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HMM-Based Phrase-Independent i-Vector Extractor
for Text-Dependent Speaker Verification

Hossein Zeinali, Hossein Sameti, and Lukáš Burget

Abstract—The low-dimensional i-vector representation of
speech segments is used in the state-of-the-art text-independent
speaker verification systems. However, i-vectors were deemed un-
suitable for the text-dependent task, where simpler and older
speaker recognition approaches were found more effective. In this
work, we propose a straightforward hidden Markov model (HMM)
based extension of the i-vector approach, which allows i-vectors to
be successfully applied to text-dependent speaker verification. In
our approach, the Universal Background Model (UBM) for train-
ing phrase-independent i-vector extractor is based on a set of mono-
phone HMMs instead of the standard Gaussian Mixture Model
(GMM). To compensate for the channel variability, we propose to
precondition i-vectors using a regularized variant of within-class
covariance normalization, which can be robustly estimated in a
phrase-dependent fashion on the small datasets available for the
text-dependent task. The verification scores are cosine similarities
between the i-vectors normalized using phrase-dependent s-norm.
The experimental results on RSR2015 and RedDots databases con-
firm the effectiveness of the proposed approach, especially in re-
jecting test utterances with a wrong phrase. A simple MFCC based
i-vector/HMM system performs competitively when compared to
very computationally expensive DNN-based approaches or the con-
ventional relevance MAP GMM-UBM, which does not allow for
compact speaker representations. To our knowledge, this paper
presents the best published results obtained with a single system
on both RSR2015 and RedDots dataset.

Index Terms—Bottleneck features, DNN, hidden Markov model
(HMM), i-vector, text-dependent speaker verification.

I. INTRODUCTION

S PEAKER verification field has experienced rapid devel-
opments during the last decade and large improvements

have been seen in terms of both computational complexity and
accuracy. Newly introduced channel-compensation techniques,
such as Joint Factor Analysis (JFA) [1], [2], have evolved in
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TABLE I
TRIAL TYPES IN TEXT-DEPENDENT SPEAKER VERIFICATION [8]

Target Speaker Imposter Speaker

Correct Pass-Phrase Target-Correct Imposter-Correct
Wrong Pass-Phrase Target-Wrong Imposter-Wrong

the i-vector paradigm [3], where each speech utterance is rep-
resented by a low-dimensional fixed-length vector. To verify
speaker identity, the similarity between i-vectors can be mea-
sured by simple cosine similarity or using a more elaborate
Bayesian model such as Probabilistic Linear Discriminant Anal-
ysis (PLDA) [4]–[6]. Fostered primarily by the NIST Speaker
Recognition Evaluation (SRE) campaigns, most of this research
has focused on the text-independent speaker verification task.

Recently, however, the demand for voice-based access control
applications has increased, reviving interest in text-dependent
speaker verification. Here the task is not only to verify the
speaker of the tested utterance, but also to check whether the
uttered phrase matches with the enrollment one (see Table I for
types of errors). These systems can be phrase-independent (the
user is given the freedom to enroll using any phrase of his choice)
and phrase-dependent (the phrase is specified by the system).
To complete the terminology, text-prompted speaker verification
denotes a case where the phrases are composed from a limited
predefined set of words.

Unfortunately, the modern techniques developed for text-
independent speaker recognition were initially found quite
ineffective for the text-dependent task — similar or better per-
formance was usually obtained using slight modifications of
simpler and older techniques such as Gaussian Mixture Model–
Universal Background Model (GMM-UBM) [7], [8] or Nui-
sance Attribute Projection (NAP) compensated GMM mean
super-vector scored using a Support Vector Machine (SVM)
classifier [9]–[11].

The reason for the ineffectiveness of the text-independent
techniques, and namely the i-vector approach, is the different
nature of the data used for the text-dependent task: enrollment
and test speech segments are typically very short, while the i-
vector technique requires relatively long utterances in order to
obtain reliable speaker representation. Large amounts of text-
independent data from thousands of speakers are usually used
for training the i-vector extractor, but it has been found difficult
to leverage such data for the text-dependent task. Instead, it looks
essential to train the text-dependent systems on a large amount
of matching data from a predefined set of possible phrases. How-
ever, only small datasets (a couple of hundreds of speakers) are
usually available for this purpose. Moreover, with a predefined
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set of phrases, the resulting system is not phrase-independent.
Therefore, Stafylakis et al. [12] deemed the low-dimensional i-
vector based representation as unsuitable for the text-dependent
task, except perhaps for very impractical scenarios, where abun-
dant data comprising only a limited number of possible phrases
are available for the UBM and i-vector extractor training.

In this work, we propose a straightforward extension of
the standard i-vector approach and we show that the low-
dimensional representation of utterances can be successfully
used in text-dependent speaker verification. Hidden Markov
Model (HMM) based UBM is used in our i-vector extraction
model in order to account for the left-to-right temporal structure
of phrases in the text-dependent task. HMM models are trained
for individual phonemes. For each enrollment or test utterance,
phoneme specific HMMs are concatenated into a phrase specific
HMM, which — instead of the conventional GMM-UBM
— is in turn used to collect sufficient statistics for i-vector
extraction. It should be noted that while there is a specific
HMM built for each phrase, there is only one set of Gaussian
components (Gaussians from all the HMM states of all phone
models) corresponding to a single phrase-independent i-vector
extraction model. The i-vector extractor is trained and used in
the usual way, except that it benefits from better alignment of
frames to Gaussian components which are constrained by the
HMM model.

To compensate for the channel variability, we propose to nor-
malize i-vectors using phrase-dependent Within-Class Covari-
ance Normalization (WCCN) [13] derived from within-class
covariance matrix regularized by adding a small constant to its
diagonal. Simple cosine similarity scoring followed by phrase-
and gender-dependent s-norm [6] score normalization was used
for our experiments. We will show that this approach provides
state-of-the-art performance on RSR2015 data [8].

Techniques making use of deep neural network (DNNs) have
been recently devised in order to improve text-independent
speaker verification: in one of the approaches, a DNN trained
for phone classification is used to partition the feature space
instead of the conventional GMM-UBM. In other words, DNN
outputs are used to define the alignment for collecting the suf-
ficient statistics for the i-vector extraction [14]–[17]. Another
DNN-based approach, successful in text-independent speaker
verification—as well as in other fields of speech process-
ing [18]–[22]—is to use DNN for extracting frame-by-frame
speech features. Typically, a bottleneck (BN) DNN is trained
for phone classification, where the features are taken from a
narrow hidden layer that compresses the relevant information
into low dimensional feature vectors [22], [23]. Such features
are then used as an input to the usual i-vector based system. In
our previous works [24]–[26], we have shown that similar ap-
proaches can be also successfully applied for the text-dependent
task.

The main objective of this paper is to describe and analyze
the basic ’tricks’ that are necessary to make i-vectors work for
text-dependent speaker verification. Therefore, we focus on the
simple configuration with mel-frequency cepstral coefficients
(MFCC) features and HMM based alignment. Nevertheless, in
order to make the story more complete, we also show how
the simpler i-vector/HMM method compares to and combines
with the aforementioned neural network approaches. For this
purpose, we present selected results corresponding to the best
performing DNN-based systems from our previous works [24],
[26].

To the best of our knowledge, this paper reports the best
published results obtained with individual systems on both
RSR2015 and RedDots dataset with and without using the DNN-
based techniques.

Let us now position our work within existing i-vector and
HMM approaches to text-dependent speaker recognition and
point out common points and changes.

To the best of our knowledge, the first successful attempt to
use i-vectors for text-dependent speaker recognition was done
by Stafylakis et al. [27] with a phrase-dependent PLDA. The
authors found that the biggest problem was the uncertainty of
i-vector estimation and tried to cope with it by considering the
i-vector, not only as a point estimate, but as a whole distribution.
Despite these efforts, the i-vector/PLDA system was only able
to match the performance obtained with a simple GMM-UBM
approach. Similar results were obtained by Larcher et al. [8] with
i-vectors applied on the RSR2015 database. In our approach, we
are coping with uncertainty by using an HMM instead of GMM.
By applying an HMM with a temporal structure, we actually
decrease the uncertainty of i-vector estimation (see section V-
B) and can successfully use only the i-vector point estimates as
obtained from a phrase-independent i-vector extractor.

