
ABC NIST SRE 2018 SYSTEM DESCRIPTION

Jahangir Alam5, Niko Brummer3, Lukáš Burget1, Mireia Diez1, Ondřej
Glembek1, Patrick Kenny5, Michal Klčo2, Federico Landini1, Alicia

Lozano-Diez6, Pavel Matějka1, Gautam Bhattacharya5, Joao Monteiro5,
Ladislav Mošner1, Ondřej Novotný1, Oldřich Plchot1, Ján Profant2, Johan

Rohdin1, Anna Silnova1, Josef Slavı́ček2, Themos Stafylakis4, Hossein Zeinali1

1Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Brno, Czechia
{matejkap,iplchot,burget,...}@fit.vutbr.cz

2Phonexia, Czechia
{profant,slavicek,klco}@phonexia.com

3Nuance Communications Inc.
niko.brummer@gmail.com

4Omilia - Conversational Intelligence, Athens, Greece
tstafylakis@omilia.com

5CRIM, Montreal (Quebec), Canada
jahangir.alam@crim.ca

6Audias-UAM, Universidad Autonoma de Madrid, Madrid, Spain
alicia.lozano@uam.es

Index Terms— automatic speaker identification,
deep neural networks, bottleneck features, PLDA, snorm

Authors are in alphabetical order.
The work was supported by Czech Ministry of Interior project

No. VI20152020025 ”DRAPAK”, Google Faculty Research
Award program, Czech Science Foundation under project No.
GJ17-23870Y, and by Czech Ministry of Education, Youth and
Sports from the National Programme of Sustainability (NPU II)
project ”IT4Innovations excellence in science - LQ1602”. It
was also supported by Technology Agency of the Czech Re-
public project No. TJ01000208 ”NOSICI”, European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 748097, the Marie
Sklodowska-Curie cofinanced by the South Moravian Region
under grant agreement No. 665860, and by the U.S. DARPA
LORELEI contract No. HR0011-15-C-0115. The views ex-
pressed are those of the authors and do not reflect the official
policy or position of the Department of Defense or the U.S. Gov-
ernment.

1. INTRODUCTION

This submission is a collaborative/competitive effort of
BUT, Phonexia, Omilia, CRIM and UAM. All systems in
fusions are based on x-vector paradigm with different fea-
tures, DNN topologies and backends. No i-vector based
system made it to the fusion.

2. TELEPHONE SYSTEMS - CMN2

2.1. Tensorflow x-vector with attention = TFXvecAtt

This system is based on our Tensorflow implementation
of the x-vector speaker embedding. The overall topology
is the same as the original Kaldi recipe with some modifi-
cations which are explained below.

2.1.1. Training data, Augmentation

For training the networks, we used the following:

• SRE 4, 5, 6, 8, 12

• Telephony part of Mixer6



• Fisher English

• All switchboard data

• Voxceleb 1 and 2

For performed the following data augmentations
which are the same as in Kaldi recipe except for the
compression:

• Reverberated

• Augment with Musan noise

• Augment with Musan music

• Augment with Musan speech

• Compression using ogg and mp3 codecs

After creating a list of utterances for augmentation, a
subset of 500K utterances from this list was selected and
added to the training data. Afterwards, utterances with
less than 500 frames and also speakers with less than 5
training utterance were removed. Finally, the training data
for creating training archives contained 17054 speakers.

2.1.2. VAD, Input features

We used MFCC features and energy-based VAD from
Kaldi SRE16 recipe without any modification. The fea-
tures are therefore 23-dimensional MFCCs which are
extracted from 25 ms windows with 15 ms overlap. The
bandwidth is limited between 20 and 3700 Hz.

