the simple relevance MAP GMM-UBM

system (Reynolds et al., 2000; Larcher et al., 2013; 2012) trained using MFCC or MFCC+BN features. For females,

this simple system with MFCC features actually provides the best results. Still, the best overall performance is

obtained with MFCC+BN features and the i-vector based systems. It is perhaps even more important that the i-vector

systems lead to more compact representation of utterances and therefore are more practical compared to the simple

relevance MAP systems.

TaggedPNow, we turn our attention to RSR2015 Target-Wrong condition, where all non-target trials come from target

speakers uttering a wrong phrase. The first section of Table 4 presents again results with MFCC features. We can see

that the HMM-based alignment performs much better compared to the GMM-based one. HMM makes use of enroll-

ment phrase transcription, so for wrong trials, frames are aligned to wrong states and Gaussian components.

Extracted i-vectors from such alignments are different from enrollment i-vectors and can be easily rejected. DNN

alignment performs much better compared to GMM-based one. However, it is still significantly worse than HMM

alignment as it does not take into account the enrollment phrase transcription. Perhaps somewhat surprisingly, the

best performance with MFCC features for Target-Wrong condition is obtained with BN Alignment. We found that

BN features, even if used only for alignment, produce very phrase-specific i-vectors, which are very good for the dis-

crimination between phrases and therefore for rejecting wrong phrase trials.

TaggedPIn the second section of Table 4, we can see that even better performance in rejecting wrong phrase trials is

obtained when BN features are used for collecting sufficient statistics (i.e. not only for the alignment). In this case,

the GMM alignment performs the best. By inspecting the verification results, we observe that the worse performance

of HMM alignment is caused mainly by the aforementioned problems with phrase mispronunciations and utterance

cropping. Again, the combination of BN features and DNN alignment leads to the worst performance.

TaggedPThe best results were again obtained with MFCC+BN features, as can be seen in the third section of Table 4. Any

of the alignment methods (except for DNN) provides excellent results. In almost all cases, BN Alignment performs

the best.

TaggedPFor comparison, the last two lines of the table show again the results for the simple relevance MAP GMM-UBM

systems. Although reasonable results can be obtained with such systems, their performance still stays far behind the

systems from the previous section (i.e. i-vector and MFCC+BN based).

TaggedPIn Table 5, results for the male part of RedDots dataset are reported for both Imposter-Correct and Target-Wrong

conditions. First, we focus on the Imposter-Correct results presented in the left side of the table. In contrast with the

results obtained on RSR2015 data, any use of BN features always leads to suboptimal performance on RedDots. As

can be seen in the left part of the first section of Table 5, the best results are obtained with MFCC features and HMM

alignment. A comparable performance is also obtained with DNN alignment.

TaggedPIn order to explain the suboptimal performance obtained with the BN features on RedDots dataset, we need to

take into account the mismatch between the RedDots evaluation data and the training data used. In our RSR2015

experiments, the data for training HMM-UBM and i-vector extractor contains the same phrases as the enrollment
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TaggedPand test utterances. However, this is not the case for most of the phrases in RedDots. Therefore, we suspected that the

BN features might be sensitive to such mismatch between training and test data. To prove this hypothesis, we con-

centrated on three out of the ten phrases from Part-01 of RedDots that are common with RSR2015 data. Since the

RSR2015 data are also used for RedDots system training, the i-vector extractor is also effectively trained on the data

from these three matched phrases. In Fig. 4, we plot score distributions estimated on correct phrase trials for two sep-

arate sets of phrases: Seen set contains the three phrases seen during training, and Unseen set contains the remaining

seven phrases. For MFCC+BN features, the target and non-target score distributions of the Seen set are farther from

each other than for the Unseen set. Therefore, better performance of the BN features is to be expected when test

phrases are included in the training data.

TaggedPThe RedDots results for the Target-Wrong conditions can be found in the right part of Table 5. For MFCC

features, the best performance is obtained with HMM alignment. However, just like in the case of the RSR2015

Target-Wrong condition, a superior performance is obtained with the BN and MFCC+BN features (with any align-

ment method), which performed poorly for Imposter-Correct condition. As mentioned before very phrase specific

i-vectors are obtained with BN features, which makes it easy to reject wrong phrase trials.

TaggedPThe last two lines of Table 5 show again results for the simple relevance MAP GMM-UBM systems. For the

Imposter-Correct condition, the performance of the MFCC based system is comparable to the best i-vector system

from the first section of the table. However, as already pointed out, the i-vector based systems are more practical

because of their compact representation of utterances.