In another branch of text-dependent speaker verification
research, Kenny et al. concentrated on the use of JFA in
place of the i-vector feature extractor1 (see [28] and [29]).
The JFA model decomposes utterance information into two
low-dimensional vectors: channel vector x, and speaker vector
y, and a high-dimensional residual vector z. While the authors
naturally discarded x, they found that y was not enough for
providing sufficient speaker recognition performance, probably
due to the fact that in this vector, the phrase information is
averaged out. To recover some of the information around the
phrase structure, which is important for the text-dependent
task, they had to also use z encoding of the information about
the occupation of Gaussian components. Unfortunately, z is
of high dimensions, and the UBM must be phrase-dependent
in order to achieve good performance. In our approach, we
target low-dimensional representations and ensure the phrase-
specificity by properly concatenating the HMMs representing
the phrase. There is still only one set of HMMs used for all
phrases resulting in the phrase-independent i-vector extractor.

HMMs have a long tradition of deployment in text-dependent
speaker recognition. In [30], Yu Kin et al. trained a separate
HMM model for each digit and each one was scored sepa-
rately. For creating speaker models, an HMM was trained from
scratch for each digit. At this epoch, elaborate scoring tech-
niques were still to be developed, so the system relied on simple
likelihood scores. In [31], Chi Che et al. proposed a phoneme-
based method: for each phoneme, an HMM model was created.
While enrolling a speaker, these phoneme models were rees-
timated (not adapted). At the test stage, a phrase model was
created by concatenating phoneme models and the score was
calculated using Viterbi forced alignment. In [32], Toledano
et al. first trained a phoneme recognizer using TIMIT. Speaker-
dependent phoneme models were then created with two meth-
ods: reestimation or MLLR adaptation. Similarly as in [31],
phrase models were created using concatenation. In [33], Dong
et al. first trained speaker-independent HMM models. Then, for
each speaker and phrase, first a phrase model was created using
concatenation of initial HMMs and this model was then adapted

1Note that the typical use of JFA is for scoring.
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to the speaker using maximum a posteriori (MAP) adaptation.
The authors initially used LLR scoring, but then investigated
stacking all HMM means to a super-vector and SVM scoring.
The super-vector is different for each phrase and cannot be used
in the phrase-independent mode.

Attempts have also been made to use new HMM like struc-
ture for text-dependent speaker verification. In the HiLAM ar-
chitecture defined by Larcher et al. [8], [34], a text-independent
GMM-UBM is trained first; then it is adapted to the target
speaker. In the final step, it is cloned into a sequence of HMM
states that are re-trained on the enrollment utterance. The split
of the utterance is either uniform or governed by used digits. In
contrast to this work, our approach is phonetically inspired, and
rather than doing coarse initial division of utterance, it respects
the content by the concatenation of appropriate phoneme mod-
els. We are also able to cope with any content (no limitation to
digits or other pre-set words).

Stafylakis et al. [35] focuses on text-prompted speaker ver-
ification, where the prompts are concatenated digits from
Part III of RSR2015 database. They define an HMM with a tied
mixture model with a codebook shared across digits. A UBM
trained on a sufficient amount of data from the Mixer corpus is
adapted to RSR, and mixture weights are trained for each digit.
The JFA model is used to provide y and z vectors for scoring,
similar to [28], [29]. In a recent paper, [12], the above authors
have generalized this scheme into a “multi-tier” structure allow-
ing for the extraction of y and z vectors from either the whole
utterance or individual HMM states. They investigate different
ways of concatenating these features or fusing their scores. In
our opinion, this work again does not come up with a compact
representation and we also find it unfortunate that it ignores
the phonetic structure of the pass-phrase which is generally
known.

Our previous work [36] targeted text-prompted speaker
verification as well. We investigated the HMM-based i-vector
approach, where one HMM and one corresponding i-vector
extractor were trained for each word (Farsi month names).
For each enrollment or test utterance, word specific HMMs
were concatenated into a phrase specific HMM, which —
instead of the conventional GMM-UBM — was in turn used
to collect sufficient statistics for i-vector extraction. Word-
specific i-vectors were extracted for each word from a given
phrase and the corresponding word-specific scores were fused
(averaged). In this paper, we are extending this approach to the
text-dependent task, where the HMMs are trained for individual
phonemes rather than words, and where a single i-vector is
extracted for a phrase given the phrase-independent i-vector
extractor.

The paper is organized as follows: Section II reviews
the classical i-vector based system for speaker verification.
Section III introduces our i-vector/HMM based method and
also deals with the necessary channel compensation. Section IV
details the experimental setups while Section V presents the
results and their analysis. We conclude in Section VI.

II. CONVENTIONAL I-VECTOR BASED SYSTEM

A. General i-Vector Extraction

Although thoroughly described in literature, let us review the
basics of i-vector extraction in order to facilitate the comparison
with the proposed techniques described in the following section.

The main principle is that the utterance-dependent super-vector
of concatenated GMM mean vectors s is modeled as

s = m + Tw, (1)

where m = [μ(1)T
, . . . ,μ(C )T

]T is the GMM-UBM mean

super-vector (of C components), T = [T(1)T
, . . . ,T(C )T

]T is a
low-rank matrix representing M bases spanning a subspace with
an important variability in the mean super-vector space, and w
is a latent variable of size M with standard normal distribution.

The i-vector φ is the MAP point estimate of the variable w. It
maps most of the relevant information from a variable-length ob-
servation X to a fixed-dimensional vector. The closed-form so-
lution for computing the i-vector can be expressed as a function
of the zero- and first-order statistics: nX = [N (1)

X , . . . , N
(C )
X ]T

and fX = [fX (1)T
, . . . , fX (C )T

]T :

N
(c)
X =

∑

t

γ
(c)
t (2)

f (c)
X =

∑

t

γ
(c)
t ot , (3)

where γ
(c)
t is the posterior (or occupation) probability of frame

ot being generated by the mixture component c. The tuple γt =
(γ(1)

t , . . . , γ
(C )
t ) is usually referred to as frame alignment. Note

that this variable can be computed either using the GMM-UBM
or by using a separate model [14], [22], [37]. In this paper, we
compare the standard GMM-UBM frame alignment with the
HMM-based approach, described in the following section. In
section V-F, we also experiment with the DNN based alignment,
where γ

(C )
t ) are taken from the output of DNN trained for

senone classification. The i-vector is the mean of the posterior
distribution of w computed as:

φX = L−1
X T̄T f̄X (4)

where LX is the precision matrix of the posterior distribution of
w computed as:

LX = I +
C∑

c=1

N
(c)
X T̄(c)T

T̄(c) , (5)

where c is the GMM-UBM component index, and the ‘bar’
symbols denote normalized variables:

f̄ (c)
X = Σ(c)− 1

2

(
f (c)
X − N

(c)
X μ(c)

)
(6)

T̄(c) = Σ(c)− 1
2 T(c) , (7)

where Σ(c)− 1
2 is the matrix square root (or a symmetrical de-

composition such as Cholesky decomposition) of an inverse of
the GMM-UBM covariance matrix Σ(c) . Note that the normal-
ization GMM-UBM (i.e., the μ(c) and Σ(c) parameters) should
be estimated via the same alignment as used in (2) and (3).

B. Scoring and Channel Compensation

Modeling or reducing channel effects (or, more generally,
intra-speaker variability) is crucial for the good performance of
any speaker verification system. For the text-independent task,
the most successful model for comparing i-vector is PLDA,
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where both within and between-speaker variability in the i-
vector space is explicitly modeled. However, it has been shown
in [27] that PLDA is not very effective in the case of text-
dependent scenario. Therefore, we use the simple cosine sim-
ilarity scoring, where the speaker verification score for a trial
with enrollment i-vector φe and test i-vector φt is obtained as
the cosine similarity between the i-vectors

se,t =
φT

e φt

‖φe‖‖φt‖
. (8)

As is usual in the case of cosine similarity scoring, we pre-
condition i-vectors using WCCN in order to compensate for
the channel variability. More precisely, i-vector distribution is
whitened by multiplying each i-vector using transformation ma-

trix S− 1
2

w , which is the inverse of the square root (or a symmet-
rical decomposition) of the within-class covariance matrix

Sw =
1
S

S∑

s=1

1
Ns

Ns∑

n=1

(ws
n − ws)(ws

n − ws)T , (9)

with S being the total number of speakers (i.e., classes), Ns the
number of training samples for speaker s, wn

s the nth training
i-vector from speaker s and ws = 1

Ns

∑Ns

n=1 wn
s the mean of

the training i-vectors for speaker s.
Before the WCCN, we optionally apply Linear Discriminant

Analysis (LDA) trained with the speaker labels as classes in
order to preserve only the dimensions with high between speaker
variability. Note that LDA and WCCN transformation needs to
be estimated in a phrase-dependent fashion (i.e., only on training
data of matching phrases) in order to obtain satisfactory results.