2.1.3. Training archives

For creating the training archives, we used Kaldi-like
archive generation for our Tensorflow implementation
and therefore, for both Kaldi and Tensorflow, the same
configuration was used for generating two different sets
of archives. Minimum and maximum number of frames
in each training example are 200 and 400 respectively.
Number of repeats for each speaker is 25 and maximum
number of frames per archive is 2 billion. By using this
configuration, two sets of 124 archives were generated
for Kaldi and Tensorflow versions.

2.1.4. Neural net architecture, training

The overall architecture of the network for x-vector ex-
traction is the same as in Kaldi and is shown in Table 1.
The main change is that we use CNN instead of TDNN
for second and third frame level layers. Also the non-
linearity here is LReLU instead of ReLU. Based on this
topology we designed the self-attention mechanism simi-
lar to [1, 2, 3].

Table 1. NN architecture for Tensorflow implementation.

Layer Layer context (Input) × output

frame1 [t− 2, t+ 2] (5 × 23) × 512
frame2 [t− 2, t+ 2] (5 × 512) × 512
frame3 [t− 3, t+ 3] (7 × 512) × 512
frame4 [t] 512 × 512
frame5 [t] 512 × 1536

stats pooling [0, T ) 1536 × 3072
segment6 0 3072 × 512
segment7 0 512 × 512
softmax 0 512 × N

2.1.5. Backend

We trained HT-PLDA backend [4] on data from Mixer
collection (NIST SRE 2004-2010). Training set was ex-
panded by including data augmented with noise, rever-
beration and music. In total, training set consisted of ap-
proximately 280k utterances coming from 5k speakers.
Additionally, we applied supervised domain adaptation
of model parameters. For this purpose, separate ”adap-
tation” HT-PLDA model was trained on ”unlabelled” por-
tion of the development data, where we used phone num-
bers as the speaker labels. The final adapted HT-PLDA
model was derived from the two HT-PLDA models so
that the modeled across-speaker covarinace matrix is a
weighted combination of the covariance matrices from the
constituent models. Similarly the parameters describing
within-speaker covariance matrix are also interpolated.

LDA, reducing dimensionality of vectors to 300,
centering and length normalization were applied to all
x-vectors. Training x-vectors were centered using their
own mean and the test x-vectors were centered around
the mean computed from unlabelled development data.
Size of the speaker subspace was set to 100 for the main
model and to 50 for adaptation model.

2.2. Tensorflow x-vector without attention = TFXvec

This system is also a Tensorflow implementation without
attention and its architecture is exactly one that is shown
in Table 1. We can say that for some of our backends, the
network without attention performs better.

2.2.1. Backend

A Gaussian PLDA backend was trained on the augmented
MIXER dataset described in the previous section. Simi-
larly to the HT-PLDA backend above (Section 2.1.5), a
Gaussian PLDA adaptation model was also trained, us-



ing SRE18 unlabeled data and using the telephone labels.
Both main and adaptation PLDA models were given equal
weights when estimating the final interpolated model. In
this case, the training and test x-vectors were not centered
around different means as was the case for the HT-PLDA.
Instead, the means from the two PLDA models were also
interpolated and the variance corresponding to the differ-
ence between the means was added to the within-class co-
varinace of the final adapted PLDA model.

Length normalization, LDA dimensonality reduction
to 160 dimensions followed by another length normaliza-
tion was applied to xvectors. All data were centered using
the training data mean. Speaker subspace size was set to
160 (i.e full rank) for the main model and to 50 for the
adaptation model.

We applied SNorm using top scoring 200 files se-
lected from SRE18 unlabeled data.

2.3. KaldiBigXvec

The system was trained in Kaldi toolkit [5] using sre16
recipe with modifications described below.

2.3.1. Training data, Augmentation

Datasets were used from section 2.1.1.

2.3.2. VAD, Input features

We used MFCC features and energy based VAD from
Kaldi sre16 recipe.

2.3.3. Neural net architecture, training

We made two modifications of the original Kaldi NN
training: We ran the training for 6 epochs (instead of 3)
and we slightly altered the NN topology – see Tab. 2.

