
LEARNING SPEAKER REPRESENTATION FOR NEURAL NETWORK BASED
MULTICHANNEL SPEAKER EXTRACTION
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ABSTRACT

Recently, schemes employing deep neural networks (DNNs) for
extracting speech from noisy observation have demonstrated
great potential for noise robust automatic speech recognition.
However, these schemes are not well suited when the interfering
noise is another speaker. To enable extracting a target speaker
from a mixture of speakers, we have recently proposed to inform
the neural network using speaker information extracted from
an adaptation utterance from the same speaker. In our previous
work, we explored ways how to inform the network about the
speaker and found a speaker adaptive layer approach to be suit-
able for this task. In our experiments, we used speaker features
designed for speaker recognition tasks as the additional speaker
information, which may not be optimal for the speaker extraction
task. In this paper, we propose a usage of a sequence summariz-
ing scheme enabling to learn the speaker representation jointly
with the network. Furthermore, we extend the previous exper-
iments to demonstrate the potential of our proposed method
as a front-end for speech recognition and explore the effect of
additional noise on the performance of the method.

Index Terms— speaker extraction, speaker adaptive neural
network, multi-speaker speech recognition, speaker representa-
tion learning, beamforming

1. INTRODUCTION

In recent years, recognition of speech in adverse conditions have
improved significantly due to both more robust systems and ad-
vanced front-end enhancement. However, recognizing speech
corrupted by interference from other speakers still remains very
difficult. Conventionally, the problem of interfering speakers has
been tackled by methods including Non-negative matrix factor-
ization [1] for single-channel case and Independent Component
Analysis [2] or statistical model based systems making use of
spatial cues [3, 4, 5, 6] for multi-channel case.

Meanwhile, for the problem of extracting speech in presence
of noise, deep learning based approaches gained much atten-
tion. Methods based on denoising auto-encoders [7] or mask-
estimation networks [8, 9] have been shown to be efficient for
this task. For the case of multi-channel recordings, recently pro-
posed methods [10, 11] successfully combine the deep neural
network enhancement with conventional beamforming by using

the masks estimated by the neural network to compute the beam-
forming filters.

To mimic this scheme in the case of interfering speakers, one
needs to deal with the problem of neural network based estima-
tion of the target speaker mask, i.e. mask extracting speech of the
target speaker from a mixture. Several recent works attempted to
apply deep learning to recover speech corrupted by other speak-
ers. Namely deep clustering [12, 13] and its variants [14] have
made a significant progress. In other approach, permutation in-
variant training [15, 16] was applied to this task with promising
results.

In our previous work [17], we have proposed an alternative
approach, which makes use of speaker information to make the
neural network follow the target speaker through an utterance
and extract it from the mixture. By focusing on the target speaker
we make the processing independent of the number of speakers
in the mixture and avoid permutation ambiguity problem. This
problem arises when the neural network aims at recovering all
speakers in the mixture at once — it is then ambiguous which
of the speakers is associated with which output and the associ-
ation can change between different processing segments. The
specific use of the speaker information overcomes this problem,
because it enables to follow the speaker over different processing
segments and even over different recordings or sessions.

In the previous work, we explored different methods of pass-
ing the speaker information to the network. The experiments
have shown efficiency of speaker adaptive layer, a method pre-
viously proposed for speaker adaptation of acoustic models [18,
19]. In this method, one of the layers of the network is factorized
into several sub-layers. The output of this layer is then obtained
as a weighted combination of the outputs of the sub-layers, where
the weights depend on the speaker information. For the speaker
information, we extract a representation of the speaker from a
short adaptation utterance containing only the target speaker’s
speech. Although the experiments with this approach yielded
promising results, they have shown a need for closer investiga-
tion of a proper choice of the speaker representation. Especially,
we noticed the performance degrades greatly for same-gender
mixtures. One factor limiting the performance is that the used
speaker representations were designed for speaker recognition
and not optimized for the speaker extraction task.