When measuring distances between i-vectors in speaker ver-
ification, it was found to be more important to compare the an-
gles between i-vector rather than the Euclidean distances. This is
also the reason for using the cosine similarity for scoring. When
PLDA is used for scoring in text-independent speaker verifi-
cation, i-vectors are usually normalized to unity length [38]
for similar reasons. Such length normalization makes the re-
sulting distribution of i-vectors more Gaussian-like and places
i-vectors with a small angular distance close to each other.
Although, the length normalization is implicit for calculating
the cosine similarity (i.e., it is a dot product of two length nor-
malized vectors), we still found it useful to explicitly normalize
i-vectors before estimating or applying WCCN or LDA transfor-
mation. In summary, in order to produce the verification score
for a pair of i-vectors, we first normalize the i-vectors to unity
length, optionally apply LDA dimensionality reduction, apply
WCCN preconditioning and calculate the cosine distance simi-
larity score. Finally, we normalize the score as described in the
next section.

In the official RSR2015, Part-1 experimental setup, each
speaker enrollment (model definition) consists of three enroll-
ment utterances of the same phrase. In order to obtain only one
i-vector (speaker model) per enrollment, we simply average the
three i-vectors extracted from each utterance.

C. Score Normalization

Various score normalization methods are used in speaker ver-
ification. In our work, phrase- and gender-dependent s-norm [6]
was experimentally found to perform the best. Normalized

verification score is defined as

s̃e,t =
se,t − μe,p

σe,p
+

se,t − μp,t

σp,t
, (10)

where se,t is the unnormalized verification score (8) and μs,p

and σs,p represent the mean and standard deviation of scores
obtained by scoring the enrollment i-vector φe against a cohort
set of imposter i-vectors. Similarly, μp,t and σp,t are obtained
from scoring the test i-vector φt against the i-vector cohort.2

III. PROPOSED I-VECTOR/HMM METHOD

A. HMMs in Text-Dependent i-Vector Systems

In Section I, we discussed the advantages of the i-
vector/HMM approach to text-dependent speaker verification.
This section presents its details. The first step is to train a
phoneme recognizer with 3-state, GMM-based, left-to-right
mono-phone HMMs: let F be the total number of mono-phones,
S = 3F the number of all states, G the number of Gaussian com-
ponents per state, C = SG the number of all individual Gaus-
sians and let (s, g) denote gth Gaussian component in state
s. Then, for each phrase (based on the transcribed sequence
of phonemes in that phrase), a new phrase-specific HMM is
constructed by concatenating the corresponding mono-phone
HMMs. This step is shown at the top of Fig. 1.

For extracting zero- and first-order statistics, the Viterbi algo-
rithm is used to obtain the alignment of frames to the states of the
phrase-specific HMM. Since the Viterbi algorithm provides hard
alignment, each frame t is aligned to exactly one HMM state s.
Within the HMM state s, soft alignment γ

(s,g)
t is calculated as

the posterior (or occupation) probability of Gaussian component
g. Note that the same phone can occur in a given phrase mul-
tiple times. Therefore, the concatenated phrase-specific HMM
can contain multiple replicas of the same phone specific HMM.
For example, Fig. 1 shows a phrase HMM with two copies
of phoneme “G”. To collect the sufficient statistics, however,
we consider only a single HMM per phone, and all the frames
aligned to different replicas of a phone are, in fact, aligned with
the states of the same phone HMM. For example, in Fig. 1, the
first and seventh states of the phrase model correspond to the first
HMM state of phone “G”. Therefore, all frames aligned by the
Viterbi algorithm to those two phrase-specific states are, in fact,
aligned to the first HMM state of phone “G”. A similar strat-
egy is used to accumulate statistics in the standard “embedded”
HMM training.

We can now re-interpret the pair (s, g) as one out of C Gaus-
sians and we can substitute γ

(c)
t in (2) and (3) by γ

(s,g)
t , so that

the zero- and first-order statistics can be written as:

nX =
[
N

(1,1)
X , . . . , N

(s,g)
X , . . . , N

(S,G)
X

]T

fX =
[
f (1,1)
X

T
, . . . , f (s,g)

X
T
, . . . , f (S,G)

X
T
]T

,

2To be more precise, when estimating μp ,t and σp ,t , each i-vector (non-target
speaker model) in the cohort is estimated on three utterances in the same manner
as the enrollment i-vector as described in Section II-B.
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Fig. 1. The process of estimating sufficient statistics: In the top, the left-to-right phrase-specific model is shown. Each state is considered as a small GMM
model. The vector in the bottom shows one of the zero or first order statistic vectors. Here, each cell shows a part of the statistics associated with state s of one of
the phone HMM. Obviously, in this modeling, only the value of the subparts of this vector that are connected to the states of the phrase model will accumulate
non-zero values.

where,

N
(s,g)
X =

∑

t

γ
(s,g)
t (11)

f (s,g)
X =

∑

t

γ
(s,g)
t xt , (12)

Note that the resulting vector of statistics has a fixed size and is
structure independent of the actual phrase (as also demonstrated
in Fig. 1), which can be used to train the phrase-independent
i-vector extractor. Note also that in (11) and (12), due to the
typically short duration of phrases, not all phonemes are used in
the phrase-specific HMM. Therefore, the alignment of frames to
the Gaussian components is often sparse and most of the γ

(s,g)
t

values are zero.
Equations (5) to (7) can now be changed to use the HMM

alignment γ
(s,g)
t :

LX = I +
S∑

s=1

G∑

g=1

N
(s,g)
X T̄(s,g)T

T̄(s,g) (13)

f̄ (s,g)
X = Σ(s,g)− 1

2

(
f (s,g)
X − N

(s,g)
X μ(s,g)

)
(14)

T̄(s,g) = Σ(s,g)− 1
2 T(s,g) . (15)

B. Regularized WCCN

For reducing channel effects, we can simply use LDA to
reduce the dimensionality of i-vectors as explained in Section
II-B. However, the number of available speakers (classes) to
estimate this transformation is usually low in text-dependent
speaker verification (around 100-200 in RSR2015) and LDA
reduces i-vectors dimensionality to an utmost number of
classes minus one. Such dimensionality reduction causes losing
important information as demonstrated in our experiments.
Therefore, we decided to use WCCN instead of LDA, which
is able to preserve all dimensions. Still we need to deal with
a relatively small amount of training data in RSR2015 dataset,
preventing us from robustly estimating WCCN transformation
in a straightforward way.

In [39], the authors proposed to add a fraction of the total
covariance matrix to the covariance matrix of each class in
order to obtain a more robust estimate of LDA transformation.
Inspired by this work, we use Regularized WCCN (RWCCN),
which is based on the regularized estimation of the within-class
covariance matrix. Since the prior distribution of i-vectors is
assumed to be normal with an identity covariance matrix, we add
a fraction of the identity matrix (instead of the total covariance
matrix) to the within-class covariance matrix estimate. In other

words, instead of (9), we estimate the regularized within-class
covariance matrix

Sw = αI +
1
S

S∑

s=1

1
Ns

Ns∑

n=1

(ws
n − ws)(ws

n − ws)T ), (16)

where, I is the identity matrix and α is regularization coeffi-
cient, which must be determined on the development set. Other
notations are identical to the ones used in (9). Note again that
i-vectors are length-normalized prior to estimating or applying
LDA, WCCN or RWCCN.

C. HMM Alignment for Enrollment and Test Utterances

In our experiments, we assume that the pass-phrase transcrip-
tions are known for the enrollment utterances. This allows us
to construct the phrase-specific HMM and obtain the Viterbi
alignment for extraction of the zero- and first-order statistics. In
order to correctly accept a test utterance, it also has to contain
the same enrollment pass-phrase. Therefore, to extract the zero-
and first-order statistics for the test utterance, we also use the
same phrase-specific HMM (i.e., Viterbi alignment is obtained
using the same enrollment pass-phrase). If the test utterance
really contains the correct phrase, we obtain good frame align-
ment and the extracted test i-vector is appropriate for scoring.
On the other hand, if the speaker uttered a wrong phrase instead
of the pass-phrase (Target-Wrong and Imposter-Wrong trials in
Table I), frames are aligned to the wrong states (i.e., Gaussians)
of the phrase-specific model and the extracted statistics become
incorrect. In the results, we will see that such trials were easily
rejected by our i-vector/HMM technique. On the other hand, if
GMM was used instead of HMM, such trials may be accepted
due to common phonemes between two utterances.