2.3.4. x-vector extraction

We extracted x-vectors from segment6 layer before non-
linearity. In single threaded setup on Intel(R) Xeon(R)
CPU E5-2670 0 @ 2.60GHz, the x-vector extraction time
is of 8.0 times faster than real time (FRT) (computed only
on detected speech, would be 12.6 FRT computed for
whole recordings including silence). Memory consump-
tion is 500 MB for typical SRE18eval utterance.

2.3.5. Backend

The backend used was the same as described in Section
2.2.

Table 2. NN architecture for x-vector extraction –
KaldiBigXvec. Bold values are our modifications of the
original [6] architecture.

Layer Layer context Input × output

frame1 [t− 2, t+ 2] 115 × 256
frame2 {t− 2, t, t+ 2} 768 × 256
frame3 {t− 3, t, t+ 3} 768 × 256
frame4 {t− 3, t, t+ 3} 768 × 512
frame5 {t− 4, t, t+ 4} 1536 × 1500

stats pooling [0, T ) 1500 × 3000
segment6 0 3000 × 512
segment7 0 512 × 512
softmax 0 512 × N

2.4. CRIM ADAPT XV VOX2

2.4.1. Data preparation

At CRIM, to train our speaker verification systems we cre-
ated following two background data sets:

• Background set 1:This set comprised of record-
ings from NIST SREs 2004-2010 and Switch-
board. There are around 90k recordings from 5.2k
speakers. Multi-style data was created by adding
a noisy augmented data with the clean data. The
augmented data was generated by adding music,
babble, reverberation and additive noises to the
clean data.

• Background set 2: This set was created by adding a
selection of 100k recordings from voxceleb (1 & 2)
to the background data 1. This set contains around
190k recordings from 11.5k speakers. Multi-style
data was created by adding a noisy augmented data
with the clean data. The augmented data was gen-
erated by adding music, babble, reverberation and
additive noises to the clean data.

We construct an extended unlabeled data by consid-
ering the following three sources for better representation
of the target domain:

• sre18-unlabeled: 2332 target domain unlabeled
recordings (CMN2) provided by NIST.

• vox-unlabeled: 5000 recordings randomly selected
from voxceleb data and considered as unlabeled.

• sre-ara-unlabeled: 700 Arabic recordings collected
from the previous NIST SREs data (SREs 04-08)
and treated as unlabeled.

We used this extended unlabeled data (denoted as
sre18-vox-ara-unlabeled) for centering, whitening and



for adaptation of source to the target domain by using
unsupervised domain adaptation techniques such as cor-
relation alignment and PLDA adaptation. None of our
submitted systems to SRE2018 utilized the CMN2 or
VAST labels during systems’ development.

2.4.2. Frontends and VAD

We extracted MFCC and PLP features from all the record-
ings. All features are of 23-dimensional. Features are nor-
malized using short-time mean normalization technique
with a window of 300-frames. We used unsupervised
GMM- and energy-based voice activity detection for re-
moving non-speech frames [7].

2.4.3. Speaker Embeddings

In this evaluation we made use of i-vector and x-vectors
speaker embeddings for speaker recognition task. None of
the systems based on i-vector representations were made
it to the final fusion. All of our submitted systems use
x-vector speaker embeddings [6].

2.4.4. Post-processing

As a post-processing step, we adapt source data (back-
ground data) to target domain by applying correlation
alignment based domain adaptation technique on speaker
embeddings space. This is an asymmetric adaptation
method that works by aligning the distributions of source
and target features in an unsupervised fashion. This is
achieved by aligning second order statistics [8].

2.4.5. Backend

For scoring, we made use of a probabilistic linear discrim-
inant analysis (PLDA) in combination with a linear dis-
criminant analysis (LDA) dimensionality reduction tech-
nique. Both PLDA and LDA parameters were learned us-
ing sre combined (multi-style data generated on the top of
NIST SREs 2004-2010) data. Unsupervised PLDA adap-
tation was performed on the unlabeled data (sre18-vox-
ara-unlab) for domain adaptation in model domain.