In this work, we further investigate the choice of a speaker
representation for this task. Notably, we employ a sequence sum-
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Fig. 1: The entire processing with the multichannel signal Yi as input and the estimated target speaker signal X̃iref as the output.

marizing framework [20] which enables to learn the speaker rep-
resentation jointly with the neural network. Furthermore, in con-
trast with the previous work, we test the efficiency of the speaker
extraction on a speech recognition task. We also extend the in-
vestigations to explore the effect of noise on the performance of
the method.

The rest of the paper is structured as follows. In Section 2,
we summarize the entire processing chain which uses neural net-
work based beamforming. In Section 3, we then introduce the
scheme of speaker adaptive layer used to adapt the network for
extracting the target speaker. In Section 4, we describe the used
speaker information and propose a use of sequence summariz-
ing network. Section 5 compares this work with related works
and finally, Section 6 describes the experiments and Section 7
concludes the paper.

2. NEURAL NETWORK BASED BEAMFORMING

In this section, we describe the overall processing chain which
estimates a speech signal of a target speaker from an input mix-
ture. It consists of a mask estimation part performed by a neural
network and a beamforming part which is based on the estimated
masks. This scheme is based on the work in [10] where the neu-
ral network based beamformer was used for speech-noise sepa-
ration. Our work focuses on the mask estimation part, but we
briefly review the entire scheme for completeness. The entire
processing is depicted in Fig. 1.

2.1. Mask based beamforming

In this work, we model the signal received at i-th microphone in
the Short time Fourier transform (STFT) domain as

Yi(t, f) = S
(0)
i (t, f)

︸ ︷︷ ︸
+

J−1∑
j=1

S
(j)
i (t, f) + Vi(t, f)︸ ︷︷ ︸

(1)

= Xi(t, f) + Ni(t, f), (2)

where i = 1 . . . I is the microphone index, t = 1 . . . T is the time
frame index, f = 1 . . . F is the frequency-bin index, Yi(t, f)
is the observed signal at the i-th microphone, S(0)

i (t, f) is the
image of the speech signal of the target speaker, S(j)

i (t, f) is the
image of the speech signal of j-th interfering speaker and Vi(t, f)
is the noise signal. We will denote the desired signal as Xi(t, f)

and the undesired signal collectively as Ni(t, f).
To obtain the estimated image of the target signal at the ref-

erence microphone iref , the beamforming process proceeds as
follows

X̃iref (t, f) = hH(f)Y(t, f), (3)

where hH(f) is a vector of beamforming coefficients and
Y(t, f) = [Y1(t, f) . . . YI(t, f)]

T. For the computation of the
beamforming filters we followed [10] and used the Generalized
Eigenvector beamformer (GEV) with filters computed as

hGEV(f) = argmax
h(f)

hH(f)ΦXX(f)h(f)

hH(f)ΦNN (f)h(f)
, (4)

where ΦXX(f) and ΦNN (f) are the spatial covariance matrices
(SCM) of the desired and undesired signal, respectively. They
can be obtained as

Φrr(f) =

T∑
t=1

Mr(t, f)Y(t, f)YH(t, f), (5)

where r ∈ {X,N} and Mr(t, f) denotes a time-frequency mask
for the desired or undesired signal.

2.2. Neural network based mask estimation

We use a neural network to obtain the time-frequency masks
Mr(t, f) needed to recover the desired signal. The input of the
network consists of a mixture of speech signals and it is trained
to output mask for the target speaker. To be able to extract the
target speaker, we inform the network using additional speaker
information. The processing by the neural network then takes
place as follows

(MX,i(t),MN,i(t)) = g(yi(t),λ
(s)), (6)

where g is the transformation computed by the neural network,
yi(t) = [|Yi(t, 1)| . . . |Yi(t, F )|] are the input features,
Mr,i(t) = [Mr,i(t, 1) . . .Mr,i(t, F )] and λ(s) is an additional
speaker information about the target speaker s. Note that the
neural network processes data from each channel separately and
final masks are then obtained from the channel specific masks as

Mr(t) = median
i

(Mr,i(t)). (7)

The network is trained to predict ideal binary masks which are
computed using the ratio of the target and the interference signal
power in each time-frequency point obtained from parallel noisy
and clean data.