IV. EXPERIMENTAL SETUPS

A. Data

We used the RSR2015 data set [8] for most of our experi-
ments. It consists of recordings from 300 speakers (157 males
and 143 females), each in 9 sessions. The data is divided into
three sets (background, development and evaluation). It was also
divided into three parts based on different lexical constraints.
Part-1 is used for text-dependent speaker verification, where en-
rollment and test utterances contains one of the 10 predefined
phrases. Part-2 is suitable for command controls and verification
speakers with short commands. Part-3 focuses on text-prompted
speaker verification where speakers are prompted to say a ran-
dom sequence of predefined words (English digits). In this paper,
we focus on text-dependent speaker verification, so we only use
Part-1. In this part, each speaker uttered 30 different phrases
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from TIMIT in 9 sessions. For each phrase, three repetitions
from different sessions were used to enroll a single i-vector as
a speaker model (see section II-B) and other phrases were used
for testing in accordance with the RSR2015 trial definition.

In all experiments, the RSR2015 background set was used
for UBM (including the phoneme recognizer and GMM)
and i-vector extractor training. The evaluation set was used
for testing (except where indicated otherwise). Training was
done in a gender-independent manner (except where indicated
otherwise). We used all speakers from the background set
for gender independent RWCCN and gender-dependent score
normalization (except where stated otherwise). Based on our
experimental results, we decided to use phrase-dependent
RWCCN and score normalization in all experiments (except
where stated otherwise). RWCCN and/or s-norm estimated in a
phrase-independent manner actually degrades the performance
compared to not applying any WCCN or s-norm as was also
demonstrated in the experiments from section V-H. This is
consistent with the phrase-dependent PLDA proposed in [27].
The RSR2015 development set was only used to tune the
RWCCN regularization parameter α unless stated otherwise.

We used a part of freely available LibriSpeech data (i.e.,
Train-Clean-100) [40], with 251 speakers and about 100 hours
of speech. In this dataset, each speaker reads several books
and each recording was split into short segments ranging from
one to several sentences. For each segment, there is a word-
level transcription. This dataset was used in two experiments
investigating the effects of heterogeneous, text-independent data
for UBM and i-vector extractor training and also for RWCCN
and score normalization.

In order to verify our approach on different data, we also
used the RedDots data set [41] in several experiments. RedDots
contains 62 speakers (49 males and 13 females). 41 speakers
are the target speakers (35 males and 6 females) and the other
ones are considered as unseen imposters. RedDots consists of
four parts; in our work, we used only Part-01. In this part, each
speaker uttered 10 common phrases. The definition of RedDots
trials distinguishes three types of incorrect trials (see Table I),
so we report results for each type separately. The RedDots eval-
uation data comes without any development set, which would
contain recordings of the same phrases as used for enrollment
and testing. Therefore, RSR2015 and LibriSpeech were used as
training data in RedDots experiments .

The DNN for the experiments with DNN-based alignment
and BN features were trained on the Switchboard-1 (Phase-1
Release 2). Note that while 16 kHz speech data is used in our
text-dependent speaker recognition experiments, the DNNs are
trained only on 8 kHz telephone speech. Therefore, whenever
processing speech by DNNs, it is first downsampled to 8 kHz.
See [26] for text-dependent speaker recognition experiments
comparing DNNs trained on 8 kHz and 16 kHz speech.

The number of speakers in RSR2015, LibriSpeech and Red-
Dots data sets are shown in Table II. Note that we use exactly the
same training and test sets as [29], where some of the trials of
very short duration and low signal to noise ratios were removed
from the original RSR2015 setup [8].3 Therefore, our results
should be directly comparable with the best results reported in
[29, Table 6]. We also use the same HTK-based MFCC features
as in [29]. However, we use our own voice activity detection

3We thank the authors of [29] for sharing their enrollment and trial lists.

TABLE II
DATASETS, PARTS AND NUMBERS OF SPEAKERS [8], [40], [41]

Dataset Subset # Males # Females

RSR2015 Background 50 47
Development 50 47

Evaluation 57 49
LibriSpeech Train-Clean-100 126 125
RedDots Part-01 49 13

TABLE III
NUMBERS OF EVALUATION TRIALS IN PART-1 OF RSR2015 AFTER REMOVING

UTTERANCES AS IN [12], [27], [29]

Trial Type Male Female

Target-Correct 9670 8670
Target-Wrong 297076 255143
Imposter-Correct 541301 416166
Imposter-Wrong 8318132 6123417

(VAD) different from [29]. The number of evaluation trials for
each trial type is listed in Table III.

B. Features

Different types of features were used. The 60-dimensional
MFCCs were selected as the primary features, which are used for
most of the experiments. In addition, several experiments were
carried out using 60-dimensional PLPs and 39-dimensional
MFCCs and PLPs. All features were extracted from 25 ms Ham-
ming windowed signals with 15 ms overlaps using HTK [42].
Contrary to text-independent systems, simple VAD could not be
used, as VAD errors would harm the Viterbi alignment. There-
fore, we used a silence HMM model to model silences at the
beginning and end of each utterance. The frames aligned to this
silence model are dropped (i.e., not used in the following estima-
tion of statistics and i-vector extraction). We assumed that there
is no silence in the middle of utterances; this is a plausible as-
sumption as the utterances are very short.4 Finally, cepstral mean
and variance normalization was applied to trimmed utterances.

Beside the cepstral features, 80-dimensional BN features are
used in our experiments. The bottleneck neural network refers to
DNN with a specific topology, where one of the hidden layers
has a significantly lower dimensionality than the surrounding
layers. A bottleneck feature vector is generally understood as a
by-product of forwarding a primary input feature vector through
the DNN, while reading the vector of values at the output of
the bottleneck layer. In this work, we use more elaborate ar-
chitecture for BN features called Stacked Bottleneck Features
described in detail in [22], [43]. With this architecture, each
output feature vector is effectively extracted from 30 frames
(300 ms) of the input features in the context around the current
frame. We have used this architecture as it proved to be very
effective in our previous text-independent speaker recognition
experiments [22]. However, our more recent experiments indi-
cate that similar results can be obtained with simpler BN neural

4Only a slight improvement was obtained when properly modeling phrases
with an optional silence after each word. Therefore, we decided to report results
with the simpler model dropping only initial and final silence regions.
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networks. The BN DNNs are trained to classify 8802 triphone
tied states (senones).

C. Models for i-Vector Extraction

We modeled each phoneme by an HMM with 3 states and 8
Gaussian components per state. The total number of phonemes
is 39 and the total number of Gaussian components in the whole
model is 3 × 8 × 39 = 936. The frames aligned to the extra
model for silence (see above) were dropped. To compare the pro-
posed method with the classical GMM-UBM, we used a GMM
with 1024 components. We used 400-dimensional i-vectors un-
less stated otherwise.

The RWCCN regularization coefficients α from (16) was
tuned for the best performance on the development set of
RSR2015, as this data was not used for training of any other
parameter in our systems. The best value for α was found to be
0.001.

For the experiment with DNN-based alignment, we use the
same DNN architecture as for the BN feature extraction de-
scribed in the previous section. In this case, however, the DNN
is trained to classify 1011 senones and the outputs of the DNN
(i.e., the senone posteriors) are used as γ

(c)
t in (2) and (3)).

V. RESULTS

In all experiments, if we use a different configuration from
the one mentioned in earlier sections, we explicitly mention
it. We report results in terms of Equal Error Rate (EER)
and Normalized Detection Cost Function as defined for NIST
SRE08 (NDCFmin

old ) and NIST SRE10 (NDCFmin
new ). In all DET

curves, the square and star markers correspond to NDCFmin
old and

NDCFmin
new operating points, respectively.

A. Features

Different features and their dimensionalities were investi-
gated with the i-vector/HMM based method. We just compare
the two most common features (MFCC and PLP) here and show
the performance of their score fusion.

From the first section of Table IV, it can be seen that there
is no remarkable performance difference between the different
features. The 39 dimensional features work a little better for
females, while there is no general rule for males. Interestingly,
as can be seen from the second section of the table (and Fig. 2),
large improvements in performance can be obtained from the
simple score level fusion of two systems trained on different fea-
tures. These results are consistent with our results on other text-
dependent datasets. The combination of 60- and 39-dimensional
features has better performance than other combinations. Based
on these results, we select MFCC60 as the primary features for
other experiments.

B. Comparison of GMM and HMM Alignment Methods

In this section, we compare the i-vector/HMMs with the
standard i-vector/GMMs. Table V shows the results and Figs. 3
and 4 present the DET curves for males and females, respec-
tively. The score-domain fusion of both techniques is reported
as well. In order to compare the proposed HMM-based method
with GMM, we report the results separately for three conditions,
each considering only one of the three types of non-target trials
from Table I. Target trials are the same for all three conditions.