2.4.6. Processing Time

In order to report real time factor we conducted experi-
ments on an Intel(R) Xeon(R) CPU X5650 @ 2.67GHz
with a total memory of 94.5GB. The execution time for
the extraction of x-vectors (VAD segmentation + Features
extraction + extraction of Sufficient statistics + generation
of x-vectors + enrollment + scoring in a single thread is
of 2 times faster than the real time.

For system CRIM ADAPT XV VOX2, we used
background set 2 (as mentioned in 2.4.1) for training
the x-vector speaker embeddings network using 23-
dimensional MFCC features. This system utilizes both
feature-domain and model-domain unsupervised adapta-
tion methods as described in section 2.4.4. For scoring,
similar backend was used as mentioned in 2.4.5.

2.5. CRIM ADAPT V2 2NDR LDA150

For system CRIM ADAPT V2 2NDR LDA150, we used
background set 1 (as mentioned in 2.4.1) for training
the x-vector speaker embeddings network using 23-
dimensional MFCC features. Once training was com-
pleted we re-trained the network using pre-trained model
as initialization. This helped us to improve performance
by 0.5% - 1.0% absolute. This system employs both
feature-domain and model-domain unsupervised adap-
tation methods as described in section 2.4.4. x-vectors
dimension were reduced to 150 by applying LDA. For
scoring, similar backend was used as mentioned in 2.4.5.

2.6. CRIM ADAPT V2 PLP

For system CRIM ADAPT V2 PLP, we used background
set 1 (as mentioned in 2.4.1) for training the x-vector
speaker embeddings network using 23-dimensional PLP
features. This system employs both feature-domain and
model-domain unsupervised adaptation methods as de-
scribed in section 2.4.4. x-vectors dimension were re-
duced to 145 by applying LDA. For scoring, similar
backend was used as mentioned in 2.4.5.

2.7. KaldiXvecWGAN - x-vectors with adversarial
adaptation

In this system we applied adversarial adaptation [9, 10] to
compensate for the domain mismatch between the train-
ing and the test data. The baseline was an x-vector system
trained with the standard Kaldi recipe [6] using the same
data as the TFXvec system described in Section 2.1, ex-
cept that Fisher and voxceleb 1 were not included. The
number speakers in the training set were 12170. The ad-
versarial adaptation was applied to the trained baseline
model. The main differences compared to the adversar-
ial adaptation scheme applied in [10] were:

• We applied adversarial adaptation to all parameters
of an x-vector extractor NN network whereas [10]
applied it to a transformation of i-vectors.

• We included language information as side infor-
mation the network (all layers before the x-vector),
making the NN aware of whether it is processing
data from the source or target domain. This should



in principle help it to better know how to transform
the data.

• We used Wasserstein loss [11, 12] instead of cross-
entropy for the discriminator (a.k.a. critic).

• We applied supervised adaptation using the tele-
phone number as ”speaker IDs”. (Unsupervised
adaptation did not work well.)

Results on the development set are provided in Table 3.
The adversarial adaptation turned out to be effective and
complementary to adaptation of the HTPLDA backend.
However, the system was not good enough compared to
the systems presented in Section 2.1 to 2.3 (with more
training data, attention, score normalization, etc.) and was
therefore not included in the final fusion. A more detailed
description of these experiments are under preparation for
a conference submission.