The speaker information λ(s) is obtained from an adaptation
utterance — an utterance spoken by the target speaker without
other interfering speakers. The way of conditioning the neural
network processing g on the speaker information will be precised
in Sections 3 and 4.
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Fig. 2: Scheme of the speaker adaptive layer configuration.

3. SPEAKER ADAPTIVE LAYER SCHEME

In our previous work [17], we explored different ways of chang-
ing the network’s behavior depending on the speaker information
λ(s). We sought for a method amenable to speakers unseen dur-
ing the training and at the same time powerful enough to modify
the network processing substantially depending on the speaker
information. Our investigations included adding the speaker in-
formation to the input layer as an additional feature, training
speaker specific networks or layers. The approach best comply-
ing with the requirements turned out to be the speaker adaptive
layer scheme inspired by a method developed for speaker adap-
tation of acoustic models [18, 19].

In this approach, one of the layers of the network is factor-
ized into several sub-layers. The output of this factorized layer
is obtained as a weighted combination of the outputs of the sub-
layers. The weights of this combination are inferred by an aux-
iliary network which has speaker information as its input. This
way, the network parameters can be adapted to extract the target
speaker. Both the main and auxiliary network are trained jointly.

We can express the computation of the neural network as

xn+1 =

σn(Ln(xn; θn)) for n 6= k,

σn(
∑M−1

m=0 α
(s)
m Ln(xn; θ

(m)
n )) for n = k,

(8)

where k is the index of the factorized layer, xn denotes the input
to the nth layer, Ln(x, θ) is the transformation computed by the
nth layer parametrized by θ and σn is an activation function. For
fully connected layers θ = {W,b} and L(x, θ) = Wx + b,
where W is a weight matrix and b is a bias vector. The weights α
are computed from the speaker information λ(s) by an auxiliary
network which is trained jointly with the rest of the network as

α = gaux(λ
(s)). (9)

Figure 2 shows an example of this configuration.
The effect of the speaker information is a modification of an

entire layer in the network and thus is more powerful than simply
appending the information as an additional feature to the input of
the network. Furthermore, this method is easily usable for un-
seen speakers as the weights α can be inferred from any kind of
speaker information. The experiments in [17] indeed confirmed
the ability of this architecture to extract different speakers from
the mixture depending on the speaker information.

(a) The posterior vector extraction is trained independently from the
auxiliary network gaux and the main mask-estimating network.

(b) In the sequence-summarizing network scheme, the auxiliary net-
work gaux works on the adaptation utterance directly.

Fig. 3: Scheme of two options of using speaker information in
the auxiliary network gaux. In both cases, the network gaux is
trained jointly with the main mask-estimating network.

4. SPEAKER INFORMATION

In our first experiments [17], we followed the way speaker adap-
tive layer was used for speaker adaptation [19], i.e. first, a fixed-
length speaker representation is extracted from the adaptation ut-
terance and this is then used as the speaker information on the
input of the auxiliary network. This separate scheme is detailed
below. However, the experiments have shown a need for a closer
investigation of the form in which the speaker information is
presented to the network. Here, we propose a joint scheme us-
ing the sequence summarizing network [20], which enables to
learn the speaker representation jointly with learning to extract
the speaker. This way, we omit the separate step of extracting
the speaker representation that could possibly lead to losing in-
formation which is important for identifying the speaker in the
mixture.

4.1. Separate speaker representation extraction
In the separate scheme, the speaker information on the input
of the auxiliary network is a fixed-length vector extracted from
an adaptation utterance. The auxiliary network is then a sim-
ple feed-forward network mapping this vector to the weights α.
As the vectors representing speakers, we can use for example i-
vectors or a representation extracted by a neural network such
as speaker posteriors. We refer to [21, 22] for an exhaustive de-
scription of i-vectors.