Fig. 2. DET curves of two different features and their score domain fusion
for Imposter-Correct as non-target trials of females. From the worst plot to the
best: 1) MFCC60, 2) PLP39, 3) Score domain fusion.

Fig. 3. DET curves of the proposed i-vector/HMM, standard i-vector/GMM
and their score domain fusion for Imposter-Correct as non-target trials of males.
From the worst plot to the best: 1) GMM, 2) HMM, 3) Score domain fusion.

For the Imposter-Correct trials, the proposed method re-
duced the error in all criteria and for both genders too. HMM
outperforms GMM due to better frame alignment to Gaus-
sian components — in the proposed method, the Viterbi align-
ment aligns many consecutive frames to the same HMM state
and the posterior probabilities of all such frames are forced
to be non-zero for only a few Gaussian components. Com-
pared to GMM, this leads to a more restricted and sparser
assignment of frames to the Gaussian components. Conse-
quently, for HMM, the entropy of the frame posteriors is
lower, and, as mentioned in the Introduction, this reduces the
uncertainty of i-vector for short utterances (the trace of the
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH DIFFERENT FEATURES AND THEIR SCORE DOMAIN FUSION

FOR IMPOSTER-CORRECT AS NON-TARGET TRIALS

Male Female

Features EER [%] NDCFm in
o ld NDCFm in

n e w EER [%] NDCFm in
o ld NDCFm in

n e w

Single System

MFCC39 0.40 0.0212 0.1087 0.40 0.0197 0.1200
MFCC60 0.37 0.0204 0.1142 0.49 0.0275 0.1533

PLP39 0.41 0.0217 0.1103 0.42 0.0207 0.1029
PLP60 0.52 0.0232 0.1023 0.44 0.0238 0.1300

Score Fusion

MFCC39, PLP39 0.31 0.0152 0.0874 0.27 0.0148 0.0731
MFCC60, PLP60 0.32 0.0157 0.0782 0.33 0.0190 0.1107
MFCC39, PLP60 0.29 0.0142 0.0619 0.24 0.0127 0.0773
MFCC60, PLP39 0.25 0.0123 0.0712 0.27 0.0139 0.0721

RWCCN and s-norm were used. Numbers concatenated to each feature show dimensionality of them.

TABLE V
COMPARISON OF GMM AND HMM ALIGNMENT METHODS AND THEIR SCORE DOMAIN FUSION (THIRD SECTION) FOR THREE NON-TARGET TRIAL TYPES

Male Female

Method Non-Target Trial Type EER [%] NDCFm in
o ld NDCFm in

n e w EER [%] NDCFm in
o ld NDCFm in

n e w

i-vector/GMM
Imposter-Correct 0.67 0.0382 0.1983 0.62 0.0355 0.1991

Target-Wrong 2.25 0.1461 0.7036 0.72 0.0483 0.3704
Imposter-Wrong 0.10 0.0060 0.0507 0.03 0.0020 0.0129

i-vector/HMM
Imposter-Correct 0.37 0.0204 0.1142 0.49 0.0275 0.1533

Target-Wrong 0.30 0.0162 0.1111 0.13 0.0072 0.0620
Imposter-Wrong 0.03 0.0013 0.0088 0.06 0.0011 0.0045

i-vector/GMM + i-vector/HMM

Imposter-Correct 0.35 0.0170 0.1080 0.32 0.0184 0.1108
Target-Wrong 0.54 0.0318 0.1887 0.13 0.0076 0.0892

Imposter-Wrong 0.01 0.0008 0.0082 0.02 0.0006 0.0015

The total number of Gaussian components are 1024 and 936 for GMM and HMM respectively. RWCCN and s-norm were used for all experiments.

Fig. 4. DET curves of the proposed i-vector/HMM, standard i-vector/GMM
and their score domain fusion for Imposter-Correct as non-target trials of fe-
males. From the worst plot to the best: 1) GMM, 2) HMM, 3) Score domain
fusion.

covariance matrix (5) is reduced from 67 to 51). Score dis-
tributions in Fig. 5 give us another insight into the perfor-
mance for this trial type: the overlap between Target-Correct

Fig. 5. Comparison of score distributions of GMM and HMM for females.
The vertical lines show the means of normal distributions fitted to the scores.
In each figure, plots from the left are for Imp-Wrg, Tar-Wrg, Imp-Corr and
Tar-Corr respectively.

and Imposter-Correct distributions for HMM is lower than
for GMM.

One of the main advantages of the proposed method is its
ability to reject Target-Wrong trials. In a practical application,
the text-dependent speaker verification system must be able to
reject this type of trial in order to prevent the replay attacks. In
the proposed method, Viterbi forced alignment must respect the
pass-phrase transcription and as a result aligns the frames from
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Fig. 6. EER versus i-vectors dimensionality for Imposter-Correct as non-
target trials. The line with hexagram marker shows male and line with penta-
gram marker shows female. The trends for NDCFm in

old and NDCFm in
new are very

similar.

a wrong phrase to wrong HMM states. This results in incoherent
zero- and first-order statistics. An i-vector extracted from these
statistics has a large distance to the enrollment one and is there-
fore rejected easily. On the contrary, the GMM-based system has
no control over the order of frames, therefore, for this method,
this type of trial is more difficult and more often accepted. Our
method reduced the average error in this trial type by more than
84%. Fig. 5 clearly shows that for the proposed method, the
distance between Target-Correct and Target-Wrong scores dis-
tributions is bigger than for GMM; therefore, the rejection of
the Target-Wrong trials is easier.

For Imposter-Wrong trials, better results are obtained with the
HMM-based method in almost all cases. However, both GMM
and HHM produce only a few errors and the differences between
their performance is not statistically significant when evaluated
on the small RSR2015 data set.

Note that the GMM-based i-vectors are able to discrimi-
nate between phrases (and therefore to reject wrong phrases)
only thanks to the short phrases in the RSR2015 data set. For
longer and phonetically rich phrases, information about the
phonetic content of the utterances tends to average out in the
i-vector/GMM representation. In contrast, the i-vector/HMM
method does not suffer from this problem. Therefore, in terms
of rejecting the wrong phrases, we expect an even larger perfor-
mance gap between the HMM and GMM based techniques for
longer phrases.

These experiments show that the performance of the pro-
posed method is consistently better than the GMM-based one,
even though the HMM-based system has a slightly smaller num-
ber of parameters (936 vs. 1024 Gaussian components). The
fusion of both GMM- and HMM-based methods worked as
expected: for Imposter-Correct and Imposter-Wrong trials, the
performance of the fusion system improved, while for Target-
Wrong it degraded (especially for males) because of the much
worse performance of the GMM-based subsystem.

C. The Effects of the i-Vector Dimensionality

The aim of these experiments is to show the effect of i-
vector dimensionality on the performance of the proposed i-
vector/HMM method. In this part, the RWCCN and s-norm
were used in all experiments.

From Fig. 6, it is clear that the performance of the proposed
method is improved by increasing the i-vector dimension for
both genders. The best results come from i-vector with 1200

Fig. 7. DET curves of different preconditioning transformations for Imposter-
Correct as non-target trials of males. From the worst plot to the best: 1) Simple
LDA, 2) Simple WCCN, 3) No Preconditioning and No s-norm, 4) No Precon-
ditioning, 5) Regularized WCCN.

dimensions. The reduction in all criteria (EER, NDCFmin
old and

NDCFmin
new ) decreases while increasing the i-vector dimension-

ality and most of them saturate after 1200 dimensions. Based
on the computation constraints, we selected 400 dimensional
i-vectors for other experiments. Note that the performance im-
proves with the increasing i-vector dimensionality, especially
for females, and while the performance for males is quite
better compared to females for low dimensional i-vector, the
trend reverses for higher dimensional i-vectors.