Table 3. Results for adversarial adaptation. ”HP adp”
refers to adaptation of the HTPLDA backend and ”lan”
refers to adding language information to the x-vector NN.
Here, we used our standard scoring tool instead of the tool
from NIST, and thus all trials are equally weighted. We
did not apply score normalization.

mDCF1 mDCF2 EER(%)

Baseline 0.62 0.68 9.04
Baseline + HP adp. 0.56 0.62 7.35
WGAN 0.55 0.60 8.31
WGAN + lan 0.53 0.59 8.05
WGAN + HP adp. 0.54 0.61 7.44
WGAN + lan + HP adp. 0.52 0.59 7.18

3. SYSTEMS FOR AUDIO FROM VIDEO - VAST

3.1. Diarization

The used speaker diarization method is based on the
Bayesian Hidden Markov Model described in [13], in
which states represent speaker specific distributions and
transitions between states represent speaker turns. The
transitions probabilities are set to favor staying in the
same speakers to avoid too frequent speaker turns. As in
the ivector or JFA models, speaker distributions are mod-
eled by GMMs with parameters constrained by eigenvoice
priors to facilitate discrimination between speakers.

We used 19 MFCC+Energy coefficients (without any
normalization) as features for diarization. We only ran the
diarization on segments that contain speech according to
our VAD. We used 1024-component, diagonal covariance
GMM-UBM, and 400 dimensional i-vectors. The UBM

Table 4. Configuration of TDNN for x-vector extraction
– KaldiXvecVox16k. Bold values are our modifications
of the original [6] architecture. X-vectors are extracted at
layer segment6 before the nonlinearity.

Layer Layer context Input × output

frame1 [t− 2, t+ 2] 115 × 512

frame2 {t− 4, t− 2,
t, t+ 2, t+ 4} 1536 × 512

frame3 {t− 6, t− 3,
t, t+ 3, t+ 6} 1536 × 512

frame4 {t} 512 × 512
frame5 {t} 512 × 1500

stats pooling [0, T ) 1500 × 3000
segment6 0 3000 × 512
segment7 0 512 × 512
softmax 0 512 × N

and the total variability matrix matrix were trained on the
VoxCeleb datasets [14, 15]. A hierarchical agglomera-
tive clustering (AHC) algorithm based on PLDA scores
between i-vectors estimated on 200 ms segments was per-
formed to initialize the assignment of frames to speakers
for the VB algorithm.

The processing time of the VB diarization algorithm
for 10 minute files (considering AHC from the PLDA
scores and VB diarization from pre-extracted features),
ranged from 17s to 50s (real time). The processing time
difference is because the VB algorithm converging time
is dependent on the number of speaker models it is initial-
ized with. On average it is 20 times faster than RT.

3.2. KaldiXvecVox16k and KaldiXvecVox16k ADAPT

3.2.1. x-vector extractor

The system was trained in Kaldi toolkit [5] using sre16
recipe. Standard MFCCs were used together with our
VAD, which is based on phone recognizer trained on
Fisher with 3 variants of Fisher with added noise at dif-
ferent SNR. We dropped all frames that were marked as
silence or noise.

X-vector extractor was trained using VoxCeleb1 and
VoxCeleb2 development data [14, 15] with 16k Hz sam-
pling rate - all recordings from single session were con-
catenated into single audio file with one second of silence
between each segment. We used 512000 augmentations
compared to 128000 in original recipe and ran training
for 9 epochs instead of 3. The configuration of the Time
Delayed Neural Network (TDNN) used for the x-vector
extraction is summarized in Table 4.



Diarization was used for all test files. An x-vector
was extracted for each speaker suggested by the diariza-
tion algorithm. All test x-vectors were compared with the
enrollment x-vector using the PLDA backend described
in the next section and maximum score was chosen as the
representative score for the given trial.

Processing time for x-vector enrollment is similar to
times specified in 2.3.4. For test file it is 5.7 FRT on aver-
age because of the diarization.