For obtaining the speaker posteriors, a separate neural net-
work is trained which classifies a frame of speech features into
classes formed by the speakers from the training set. Using this
network on an adaptation utterance from an unseen speaker re-
sults into a sequence of posterior vectors encoding the ’similar-
ity’ of the unseen speaker and the training speakers. The final
speaker representation is then given by averaging the posterior
vector over the entire adaptation utterance as

λ
(s)
post =

1

TA

TA−1∑
t=0

post(A(s)(t)), (10)

where A(s)(t) are features extracted from t-th frame of an adap-
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tation utterance of a speaker s, post(A(s)(t)) are the posteriors
predicted by the speaker classifier network from these features
and TA is the number of frames in the adaptation utterance. The
transformation gaux is then performed by a simple feed-forward
neural network that maps the speaker posteriors to the weights
α. This scheme is depicted in Figure 3a.

4.2. Joint speaker representation learning

In the separate scheme, it is unclear what speaker representation
to extract so that it would best capture the information useful
for the main network to extract a speaker from a mixture. To
avoid the middle step of extracting the speaker representation we
propose to use the adaptation utterance directly at the input of the
auxiliary network.

In this case, the auxiliary network obtains frame-level fea-
tures which should be mapped to utterance-level weights α. This
can be simply achieved with the sequence summarizing method
[20] which employs an averaging operation directly into the net-
work. The sequence summarization was previously proposed for
learning auxiliary features for speaker adaptation. Here, we com-
bine this method with the speaker adaptive layer scheme.

The speaker information is in this case time-dependent and
matches the adaptation utterance features

λ
(s)
seqsum(t) = A(s)(t) (11)

and the auxiliary network includes the averaging operation at its
output resulting in utterance-level weights

α = gaux(λ
(s)
seqsum(t)) =

1

TA

TA−1∑
t=0

z(λ
(s)
seqsum(t)), (12)

where z(λ(s)
seqsum(t)) are activations of the last layer of the aux-

iliary network with input λ(s)
seqsum(t) and TA is the number of

frames in the adaptation utterance. The auxiliary network in-
cluding the average operation is trained jointly with the main
network. The network thus itself extracts the information use-
ful for the extraction task. Figure 3b depicts this scheme.

5. RELATED WORK

The enhancement of multi-speaker recordings using neural net-
work based approach have been explored in several previous
works [12, 14, 15, 23]. In contrast with our work, these works
aim to recover all the speakers present in the recording at once
regardless of their identity. This kind of approach gives rise to
two problems. The first problem is the dependency of the num-
ber of speakers, i.e. the number of speakers needs to be either
known a priori or estimated at some point of the processing.
The second problem is the permutation ambiguity, i.e. when the
method processes the input segment by segment, the order of
the recovered speakers can change from one segment to another
and additional tracking is required to associate the correspond-
ing speakers. By introducing the speaker information into the
processing, these problems are avoided, since the network learns
to simultaneously track and extract the target speaker only.

This work is also related to the area of speaker adaptation
of neural networks for acoustic modeling, which also aims to

modify the processing of the neural network by introducing the
speaker information. The speaker adaptive layer approach used
in this work was previously used for speaker adaptation in [18,
19]. Strong difference between these two use cases is that while
for acoustic modeling, the output of the network should be just
slightly altered by the speaker information, in the speaker extrac-
tion task, the speaker information should completely change the
outcome.

The sequence summarizing scheme proposed in this work,
was also previously used for speaker adaptation in [20]. In this
work, the sequence summarizing network was used to create aux-
iliary features for the network. In our work, we combine this
scheme with the speaker adaptive layer method and apply it to
the speaker extraction task.

6. EXPERIMENTS

In this section, we evaluate the performance of the proposed
scheme. We use simulated data with two active speakers. We
first report results with Signal to distortion ratio (SDR) mea-
sure [24] to compare the newly proposed sequence summariz-
ing method with the results in the previous work [17]. Then, we
extend the experiments to evaluate automatic speech recognition
performance and finally, test the effect of additional noise.