D. Regularized WCCN vs. Simple LDA, WCCN and PLDA

In Section III-B, we explained that we cannot robustly esti-
mate LDA and WCCN with the limited amount of training data
available for the text-dependent speaker verification task. In or-
der to prove it experimentally, we compare the performance
of LDA, WCCN and RWCCN in the first half of Table VI
and in Figs. 7 and 8. We also present the results without any
preconditioning (i.e., without LDA, WCCN or RWCCN). The
results indicate that using simple LDA and WCCN lead to a big
degradation in performance. Especially with LDA dimension-
ality reduction, where the i-vector dimensionality is reduced
from 400 to the number of speakers minus one, it seems that
lots of the important information is lost. This is in contrast
with the text-independent task where LDA with dimensional-
ity reduction is often beneficial [3], [44]. Comparison of sim-
ple WCCN and RWCCN shows the advantage of using the
regularization in within-class covariance estimation. However,
when the preconditioning transformation is estimated only on
the small RSR2015 background set, RWCCN is effective only
for males. For females, the same (or slightly better) performance
can be obtained without any preconditioning. By default, s-norm
is applied in all experiments. For completeness, we also present
results for no preconditioning and no score normalization in the
first line of Table VI showing that the application of s-norm is
an important step.
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT PRECONDITIONING TRANSFORMATIONS WITH THE PROPOSED I-VECTOR/HMM METHOD

FOR IMPOSTER-CORRECT AS NON-TARGET TRIALS

Male Female

Training Data Method EER [%] NDCFm in
o ld NDCFm in

n e w EER [%] NDCFm in
o ld NDCFm in

n e w

No Precond., No s-norm 0.78 0.0413 0.1925 1.07 0.0497 0.2060

Background (97 speakers)

No Preconditioning 0.49 0.0257 0.1233 0.47 0.0248 0.1284
Simple LDA 1.65 0.0925 0.4886 2.24 0.1537 0.6574

Simple WCCN 0.92 0.0515 0.2357 1.34 0.0844 0.4022
Regularized WCCN 0.37 0.0204 0.1142 0.49 0.0275 0.1533

PLDA 1.92 0.1106 0.4426 1.91 0.1010 0.4653

Background, Development (194 speakers)

No Preconditioning 0.48 0.0251 0.1047 0.39 0.0179 0.1041
Simple LDA 0.52 0.0293 0.2036 0.47 0.0324 0.2492

Simple WCCN 0.40 0.0211 0.1061 0.29 0.0173 0.0837
Regularized WCCN 0.29 0.0162 0.0894 0.28 0.0141 0.0746

PLDA 1.39 0.0762 0.3448 1.36 0.0759 0.3584

For LDA, the dimensionality after transformation is the number of speakers minus one. Only the background part of RSR2015 is used to train UBM and i-vector extractor in
all these experiments.

Fig. 8. DET curves of different preconditioning transformations for Imposter-
Correct as non-target trials of females. From the worst plot to the best: 1) Simple
LDA, 2) Simple WCCN, 3) No Preconditioning and No s-norm, 4) Regularized
WCCN, 5) No Preconditioning.

For comparison, we also include results where PLDA is used
for scoring rather than the default cosine distance. In this case,
no preconditioning is used and PLDA is trained on the training
data instead. No score normalization is used for PLDA as it was
found to only degrade the performance. As can be seen, PLDA
performs significantly worse compared to any of the cosine
distance based systems.

To demonstrate the effects of increasing the number of train-
ing speakers, we also include experiments where the RSR2015
development set is added to the training data for the estimation
of preconditioning transformations and score normalization (see
the second half of Table VI). This roughly doubles the amount of
such training data. We can see significant improvements for all
the results where any preconditioning transformation is applied
(especially for females) as the transformations can be more
robustly estimated. We still benefit from the regularization in

RWCCN estimation. However, the improvements compared to
simple WCCN are less pronounced for the larger training set
as expected. The results with no preconditioning indicate that
s-norm does not significantly benefit from the increased size of
the cohort set. This is also expected as only a few parameters
(two means and two standard deviations) need to be estimated
on the cohort set for each trial.

E. Comparison With Other State-of-the-Art Techniques

To the best of our knowledge, the best results on the RSR2015,
Part-1 published prior to our work on i-vector/HMM are reported
in [29], where JFA is used to extract the i-vector-like fixed-
length representations of utterances. In Table VII, the line z-
vectors/JFA shows the results for their best system (best average
results for both genders from [29, Table 6]), which uses the high-
dimensional residual vector z as the speaker representation, the
cosine similarity for scoring and s-norm for score normaliza-
tion. As described in section IV-A, we use the experimental
setup from [29] for all our experiments, unless otherwise stated.
Therefore, our results should be directly comparable with those
from [29]. As can be seen from Table VII, our i-vector/HMM
systems are clearly superior to the z-vectors/JFA system espe-
cially for female trials. The relative improvements obtained with
the 1200 dimensional i-vector/HMM system are 50% and 67%
on EER and 61% and 67% on NDCFold for males and females,
respectively. Meanwhile, the i-vector/HMM system is simpler as
it does not need any adaptation to the phrase, speaker and chan-
nel as required for the JFA system. The dimension of our i-vector
is much lower than for the z vector (1200 vs. 30720). Since both
methods use cosine similarity for scoring, ours is approximately
25 times faster and memory efficient at the scoring stage.

We also compare the i-vector/HMM approach to another
two simpler and more conventional baseline methods: the line
in Table VII denoted as Rel. MAP/GMM corresponds to the
traditional approach based on Relevance MAP adaptation of
GMM-UBM (1024 components) and log-likelihood ratio scor-
ing [45], which is still the standard approach to text-dependent
speaker recognition. In the case of Rel. MAP/HMM, the same
phone-based phrase specific HMMs are used to obtain align-
ment of frames to Gaussian components as in the case of
the i-vector/HMM system. However, the same relevance MAP
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TABLE VII
COMPARISON OF THE PROPOSED METHOD WITH THE BEST RESULTS PUBLISHED ON RSR2015 PART-1 [29] AND TWO RELEVANCE

MAP BASED SYSTEMS FOR IMPOSTER-CORRECT AS NON-TARGET TRIALS

Male Female

Method EER [%] NDCFm in
o ld NDCFm in

n e w EER [%] NDCFm in
o ld NDCFm in

n e w

z-vector/JFA[29] 0.44 0.028 – 0.61 0.027 –
Rel. MAP/GMM 0.40 0.020 0.106 0.15 0.008 0.035
Rel. MAP/HMM 0.23 0.014 0.073 0.12 0.006 0.022
i-vector/HMM(400) 0.37 0.020 0.114 0.49 0.028 0.153
i-vector/HMM(1200) 0.22 0.011 0.075 0.20 0.009 0.033
Rel. MAP/HMM, i-vector/HMM(1200) 0.14 0.009 0.057 0.12 0.006 0.018

The last row shows score-level fusion of Rel. MAP/HMM and i-vector/HMM.

adaptation and log-likelihood ratio scoring is used as in the
case of Rel. MAP/GMM. Although, these simpler methods lack
any channel compensation, their performance is comparable to
(or, for females, even slightly better than) the i-vector/HMM
system.5 Note, however, that the trends are different on Red-
Dots data as presented in the following. Again, the advantage
of the i-vector/HMM approach is that it results in much more
compact representations of speaker models and test utterances
compared to the Relevance MAP based techniques. Out of the
two Relevance MAP based systems, Rel. MAP/HMM again ben-
efits from the better HMM-based alignment and outperforms the
simpler Rel. MAP/GMM system.

The last row of Table VII presents the ultimate, best per-
forming score-level fusion of the Rel. MAP/HMM system and
the proposed i-vector/HMM technique with 1200 dimensional
i-vector.

F. Comparison With DNN Based Methods

In this section, we present results for models making use
of neural networks. The approaches used in these experiments
were originally proposed for text-independent speaker verifi-
cation, and were also recently found successful for the text-
dependent task. A more detailed study of these approaches in
a text-dependent task can be found in our previous works [24],
[26], where the result presented here are selected from. We select
here only the best performing DNN based systems to show how
the simpler i-vector/HMM method compares to and combines
with the neural network approaches.

In order to facilitate the comparison, the first section of
Table VIII simply repeats the results for the MFCC-based i-
vector/HMM system from Table V. The second section corre-
sponds to a i-vector system where, instead of the HMM model,
DNN trained for senone classification defines the alignment of
feature frames to Gaussian components (i.e., the DNN output
defines γ

(c)
t from (2) and (3)). The DNN alignment performs

just comparably for Imposter-Correct trials. However, since it
does not rely on the true transcription, it is not able to reject
Target-Wrong trials as reliably as the HMM alignment.

The third and fourth sections of Table VIII present results
for i-vector/GMM and i-vector/HMM systems where input fea-
tures are MFCCs concatenated with a neural network based
BN features (MFCC+BN). When the BN features are used the
performance greatly improves, especially for the Target-Wrong

5In general, channel compensation techniques are known to be ineffective on
RSR2015 data, where the channel variability is very limited.

trials. Since the BN features are trained for phone discrimi-
nation, they produce very phrase specific i-vectors, which are
very good for discrimination between phrases and, therefore,
for rejecting wrong phrase trials. We still benefit from using
the HMM alignment (rather than the GMM one), however, the
improvement is rather small compared to the case with only
MFCC features.