3.2.2. PLDA backend

A Gaussian PLDA backend was trained on the augmented
VoxCeleb1 and VoxCeleb2 development data described
in the previous section (around 600k training x-vectors).
Because of the lack of adaptation data similar to the
VAST development and evaluation data not supervised
or unsupervised adaptation was performed for the sys-
tem denoted as KaldiXvecVox16k. For system denoted
as KaldiXvecVox16k ADAPT, we attempted to adapt the
PLDA model to the very limited amount of VAST devel-
opment data. Here, we considered the difference between
the mean of the training x-vectors and the mean of the
VAST development x-vectors and we added the corre-
sponding variance to the within-class covarinace of the
PLDA model.

LDA dimensionality reduction to 160 dimensions
followed by length normalization was applied to the x-
vectors. PLDA with full rank across- and within-speaker
covariance matrices was used. We applied Adaptive
SNorm where a subset of the PLDA training served as the
cohort.

3.3. CRIM NOADAPT V2 PLP

This system is similar to the one described in 2.6. The
only difference is that in this system we did not apply un-
supervised PLDA adaptation.

3.4. CRIM ADAPT 2NDR CW VOX UNL V2 NAP

This system is similar to the one described in 2.5 but
as an additional post-processing step we applied NAP
(before domain adaptation) which tries to make the sub-
sets more similar by projecting away the subspace in
which their means differ. The classes for NAP (nuisance
attribute projection) were the following subsets: sre18-
unlabeled, vox-unlabeled, sre-ara-unlabeled-male, and
sre-ara-unlabeled-female, sre-eng (English recordings
from NIST SREs 2004-2010). After NAP projection we
applied correlation alignment-based unsupervised domain
adaptation. The dimension of x-vectors were reduced fur-
ther to 150 using LDA. For scoring, we made use of same

backend as mentioned in 2.4.5 with unsupervised PLDA
adaptation.

3.5. CRIM NOADAPT V2 2NDR LDA200

This system is similar to the one described in 2.5. The
only difference is that in this system no unsupervised
PLDA adaptation was applied. The dimension of x-
vectors was reduced to 200 using LDA.

4. OPEN CONDITION

Despite our considerable efforts to prepare a system for
the open condition we did not meet the deadline. How-
ever, it is worth mentioning them for completeness.

4.1. Additional training data

For open condition, in addition to the training data men-
tioned in 2.1.1, the following two databases were used:

• Fisher Arabic

• DeepMine speech processing database [16]

After data augmentation and filtering of utterances
and speakers like in closed condition, 2139 speakers from
Fisher Arabic and 1717 speakers from DeepMine were
added to the training data.

4.2. VAD, Features and training archives

Here we used exactly the same VAD and features as in
closed condition. For details please see section 2.1.2. For
creating training archives, we again followed the same
configuration as in closed condition, which resulted in
140 training archives for both Kaldi and Tensorflow.

4.3. Neural net architecture

For open condition we trained three networks: two us-
ing Tensorflow and one with Kaldi. The Tensorflow net-
works are exactly the same as network in Table 1 and its
attention based equivalent. However, the Kaldi network
slightly differs from network in Table 2 and its architec-
ture is shown in Table 5.

5. CALIBRATION & FUSION

The final submission strategy was one common fusion
trained on the labeled development data. Each system
provided log-likelihood ratio scores that could be sub-
jected to score normalization. These scores were first
pre-calibrated and then passed into the fusion. The out-
put of the fusion was then again re-calibrated. We treated



Table 5. NN architecture for x-vector extraction using
Kaldi for open condition. Bold values are our modifica-
tions of the original [6] architecture.

Layer Layer context Input × output

frame1 [t− 2, t+ 2] 115 × 512
frame2 {t− 2, t, t+ 2} 1536 × 512
frame3 {t− 3, t, t+ 3} 1536 × 512
frame4 {t− 3, t, t+ 3} 1536 × 512
frame5 {t− 4, t, t+ 4} 1536 × 1536

stats pooling [0, T ) 1536 × 3072
segment6 0 3072 × 512
segment7 0 512 × 512
softmax 0 512 × N

the telephone data (CMN2) and audio from video (VAST)
separately and we were also calibrating and fusing sepa-
rately on the CMN2 or the VAST labeled development
set.