TaggedPIn summary, the best features for RSR2015 dataset are the concatenated MFCC+BN and among four alignment

methods, BNA performs the best. Although the performance of the HMM-based method is slightly worse, we believe

it can be improved by properly dealing with the mispronounced utterances. For RedDots dataset, MFCC features

with HMM or DNN alignments perform well on Imposter-Correct condition, while BN features have the best perfor-

mance on Target-Wrong condition. In order to take advantage for both conditions, we fuse systems that makes use of

these different features (see Section 6.4).
Fig. 4. Score distributions of two different phrase sets for correct male trials for MFCC and MFCC+BN. The vertical lines show the means of nor-

mal distributions fitted to scores (Zeinali et al., 2016b).
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6.2. Comparison of 8 kHz and 16 kHz networks

TaggedPIn Zeinali et al. (2016a), we reported results with DNNs trained on Switchboard-1 database (8 kHz telephone con-

versational speech) as those were the only DNNs we had available at the time of writing the Odyssey paper. In this

section, we compare the results obtained with DNNs trained on either 8 kHz or 16 kHz speech. The 16 kHz DNNs

are trained on LibriSpeech database (high quality read speech). For a fair comparison, the 8 kHz DNNs are trained on

the same dataset downsampled to 8 kHz. We also include results obtained with 8 kHz DNNs trained on the Switch-

board-1 database. The results for the three datasets allow us to assess whether it is more important to have DNNs

trained on the wide-band 16 kHz or DNNs trained more robustly on a telephone data from the real environments.

TaggedPFor comparison, the first lines in Tables 6�8 show results obtained with 8 kHz MFCC features and the conven-

tional GMM based i-vector system. Note, however, that 16 kHz MFCCs are used in all other cases even if the 8 kHz

DNN is used for the alignment or to extract the BN features.

TaggedPTable 6 shows results on RSR2015 dataset for Imposter-Correct condition. Comparing the DNNs trained on the

different 8 kHz datasets (Switchboard vs. downsampled LibriSpeech), we see consistently better performance with

LibriSpeech, which matches well the conditions of RSR2015 data (i.e. contains very clean, non-spontaneous

speech). We observe further consistent improvement (especially for BN features and female trials) when training

DNNs on 16 kHz LibriSpeech.

TaggedPTable 7 shows similar results for RSR2015 Target-Wrong condition. We again see that it is beneficial to train

DNNs on the clean LibriSpeech data. However, the improvement from using the 16 kHz speech compared to the

downsampled 8 kHz speech is rather small. For Target-Wrong condition, we need to discriminate between phrases

(not speaker voices) and it seems that 8 kHz data is sufficient for this task.

TaggedPOn the other hand, for the RedDots experiments reported in Table 8, we do not see any benefit from training

DNNs on the clean 16 kHz LibriSpeech. On the contrary, the 8 kHz DNNs trained on Switchboard often deliver

better performance. The most likely reason for this behavior is the nature of the training and evaluation datasets:

RSR2015 was recorded in controlled environment and has a limited noise, while RedDots was collected in real envi-

ronments and therefore it is more noisy and challenging. Switchboard database contains telephone conversational

speech with different channels and noises. Therefore, DNNs trained on 8 kHz Switchboard data are more robust.

TaggedPIn all other experiments reported in this paper, DNNs trained on 16 kHz speech are used as they provide superior

performance on RSR2015 data and comparable performance on RedDots data. As mentioned before, in Zeinali et al.

(2016a), we reported results with DNNs trained only on Switchboard as those were the only DNNs we had available

at the time of writing the paper. We recommend the reader to compare the results from Section 6.1 with similar results

reported in Zeinali et al. (2016a), which were obtained with the 8 kHz DNN systems. The new conclusions drawn

here from the 16 kHz DNNs results are sometimes quite different from the ones reported in Zeinali et al. (2016a).
Table 6

Comparison of 8 and 16 kHz DNNs on Imposter-Correct trials of the RSR2015 dataset. The second column shows the main fea-

tures used for verification and the third one shows the alignment method. MFCC features are always extracted from 16 kHz

speech except for the first line of the table, where 8 kHz speech is used.

DNN Male Female

training

Features Align.