The last two sections of Table VIII again show performance
with the concatenated MFCC+BN features. This time, however,
the old fashioned relevance MAP adaptation with log-likelihood
scoring is used. Just like in the case i-vector systems with BN
features, we do not really benefit from the HMM alignment.
With the exception of female Imposter-Correct condition, the i-
vector systems with BN features performs better (or at least the
same) compared to the relevance MAP based ones. Therefore,
we can benefit from using the more compact i-vector represen-
tation without scarifying the performance.

From the presented results, it might seem that the best option
is to use the MFCC+BN features and the i-vector system with
the simpler GMM based alignment. However, as we will later
see in Section V-I, which is deals with the experiments on Red-
Dots data, BN features can fail to provide good performance on
the most difficult Imposter-Correct. On this condition, the BN
features perform well only if the data for training UBM and i-
vector extractor contains the same closed set of phrases as used
in the evaluation data (i.e., phrases in the enrollment and test
utterances). This is the case for our experiments on RSR2015
data, but not for RedDots. See [26] for a more detailed analysis
of this problem. Note that such a constraint might be too limiting
when building practical systems. Furthermore, we might not be
able to train suitable neural network for BN feature extraction
in the case of building a speaker verification system for some
of the low-resource language. In such cases, the i-vector/HMM
based system trained only on MFCC can be the best option.

G. Gender Dependent (GD) and Gender Independent (GI)
Training of the UBM and i-Vector Extractor

The aim of these experiments is to compare the performance
of the proposed methods based on the amount of training data,
in the following scenarios:

1) Train both UBM and i-vector extractor as gender inde-
pendent.

2) Train both as independent, and add development set to
their training data.

3) Train both of them as gender dependent.
4) Train both of them as gender dependent and add develop-

ment set to their training data.
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TABLE VIII
COMPARISON WITH DNN BASED METHODS (DNN ALIGNMENT, CONCATENATED MFCC+BN FEATURES)

Male Female

Method Non-Target Trial Type EER [%] NDCFm in
o ld NDCFm in

n e w EER [%] NDCFm in
o ld NDCFm in

n e w

MFCC i-vector/HMM
Imposter-Correct 0.37 0.0204 0.1142 0.49 0.0275 0.1533

Target-Wrong 0.30 0.0162 0.1111 0.13 0.0072 0.0620
Imposter-Wrong 0.03 0.0013 0.0088 0.06 0.0011 0.0045

MFCC i-vector/DNN
Imposter-Correct 0.36 0.0198 0.1196 0.38 0.0232 0.1562

Target-Wrong 1.13 0.0806 0.5709 0.42 0.0284 0.2133
Imposter-Wrong 0.03 0.0025 0.0224 0.03 0.0013 0.0077

MFCC+BN i-vector/GMM
Imposter-Correct 0.31 0.0176 0.0955 0.28 0.0144 0.0898

Target-Wrong 0.08 0.0054 0.0330 0.07 0.0025 0.0236
Imposter-Wrong 0.01 0.0002 0.0020 0.02 0.0004 0.0008

MFCC+BN i-vector/HMM
Imposter-Correct 0.30 0.0148 0.0927 0.27 0.0134 0.0809

Target-Wrong 0.07 0.0042 0.0295 0.09 0.0026 0.0114
Imposter-Wrong 0.01 0.0005 0.0024 0.03 0.0008 0.0021

MFCC+BN Rel. MAP/GMM
Imposter-Correct 0.31 0.0161 0.0998 0.17 0.0091 0.0405

Target-Wrong 0.29 0.0102 0.0322 0.09 0.0043 0.0227
Imposter-Wrong 0.17 0.0050 0.0123 0.03 0.0009 0.0027

MFCC+BN Rel. MAP/HMM
Imposter-Correct 0.36 0.0193 0.1253 0.17 0.0108 0.0523

Target-Wrong 0.26 0.0110 0.0367 0.07 0.0024 0.0099
Imposter-Wrong 0.13 0.0037 0.0097 0.03 0.0009 0.0017

The results are reported on RSR2015 dataset for three types of non-target trials. The first column specifies the used features and model.

TABLE IX
COMPARISON OF GENDER DEPENDENT (GD) AND GENDER INDEPENDENT (GI)

TRAINING FOR IMPOSTER-CORRECT AS NON-TARGET TRIALS

Gender Strategy Use Dev EER [%] NDCFm in
o ld NDCFm in

n e w

Male

GI × 0.37 0.0204 0.1142
GI � 0.26 0.0137 0.0575
GD × 0.54 0.0255 0.1172
GD � 0.32 0.0136 0.0687

Female

GI × 0.49 0.0275 0.1533
GI � 0.23 0.0126 0.0850
GD × 0.60 0.0315 0.1552
GD � 0.34 0.0136 0.0723

The third column says whether the development set is used for training or not.

The results in Table IX show that the number of speakers in
the training data is more crucial for the system performance than
gender dependency. The performance improved considerably by
increasing the number of speakers for both training strategies. In
case these two strategies used approximately the same amount
of training data (compare rows 1 and 4), it is better to use
gender dependent modeling; however, if there is not enough
training data for both genders, gender independent modeling is
preferred.

Comparing males and females results shows that adding new
data is more effective for females than males, similar to Table VI
where the amount of data for training the preconditioning trans-
formations was investigated.

H. Out of Domain Training

The last question we sought to resolve is whether it is possible
to use another dataset to train the models and to handle the
preconditioning transformations and score normalization as we
did in the text-independent case. Several experiments were done

in different scenarios using LibriSpeech dataset. Testing was
performed on RSR.

Table X contains four sections. The first one (RSR dataset
used for both UBM/i-vector and transformations/normalization
training) is borrowed from Table VI for ease of comparison.
The second section shows a scenario in which UBM and i-
vector extractor are trained on a heterogeneous text-independent
dataset (LibriSpeech), while the target RSR dataset is used for
RWCCN and s-norm training. Comparing these two sections
shows that the performance does not change much: we have a
slight degradation for males, while the performance improved
a little for females. Without any transformation and normal-
ization, the performance is obviously degraded. These results
prove that we can have a text-dependent system built indepen-
dently of users’ pass-phrases. However, we have to record some
utterances from each pass-phrase for re-estimating the transfor-
mations and score normalization, or we can accept performance
degradation at the price of having a totally phrase-independent
system.

In the third section, we use both RSR and LibriSpeech datasets
for UBM and i-vector extractor training. Comparing these re-
sults with previous sections shows that increased training data,
even if from text-independent datasets, can improve the perfor-
mance. Similar to other experiments, adding new training data
is more effective for females.

The last section of Table X shows the most pessimistic sce-
nario, in which we have no access to target data at all. All training
(UBM and i-vector extractor training, RWCCN and s-norm pa-
rameter estimation) is done on LibriSpeech in a text-independent
manner (i.e., we also use phrase-independent RWCCN and s-
norm in this case). The results show that the text-dependent
speaker verification performance drops significantly with chan-
nel compensation and score normalization method trained in a
text-independent (phrase-independent) manner. The main rea-
son for this is the short duration of the utterances causing signif-
icant variations of the phonetic content. Comparing the last row
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TABLE X
TRAINING ON HETEROGENEOUS DATA

Male Female

Training Data Transformation Data Method EER [%] NDCFm in
o ld NDCFm in

n e w EER [%] NDCFm in
o ld NDCFm in

n e w

RSR
– – 0.79 0.0413 0.1925 1.06 0.0497 0.2060

RSR s-norm, RWCCN 0.37 0.0204 0.1142 0.49 0.0275 0.1533

Libri
– – 1.08 0.0532 0.2039 1.50 0.0686 0.2589

RSR s-norm, RWCCN 0.50 0.0239 0.1242 0.43 0.0233 0.1136

RSR, Libri
– – 0.97 0.0482 0.1875 1.52 0.0692 0.2454

RSR s-norm, RWCCN 0.40 0.0193 0.0942 0.36 0.0213 0.1193

Libri

Libri RWCCN 1.17 0.0559 0.2032 1.51 0.0684 0.2693
Libri s-norm 1.29 0.0635 0.2676 1.57 0.0733 0.2831
Libri s-norm, RWCCN 1.17 0.0595 0.2481 1.36 0.0656 0.2443

The first column specifies the data used for training the models and i-vector extractor, the second column details the data used for preconditioning transformation
and score normalization training. These results are reported on RSR2015 dataset for Imposter-Correct as non-target trials.

of this table (everything done on LibriSpeech) with the third one
(UBM and i-vector extractor trained on LibriSpeech, no channel
compensation, no normalization), we see a little degradation for
males and minor improvement for females.