Calibration was trained with logistic regression op-
timizing the cross-entropy between the hypothesized and
true labels on a corresponding development set. We chose
a generative approach to our fusion which we based on a
Multiclass, multivariate, fully Bayesian, generative Gaus-
sian pattern recognizer (MMFBG1). Our objective was
to improve the error rate on the development set itself,
but we were also monitoring error-rate trends on SRE’16
conditions for telephone systems and on Speakers In The
Wild and Voxceleb1 for VAST systems.

6. FINAL ABC FUSION & SUBMISSION

We have submitted only to the closed condition. We did
try to investigate into the open condition by including
other non-English data, but our resources in this direc-
tions were limited and our efforts did not bring any im-
provements over our closed condition systems at the time
of submission deadline. We briefly describe our efforts
for open condition in 4.

As already stated above, we were treating different
domain (VAST and CMN2) separately and we have just
pooled the scores from the two systems to form our sub-
missions. We did not produce an universal system that
would be tuned for the two domains simultaneously.

6.1. Primary system

For telephone data (CMN2), our primary system is a fu-
sion of three x-vector systems described in sections 2.1,

1https://arxiv.org/abs/1307.6143

2.2 and 2.3.
For audio from video (VAST), our primary system is

a fusion of three systems: two variants of wide-band x-
vector system described in 3.2 and a narrow-band x-vector
system described in 3.3.

It is worth noting that all systems utilize x-vector ap-
proach to extract embeddings and are based on simple
spectral features (MFCCs and PLPs). We have of course
produced also generative i-vector baselines, but we have
seen substantially worse performance on our development
sets. Proper analysis and comparison for SRE18 between
different approaches to extract embeddings will be per-
formed once the keys are released.

Processing time for CMN2 is 3 times x-vector based
system. Real time factor is 1.3 FRT to compute one trial.
But it is faster for more files, because xvectors are reused
and not computed separately for each trial. For VAST it
is slower because of diarization - it is 1.1FRT in total.

6.2. Contrastive 1

Our contrastive system was the best fusion of the CRIM’s
systems. For telephone data, it is a fusion of three systems
described in sections 2.4, 2.5 and 2.6. For VAST, it is a
fusion ot two systems described in sections 3.4 and 3.5.

6.3. Contrastive 2 - single best system

Single best system for telephone data is described in
section 2.2. Single best system for VAST is an adapted
variant of the wide-band system described in section 3.2.
Both systems were included in the primary fusion.

Real time factor is 4 times FRT to compute one trial
(2 xvectors each 8FTR). But it is faster for more files,
because xvectors are reused and not computed separately
for each trial. For VAST it is slower because of diarization
(1 enrollment xvector 8FRT + 1 test xvector 5.7FRT)- it
is 3.3FRT in total.

6.4. Results on NIST 2018 development set

Table 6. Results for Primary system

EER(%) min C act C

CMN2 5.47 0.339 0.348
VAST 7.41 0.152 0.337
Both – – 0.343

Results of individual systems entering the primary
submission computed on all trials without any weighting.



Table 7. Results for Constrastive system

EER(%) min C act C

CMN2 7.02 0.503 0.510
VAST 5.76 0.502 0.716
Both – – 0.613

Table 8. Results for Single Best system

EER(%) min C act C

CMN2 6.27 0.359 0.367
VAST 7.41 0.333 0.453
Both – – 0.410

Note that performance on SRE16 Cantonese is subopti-
mal as these systems used SRE18 unlabeled dev set for
adaptation. We use SRE16 to monitor the robustness of
systems on another completely unseen domain.