6.1. Data
The created data are based on recordings from Wall Street Jour-
nal dataset [25]. The lists of utterances for the training, devel-
opment and evaluation sets were taken from CHiME3 challenge
[26], this means 7138 utterances from 83 speakers in the training
set, 410 utterances from 10 speakers in the development set and
330 utterances from 10 speakers in the evaluation set. For each
utterance, we mixed an interference utterance from a different
speaker within the same set with signal-to-interference ratio of
0 dB on average.

To simulate the multichannel signals, we used room impulse
responses created with the image method [27, 28] with a circu-
lar microphone array with 8 microphones, 20 cm diameter and
RT60=0.2 s. The speakers are located at 1 or 1.5m meter dis-
tance from the microphone array, in angles from range 0 to 180◦.

For each mixture, we randomly chose an adaptation utter-
ance from the target speaker (different than the utterance in the
mixture) and used the image of this utterance at one of the mi-
crophones in the array. The length of the utterance is about 10 s
on average. Note that in our experiment, the adaptation utterance
may be uttered from a different location than the test utterance
and may contain different level of background noise.

For the data with additional noise, we used noise recorded
for REVERB challenge [29]. For the training data, we used noise
recorded in SmallRoom1, while for the development and evalua-
tion sets, noise recorded in SmallRoom2. For each mixture, two
random segments from the noise recordings were chosen and two
noise sources were placed in the room by convolving them with
generated room impulse responses. We controlled the SNR of the
mixture with respect to noise to be 5,10,15 or 20 dB. The noise
of the same SNR levels was also used in the adaptation utterances
(however the level of noise in an utterance and its correponding
adaptation utterance may differ).
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6.2. Settings

6.2.1. Mask estimation network settings

The architecture of the mask estimation network was similar to
that used in [10] with the size of the layers changed to suit better
the speaker extraction task. The network consisted of 4 layers,
i.e. one BLSTM layer, two fully connected layers with ReLU
activation and one fully connected layer with a sigmoid activa-
tion. The number of neurons in the four layers is 512-1024-1024-
512, respectively. As the speaker adaptive layer, we chose the
second layer in the network and factorized it into 30 sub-layers.
The auxiliary network predicting the weights α was composed of
two fully connected layers with 50 neurons and a ReLU activa-
tion and the output fully connected layer with a linear activation
(and the averaging operation in the case of the sequence sum-
marizing network). The main and the auxiliary networks were
jointly trained to optimize cross-entropy between ideal binary
masks and the estimated masks. For the optimization we used
Adam optimizer.

6.2.2. Speaker representation settings

The different speaker representations were extracted from an
adaptation utterance, i.e. a different utterance spoken by the
target speaker, including reverberation and noise for the noise
experiments.

We used a feed-forward network with three layers and a sig-
moid activation with 512 neurons per layer for extracting the pos-
terior features. The input of the network were filterbank features
and the network was trained to classify each frame into classes
formed by speakers in the training data or an additional class for
silence (the silence class is ignored when extracting the posterior
vectors for the test data). This corresponds to 83 + 1 classes, as
there are 83 speakers in the training set.

For getting the i-vectors, we trained an i-vector extractor us-
ing Kaldi [31]. The extractor was trained on single-speaker re-
verberant training data, using MFCC features and cepstral mean
normalization. The Universal Background Model (UBM) con-
sisted of 2048 gaussians and the final i-vectors had dimensional-
ity of 100. We used utterance-level i-vectors, i.e. we computed
an i-vector for each adaptation utterance.

The settings of the sequence summarizing network follow
the settings of the auxiliary network described above. The input
features of the network are coefficients of the magnitude spectra
of each frame of the adaptation utterance.

6.2.3. Beamforming settings

For beamforming, we used GEV beamformer as described in
Section 2.1. We post-processed the masks obtained by the neu-
ral network by thresholding values less than 0.3 to 0 to discard
the most uncertain regions. The noise spatial covariance matrix
was regularized by adding ε = 1e−3 to the diagonal. The output
signal was additionally processed by a single-channel postfilter
[10, 30] to reduce the speech distortions. The window size used
to compute STFT was 32ms with a 8ms shift.