The LibriSpeech results have shown that for a text-dependent
speaker verification with good performance, adding a small
amount of data from the target domain for any processing
steps (adaptation, channel modeling and compensation and
score normalization) is beneficial. At the same time, using text-
independent data allows us to acceptably collect less training
data.

I. Results on RedDots Data

The results on RSR2015 encouraged us to test the proposed
technique on a more challenging dataset — RedDots. Table XI
compares four systems introduced in previous sections. The
results are again reported separately for the three conditions
corresponding to three types of non-target trials.

The RedDots evaluation data comes without any develop-
ment set, which would contain recordings of the same phrases
as used for the enrollment and test. Therefore, we have to use
training data from other datasets (RSR2015 and LibriSpeech)
with mismatched phrases. In section V-H, we have shown that
such a mismatch makes the channel compensation and score nor-
malization techniques ineffective in the case of text-dependent
speaker verification. Therefore, all the reported results for the
RedDots dataset are based on the simple cosine distance scoring
and without any score normalization. 600-dimensional i-vectors
are used in these experiments.

First, let us focus on the first half of Table XI corresponding to
the systems trained on the simple MFCC features. As before, the
relevance MAP based systems use likelihood ratio verification
scores. The results on Imposter-Correct trials show that the best
performance is achieved with HMMs — in most cases, the Rel.
MAP/HMM system is the best one followed by the proposed
i-vector/HMM.

Target-wrong trials are more interesting — the gap between
HMM-based and GMM-based methods is considerably wider.
As we saw in the RSR2015 data (Table V), the HMM forced
alignment makes rejecting these trials much easier. Contrary
to Imposter-Correct trials, Rel. MAP/HMM does not work well
compared to i-vector/HMM. The main reason is the likelihood
ratio scoring: when the HMM is used directly for calculating

TABLE XI
COMPARISON OF THE PROPOSED METHOD WITH GMM ALIGNMENT AND TWO

RELEVANCE MAP BASED SYSTEMS ON PART-01 MALES OF REDDOTS

Method Trial Type EER [%] NDCFm in
o ld NDCFm in

n e w

MFCC i-vector/GMM
Imp-Corr 2.07 0.0899 0.3105
Tar-Wrg 3.76 0.1762 0.4275
Imp-Wrg 0.43 0.0153 0.0435

MFCC i-vector/HMM
Imp-Corr 1.88 0.0809 0.2271
Tar-Wrg 1.11 0.0338 0.0509
Imp-Wrg 0.46 0.0106 0.0228

MFCC Rel. MAP/GMM
Imp-Corr 1.98 0.0848 0.2879
Tar-Wrg 4.01 0.1733 0.4960
Imp-Wrg 0.34 0.0135 0.0488

MFCC Rel. MAP/HMM
Imp-Corr 1.48 0.0613 0.1722
Tar-Wrg 1.57 0.0567 0.1491
Imp-Wrg 0.59 0.0137 0.0361

MFCC+BN i-vector/GMM
Imp-Corr 3.05 0.1385 0.5002
Tar-Wrg 0.56 0.0226 0.0515
Imp-Wrg 0.19 0.0045 0.0071

MFCC+BN i-vector/HMM
Imp-Corr 2.92 0.1295 0.4246
Tar-Wrg 0.37 0.0081 0.0154
Imp-Wrg 0.22 0.0036 0.0059

MFCC+BN Rel. MAP/GMM
Imp-Corr 2.59 0.1295 0.4423
Tar-Wrg 0.46 0.0155 0.0549
Imp-Wrg 0.28 0.0047 0.0201

MFCC+BN Rel. MAP/HMM
Imp-Corr 2.19 0.1019 0.3906
Tar-Wrg 0.43 0.0068 0.0068
Imp-Wrg 0.22 0.0046 0.0105

600-dimensional i-vectors were used for both i-vector based systems. The first half of this
table reports results on the simple MFCC features while the second half of it shows results
of similar systems with MFCC concatenated to BN features (i.e., MFCC+BN).

likelihoods, both the speaker model and UBM likelihoods ob-
tained for the wrong phrase are low, their ratio is unreliable and
causes a higher false acceptance rate. With the i-vector/HMM
model, wrong HMM alignment simply produces a wrong i-
vector which is easily rejected.

The second half of Table XI shows results for similar systems.
This time, however, the systems are trained on the concatenated
MFCC+BN features. The BN features greatly improve perfor-
mance again on the Target-Wrong trials for all used models.
However, as already pointed out in section V-F, BN features
fail to provide good performance on the most difficult and most
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TABLE XII
COMPARISON OF SPEED OF DIFFERENT SYSTEMS ON 2 sec TEST SEGMENT

i-vector i-vector Rel. MAP
Method HMM(MFCC) GMM(MFCC+BN) GMM(MFCC+BN)

[ms] [ms] [ms]

Features (2 s) 4.2 546.7 546.7
Statistics (2 s) 33.1 46.7 46.7
i-vector 35.9 39.4 –
Scoring 0.05 0.05 19.9

Overall (2 s) 73.2 632.8 613.3

important Imposter-Correct trials as the data for training UBM
and i-vector extractor do not contain the same phrases as used
for the evaluation. See [26] for a more detailed analysis of this
problem.

J. Speed Comparison

Table XII compares the speed of selected speaker verification
systems as measured using our speed optimized Matlab imple-
mentation on Intel Xeon CPU E5-2670 (2.60 GHz). We report
the time in milliseconds spent on verifying one 2 sec long ut-
terance, which is about the average length of test segments in
the RSR2015 database. We further break the timing down into
the individual phases of the verification process, which should
allow the reader to get a good idea about the speed of any system
described in this paper. In the table, we use (2 s) to mark phases
that (linearly) depend on the duration of the test segment.

As can be seen, the simple MFCC based i-vector/HMM sys-
tem, which still performs very competitively, is an order of mag-
nitude faster than any system which makes use of BN features
(or DNN alignment). BN features are very costly to extract.

We have shown that the proposed i-vector based system also
provides competitive verification performance when compared
the more conventional relevance MAP GMM-UBM (or HMM-
UBM) systems. The relevance MAP based systems, however,
do not allow for i-vector-like compact speaker representations,
which also results in about two orders of magnitude slower
scoring phase. This might pose a problem for an application
where the same test segment needs to be scored against many
speaker models. For a test segment, all the phases needs to be
executed only once except for the scoring phase, which needs
to be evaluated for each speaker model.

Note that the speed of the relevance MAP based system is
reported for the case of an approximate fast linear scoring (see
[46, eq. (20)] without the term Vy). The full frame-by-frame
evaluation of a speaker model (and also all models that form the
s-norm cohort) would take more than 4 sec for one 2 sec test
segment (i.e., it would be another order of magnitude slower).

VI. CONCLUSION

In this paper, we proposed a new HMM structure for text-
dependent speaker verification, enabling us to use the potential
of the HMM to model time sequences along with the estab-
lished i-vector technique. We first trained a phoneme recog-
nition system and then used its models to build a model for
each phrase. With this HMM modeling, we could train a single
phrase-independent i-vector extractor for all phrases. We also
empirically showed the advantages of this method over GMM
that is commonly used in text-independent and text-dependent

speaker verification, mainly the ability to reject target-wrong
trials. The Viterbi forced alignment produces invalid statistics
for such trials and consequently they are rejected easily.

We explained and showed that due to a limited number of
speakers, simple LDA and WCCN cannot be used for the text-
dependent task. We suggested a regularized version of WCCN to
solve this problem, and obtained better results with the proposed
i-vector/HMM method.

We have performed comprehensive experiments addressing
several aspects of the proposed method. We have found that the
performance of the various cepstral features are not considerably
different for the text-dependent task and investigated into feature
fusion in the score domain.

Although the results of the i-vector/HMM are much bet-
ter than those of i-vector/GMM, their fusion can still reduce
the EER by 34% percent on average for imposter-correct
trials.

We obtained our best results for the single system with 1200
dimensional i-vectors using RWCCN. Compared to the best
published results on Part-1 of RSR [29], our technique can
reduce the EER by 50% and 67% and NDCFold by 61% and
67% relative for males and females, respectively.

We have compared and combined the proposed technique
with DNN-based approaches to speaker verification. For Target-
Wrong trials, HMM-based alignment outperforms the one based
on DNN. On the contrary, while BN features provide superior
performance for rejecting Target-Wrong trials, they might fail
on Imposter-Correct condition as demonstrated in the RedDots
data set.

Experiments on out-of-domain training data show that we
can use text-independent datasets to improve the performance,
but we cannot use them for channel compensation and score
normalization (as is usual in the text-independent case).
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