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

� MFCC-8 kHz GMM 1.46 0.0822 0.3485 2.10 0.0952 0.3410

MFCC-16 kHz GMM 0.67 0.0382 0.1983 0.62 0.0355 0.1991

8 kHz Switch board-1 MFCC DNN 0.36 0.0203 0.1286 0.39 0.0218 0.1441

MFCC BNA 0.39 0.0192 0.0855 0.30 0.0180 0.0937

BN GMM 0.59 0.0325 0.1564 0.40 0.0201 0.1066

MFCC+BN GMM 0.31 0.0176 0.0955 0.28 0.0144 0.0898

8 kHz Libri Speech MFCC DNN 0.31 0.0190 0.1086 0.35 0.0203 0.1595

MFCC BNA 0.31 0.0178 0.0857 0.33 0.0156 0.0852

BN GMM 0.53 0.0283 0.1530 0.31 0.0161 0.0966

MFCC+BN GMM 0.23 0.0149 0.0910 0.25 0.0123 0.0721

16 kHz Libri Speech MFCC DNN 0.32 0.0174 0.0985 0.37 0.0203 0.1282

MFCC BNA 0.32 0.0177 0.0697 0.27 0.0134 0.0730

BN GMM 0.42 0.0234 0.1319 0.27 0.0136 0.0837

MFCC+BN GMM 0.22 0.0132 0.0790 0.18 0.0091 0.0477



Table 8

Comparison of 8 and 16 kHz DNNs on the male part of the RedDots dataset. The second column shows the main features used for

verification and the third one shows the alignment method. MFCC features are always extracted from 16 kHz speech except for

the first line of the table, where 8 kHz speech is used.

DNN Imposter-Correct Target-Wrong

training

Features Align.

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

� MFCC-8 kHz GMM 2.75 0.1317 0.4326 3.77 0.1832 0.3917

MFCC-16 kHz GMM 2.07 0.0899 0.3105 3.76 0.1762 0.4275

8 kHz Switch board-1 MFCC DNN 1.67 0.0765 0.2786 1.54 0.0693 0.1978

MFCC BNA 2.41 0.0993 0.2672 2.35 0.0870 0.1775

BN GMM 4.91 0.2255 0.6681 0.50 0.0173 0.0562

MFCC+BN GMM 3.05 0.1385 0.5002 0.56 0.0226 0.0515

8 kHz Libri Speech MFCC DNN 1.73 0.0817 0.3287 1.76 0.0760 0.2099

MFCC BNA 2.47 0.0925 0.2790 2.47 0.0843 0.2398

BN GMM 5.59 0.2552 0.7215 0.46 0.0111 0.0157

MFCC+BN GMM 3.33 0.1565 0.5060 0.59 0.0232 0.0525

16 kHz Libri Speech MFCC DNN 1.64 0.0820 0.3098 1.76 0.0806 0.1843

MFCC BNA 2.31 0.0938 0.2750 2.50 0.0989 0.3179

BN GMM 5.15 0.2500 0.6790 0.37 0.0109 0.0164

MFCC+BN GMM 3.46 0.1446 0.5368 0.56 0.0189 0.0673

Table 7

Comparison of 8 and 16 kHz DNNs on Target-Wrong trials of the RSR2015 dataset. The second column shows the main features

used for verification and the third one shows the alignment method. MFCC features are always extracted from 16 kHz speech

except for the first line of the table, where 8 kHz speech is used.

DNN Male Female

training

Features Align.

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

� MFCC-8 kHz GMM 2.94 0.1861 0.8111 1.81 0.0965 0.4832

MFCC-16 kHz GMM 2.06 0.1301 0.6649 0.72 0.0468 0.3088

8 kHz Switch board-1 MFCC DNN 1.13 0.0806 0.5709 0.42 0.0284 0.2133

MFCC BNA 0.21 0.0106 0.0503 0.08 0.0044 0.0249

BN GMM 0.12 0.0073 0.0357 0.09 0.0046 0.0278

MFCC+BN GMM 0.08 0.0054 0.0330 0.07 0.0025 0.0236

8 kHz Libri Speech MFCC DNN 0.95 0.0620 0.4495 0.39 0.0249 0.1805

MFCC BNA 0.16 0.0095 0.0463 0.12 0.0039 0.0195

BN GMM 0.09 0.0060 0.0302 0.07 0.0026 0.0110

MFCC+BN GMM 0.05 0.0026 0.0155 0.03 0.0012 0.0030

16 kHz Libri Speech MFCC DNN 0.87 0.0584 0.4453 0.36 0.0221 0.1502

MFCC BNA 0.17 0.0101 0.0428 0.08 0.0034 0.0194

BN GMM 0.04 0.0029 0.0143 0.05 0.0017 0.0158

MFCC+BN GMM 0.04 0.0025 0.0157 0.02 0.0013 0.0135
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6.3. Influence of the number of senones

TaggedPTable 9 reports the results of different BN features extracted from different DNNs with varying numbers of

senones. In this part, we just report results for the male part of RSR2015 and RedDots using MFCC+BN features

and HMM-based method. From this table, it is clear that all DNNs perform similarly, especially for RSR2015. It

seems that the larger networks performs slightly better, but not significantly. These results are consistent with Tian

et al. (2015), where performances of different DNNs differed only slightly in text-independent speaker verification.