6.2.4. ASR settings
We used a simple DNN acoustic model, which consisted of 5
fully connected hidden layers with 2048 nodes and ReLU activa-
tion functions for the ASR evaluation. The output layer had 2048
nodes corresponding to the HMM states.

The input features of the acoustic model consisted of 40 log
mel filterbank coefficients with their delta and delta-delta coeffi-
cients, and a context extension window of 19 frames. The fea-
tures were mean normalized per utterance.

For training the acoustic model, we used HMM state align-
ments obtained from single channel noise-free training data us-
ing a GMM-HMM system. We used discriminative pre-training
to initialize the DNNs. The training data consisted of the same
utterances as for the training of the mask estimation DNN.

We prepared 2 types of acoustic model, one trained with the
single channel noise-free training data and one trained on data
processed by the same front-end as the data used for evaluation.

All results were obtained using a trigram language model.
The ASR results are presented in terms of word error rate (WER).

6.3. Speaker representation experiments

In the first experiments, we aimed to compare the efficiency of
using different speaker information as described in Section 4. As
a follow-up to our previous work [17], we first tested the perfor-
mance with SDR [24]. The SDR measures the distortion com-
pared to the clean, single-speaker recordings. Table 1 shows the
SDR for the original recordings before enhancement (mixtures),
recordings enhanced using ideal binary masks for deriving the
beamformer (enh oracle) and recordings enhanced using differ-
ent types of speaker information. The results are further divided
into same-gender and different-gender mixtures as this is a factor
strongly influencing the difficulty of the extraction task.

As we can see from the results, using posterior features (enh
post) or i-vectors (enh ivec) lead to comparable performance.
Both cases lead to much larger improvement in the different-
gender case than in the same-gender case. The usage of the se-
quence summarizing network (enh seqsum) improves the perfor-
mance further, more significantly for same-gender mixtures. The
direct learning of the weights α from the adaptation utterance
thus succeeds to extract useful information about the speaker bet-
ter than the separately extracted speaker representations.

The same extraction methods are then compared in terms of
WER in Table 2. The two sets of results in Table 2 differ by
the data used for training the ASR systems. In the first case, the
system is trained on clean single-speaker recordings and tested
on the enhanced data. In the second case, we enhance also the
training data and train the ASR systems on the corresponding
enhanced data.

The first observation in these results is the large differ-
ence between the systems trained on clean and enhanced data.
Even when using the oracle masks for beamforming, the sys-
tem trained on clean data has difficulties decoding the enhanced
recordings. This is caused mainly by a large number of inser-
tions which occur when there is residual speech of the interfering
speaker. Even when the speech signal of the second speaker is
strongly suppressed, the system trained on purely clean data tries
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Table 1: Results of the experiments with different speaker repre-
sentations (posteriors, i-vectors) and sequence summarizing net-
work compared to the original mixtures and oracle enhancement
with ideal binary masks. All results are in terms of SDR in dB
(the higher the better).

Development set Evaluation set
same diff all same diff all

mixtures -0.18 0.52 0.17 -0.54 0.38 -0.02
enh oracle 8.85 8.64 8.75 8.96 9.55 9.29
enh post 1.29 8.08 4.75 2.64 8.19 5.73
enh ivec 3.20 7.78 5.54 2.38 8.01 5.52
enh seqsum 5.03 8.14 6.61 3.81 8.72 6.55

Table 2: Results of the ASR experiments with different speaker
representations (posteriors, i-vectors) and sequence summariz-
ing network compared to the clean single-speaker recordings,
the original mixtures and oracle enhancement with ideal binary
masks. All results are in terms of WER[%].