6.4. Fusion results

TaggedPTable 10 shows the results for different strategies of combining features and systems for RSR2015 dataset. The

DET curves for the best systems are shown in Figs. 1 and 2. Note that Table 10 repeats some of the results from



Table 10

RSR2015 results for feature and score domain fusion using different strategies. The methods in parenthesis show score

domain fusion of different alignment method using the same feature.

Male FemaleNT-TT Feature(Alignments)

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

Imp-Corr MFCC+BN(HMM) 0.20 0.0128 0.0901 0.25 0.0111 0.0655

MFCC(HMM), BN(HMM) 0.13 0.0070 0.0482 0.15 0.0050 0.0274

MFCC(BNA), BN(HMM) 0.13 0.0065 0.0497 0.13 0.0047 0.0253

MFCC(BNA, HMM) 0.23 0.0132 0.0658 0.22 0.0104 0.0729

MFCC+BN(GMM, HMM, BNA) 0.16 0.0095 0.0665 0.17 0.0077 0.0374

Tar-Wrg MFCC+BN(HMM) 0.05 0.0028 0.0338 0.06 0.0016 0.0067

MFCC(HMM), BN(HMM) 0.05 0.0022 0.0188 0.06 0.0013 0.0021

MFCC(BNA), BN(HMM) 0.03 0.0015 0.0073 0.03 0.0010 0.0013

MFCC(BNA, HMM) 0.11 0.0043 0.0143 0.09 0.0018 0.0037

MFCC+BN(GMM, HMM, BNA) 0.01 0.0009 0.0030 0.02 0.0005 0.0008

Table 9

Comparison of performance based on number of senones for the male part of both RSR2015 and RedDots datasets. MFCC+BN

features and HMM-based alignment were used for this experiment.

RSR2015 RedDotsSenones Non-target trial type

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

920 Imposter-Correct 0.26 0.0151 0.1021 2.96 0.1277 0.3882

Target-Wrong 0.08 0.0053 0.0227 0.40 0.0066 0.0114

3512 Imposter-Correct 0.23 0.0133 0.1091 3.58 0.1397 0.4024

Target-Wrong 0.06 0.0030 0.0159 0.37 0.0066 0.0083

6198 Imposter-Correct 0.21 0.0138 0.0896 3.21 0.1389 0.4455

Target-Wrong 0.04 0.0033 0.0185 0.34 0.0059 0.0142

9418 Imposter-Correct 0.20 0.0128 0.0901 3.40 0.1354 0.4305

Target-Wrong 0.05 0.0028 0.0338 0.40 0.0059 0.0065
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TaggedPTables 3 and 4 to facilitate the comparison. Table 11 reports fusion results for RedDots dataset. Note that for each

dataset, fusion strategies were selected based on the results on that dataset.

TaggedPThe first section of Table 10 contains Imposter-Correct condition results for score level fusion of systems with

individual MFCC, BN or MFCC+BN features and different alignment methods as well as feature-level fusion of

MFCC and BN features (i.e. MFCC+BN). In this work, we use the most trivial fusion: the scores from the individual

systems are simply averaged (with equal weight). Interestingly, the score level fusion is very effective and, contrary

to our experience from the text-independent task, it brings larger improvements than the concatenation of cepstral

and BN features (i.e. MFCC+BN). In Zeinali et al. (2016a), we concluded that the small amount of RSR2015 train-

ing data might not be sufficient to train the larger model based on the higher-dimensional concatenated features.

However, the score level fusion turns out to be more effective also for RedDots (see later), where we use much larger
Table 11

RedDots results for feature and score domain fusion using different strategies. The methods in parenthesis show score domain

fusion of different alignment method using the same feature.

Imposter-Correct Target-WrongFeature(Alignments)

EER [%] NDCFmin
old NDCFmin

new EER [%] NDCFmin
old NDCFmin

new

MFCC+BN(HMM) 3.40 0.1354 0.4305 0.40 0.0059 0.0065

MFCC(HMM), BN(HMM) 2.22 0.0988 0.3080 0.31 0.0065 0.0074

MFCC(HMM, DNN) 1.33 0.0595 0.1966 0.86 0.0340 0.0722

MFCC(HMM), MFCC+BN(HMM) 2.04 0.0775 0.2450 0.43 0.0081 0.0093

MFCC(DNN), BN(GMM) 2.11 0.0937 0.2746 0.49 0.0118 0.0127

MFCC(DNN), MFCC+BN(DNN) 1.69 0.0784 0.2697 0.60 0.0202 0.0309

MFCC+BN(HMM, DNN) 2.74 0.1172 0.3567 0.31 0.0066 0.0068

MFCC(HMM, DNN), MFCC+BN(HMM, DNN) 1.56 0.0625 0.1663 0.43 0.0078 0.0083
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TaggedPamount of training data. Clearly, the best results reported for RSR2015 Imposter-Correct condition are obtained with

a two-fold score level fusion of MFCC and BN based systems with two different alignment methods (i.e. BNA and

HMM).

TaggedPThe second section of Table 10 reports results of the same fused systems on Target-Wrong trials of RSR2015

dataset. Most of the conclusions drawn above are true here except that the best performance is for a three-fold fusion

of different alignment methods using MFCC+BN features.

TaggedPTable 11 shows the results of fusion strategies on RedDots dataset. As mentioned before, all the DNN related

methods (i.e. DNN alignment and BN features) behave differently on RedDots. So, we selected HMM and DNN

as the best alignment methods for fusion. The fusion of systems based on MFCC features and HMM and DNN

alignments performs the best for Imposter-Correct trials. Again, the score-domain fusion of MFCC and BN features

performs better than feature-domain fusion (compare the third and the first row). For Target-Wrong trials, all

systems that used BN features and HMM alignment perform very well.

7. Conclusions

TaggedPThis work verified that the successful DNN-based approaches to text-independent speaker recognition are very

effective for Imposter-Correct trials of the text-dependent task as well. Our baseline system is based on the previ-

ously proposed phrase-independent i-vector approach, where HMM-based phone recognizer serves as UBM for

collecting sufficient statistics (Zeinali et al., 2017). In the case of the baseline system, the statistics are to be collected

using forced-alignment based on the correct phrase transcription in order to obtain good performance for the

text-dependent task. On the other hand, similar or better verification performance is obtained with a DNN based

alignment, where no transcription is necessary. For Target-Wrong trials, HMM outperforms the DNN approach, due

to using the exact phrase transcription.

TaggedPFurthermore, excellent performance was obtained with DNN based bottleneck features, especially when

concatenated with the standard cepstral features for RSR2015 dataset. Our experiments support the hypothesis that a

GMM trained on bottleneck features results in a superior partitioning of the feature space into the phone-like clus-

ters: the standard i-vector based GMM-UBM provides performance similar to the phone transcription supervised

HMM-based method. Unfortunately, these features perform well just for RSR2015 dataset and their performance on

RedDots dataset is not so good for Imposter-Correct trials, while they perform very well for Target-Wrong trials of

this dataset. It seems that in the close phrase-set task (i.e. when test phrases are present in the training data) BN

features work better than in the open phrase-set task. Based on our experiments on RedDots dataset, in the presence

of BN features, the part of i-vector system that most affected by the open-set training is the i-vector extractor, while

the training data does not have much influence on the UBM. BNA is another alignment method that was investigated

in this paper. This method also performs very well on RSR2015 dataset, however, for RedDots its performance is

worse than other methods.

TaggedPOur experimental results show that the 8 kHz DNNs work similar to 16 kHz DNNs on text-dependent speaker

verification. The 16 kHz DNNs perform better on RSR2015 while their performance is a bit worse for RedDots data-

set. The performance gap between the 8 kHz BN and MFCC features is much higher than for the 16 kHz version. As

a future work, we plan more experiments on 16 kHz DNNs for improving their performance or finding a reason for

this behavior.

TaggedPBased on the experimental results, it seems that we need more efforts on the BN-based method, especially for

solving its weakness in the open phrase-set scenario. Although the DNN-based method in some cases outperformed

the HMM-based one, we believe that the HMM method reflects the very nature of the text-dependent task and we

should be able to improve its performance. Experimenting with triphone models to improve the context modeling

will be the first natural step of our future work.
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