ASR train data→ single-speaker matched
test data Dev Eval Dev Eval
single speaker 6.40 6.15 6.40 6.15
mixtures 89.59 92.7 77.87 80.35
enh oracle 23.25 25.44 8.39 7.57
enh post 45.63 46.09 27.48 24.62
enh ivec 43.28 47.73 22.92 27.46
enh seqsum 37.8 41.88 17.75 20.81

to transcribe the weak residual signal. This effect vanishes when
the system is retrained with the enhanced data, in this case the
system is robust towards the small interferences and the number
of insertions is greatly reduced.

The comparison between the different methods follows the
same trend as the speech enhancement results. The posterior fea-
tures and i-vectors lead to very comparable accuracy while the
sequence summary network outperforms both significantly in all
cases. In both the enhancement and speech recognition results,
we can still see a gap compared to the beamforming with oracle
masks, especially in the same-gender case. We did not include
gender-specific results of ASR due to limited space, however, the
difference between same and different gender mixtures remains
(e.g. for sequence summarizing network and matched ASR train
data, the WER on development set is 10.22/25.3 for same and
different gender mixtures, respectively). This indicates a further
possibility for improvement by e.g. further optimizing the neural
network architecture or changing the ratio of same and different
gender mixtures in the training data.

6.4. Effect of noise

To keep the investigations simple, the previous experiments were
conducted with speaker mixtures without any additional noise.
Here, we extend the experiments to data with different levels of
added noise from 20 dB to 5 dB and observe its effect on the
speech recognition accuracy. The experiments are performed
with the best setup — the sequence summarizing network.

To make the mask estimation network robust to the noise, we

Table 3: Results of the ASR experiments with different levels of
additional noise in the data in WER[%]. The enhancement net-
work is trained on mix of clean, 15 dB and 5 dB data. The ASR
is trained on the same set processed by the enhancement. Note
that the difference between ∞ dB results and results in Table 2
are caused by the model trained on different (noisy) data.

enh seqsum oracle
test data Dev Eval Dev Eval
∞ dB 21.46 23.44 9.16 8.99
20 dB 18.38 20.55 8.98 7.14
15 dB 19.75 21.22 9.09 7.04
10 dB 22.88 23.63 9.84 7.96
5 dB 28.01 28.79 13.34 10.22

trained it on a set composed of utterances with three different
levels of added noise of SNRs of 5 dB, 15 dB and ∞ dB (no
added noise). The same set of utterances after processing by
the trained enhancement was used to train the ASR system. The
enhancement and ASR was then used on test data with added
noise of ∞ dB, 20 dB, 15 dB, 10 dB and 5 dB.

Results from the experiments can be seen in Table 3. We
can see a surprising effect of the 20 dB and 15 dB noise, which
actually improves performance compared to the data with no ad-
ditional noise. This gain is due to the insertion errors discussed
in the previous section. When a small noise is also present in the
data, the residual signal of the interfering speaker blends with the
noise and the ASR system more likely classifies this part as a si-
lence than in the case without any noise. Since in realistic setting,
we can expect small amount of noise to occur, the performance
drop for the absolutely clean data is not very critical. Increas-
ing the level of the noise degrades the performance as we would
expect. However, even when the noise is severe, the speaker ex-
traction still leads to satisfactory results compared to the recogni-
tion of unprocessed mixtures. Note that these experiments were
performed with a simple ASR system. Using more robust ASR
methods such as CNNs, sequence discriminative training, data
augmentation etc. could further improve these results.

7. CONCLUSION

In this paper, we explored a method for extracting a speaker
from a multichannel mixture of multiple overlapping speakers
based on informing a neural network about the target speaker.
We extended our previous work by investigating the form of the
speaker information presented to the network. We proposed to
use a sequence summarizing scheme which enables to learn the
extraction of a speaker representation jointly with the network
and shown that this approach outperforms extracting the speaker
representation separately. The experiments confirmed the effi-
ciency of this method for automatic speech recognition task and
studied the effect of additional noise on the performance. In fu-
ture work, we plan to experiment with optimizing the speaker ex-
traction jointly with the ASR system and investigate this scheme
with real recordings such as meetings [32].
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