Table 9. CMN2 - Note that performance on SRE16 Cantonese is suboptimal as these systems used SRE18 unlabeled
dev set for adaptation.

system condition vastMinDCF vastActDCF sre18MinDCF sre18ActDCF EER

TFXvecAtt sre18 dev cmn2 0.323 0.325 0.510 0.515 0.058
sre16 evl yue 0.403 0.972 0.630 1.941 0.064

TFXvec & (SINGLE & BEST) sre18 dev cmn2 0.288 0.292 0.428 0.434 0.066
sre16 evl yue 0.242 0.243 0.391 0.395 0.048

KaldiBigXvec sre18 dev cmn2 0.309 0.311 0.460 0.465 0.069
sre16 evl yue 0.255 0.255 0.401 0.403 0.055

PRIMARY & FUSION sre18 dev cmn2 0.267 0.268 0.399 0.402 0.058
sre16 evl yue 0.231 0.239 0.363 0.379 0.049

Table 10. VAST
system condition vastMinDCF vastActDCF sre18MinDCF sre18ActDCF EER

KaldiXvecVox16k ADAPT & (SINGLE & BEST) sitw core-core eval 0.145 0.226 0.246 0.426 0.022
sre18 dev vast 0.333 0.453 0.333 0.463 0.059

KaldiXvecVox16k sitw core-core eval 0.144 0.453 0.250 0.679 0.023
sre18 dev vast 0.416 0.416 0.444 0.500 0.063

CRIM NOADAPT V2 PLP sitw core-core eval 0.395 0.701 0.582 0.942 0.069
sre18devvast 0.630 0.831 0.630 0.815 0.058

PRIMARY & FUSION sitw core-core eval 0.153 0.183 0.268 0.349 0.023
sre18 dev vast 0.152 0.337 0.370 0.407 0.040



Table 11. Results on pooled SRE16 - adapted with
SRE16 unlabeld major data. Fusion and calibration is un-
optimal - it is traned on SRE18 CMN2 dev - same as for
our primary submission

EER(%) min C act C

TFXvec 8.11 0.57 1.13
TFXvecAtt 7.77 0.65 0.66
KaldiBigXvec 8.04 0.58 1.60
Fusion 6.99 0.53 1.13

7. REFERENCES

[1] Yingke Zhu, Tom Ko, David Snyder, Brian Mak,
and Daniel Povey, “Self-attentive speaker em-
beddings for text-independent speaker verification,”
Proc. Interspeech 2018, pp. 3573–3577, 2018.

[2] Koji Okabe, Takafumi Koshinaka, and Koichi Shin-
oda, “Attentive statistics pooling for deep speaker
embedding,” arXiv preprint arXiv:1803.10963,
2018.

[3] FA Chowdhury, Quan Wang, Ignacio Lopez
Moreno, and Li Wan, “Attention-based models for
text-dependent speaker verification,” arXiv preprint
arXiv:1710.10470, 2017.

[4] Anna Silnova, Niko Brummer, Daniel Garcia-
Romero, David Snyder, and Lukáš Burget, “Fast
variational bayes for heavy-tailed plda applied to
i-vectors and x-vectors,” in Interspeech 2018,
19th Annual Conference of the International Speech
Communication Association, Hyderabad, India, 2-6
September 2018., 2018.

[5] Daniel Povey, Arnab Ghoshal, Gilles Boulianne,
Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian,
Petr Schwarz, et al., “The kaldi speech recogni-
tion toolkit,” in IEEE 2011 workshop on automatic
speech recognition and understanding. IEEE Sig-
nal Processing Society, 2011, number EPFL-CONF-
192584.

[6] David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur, “X-vectors:
Robust dnn embeddings for speaker recognition,”
Submitted to ICASSP, 2018.

[7] Jahangir Alam, Patrick Kenny, Pierre Ouellet, The-
mos Stafylakis, and Pierre Dumouchel, “Super-
vised/unsupervised voice activity detectors for text-
dependent speaker recognition on the rsr2015 cor-

pus,” in Proc. Odyssey 2014 The Speaker and Lan-
guage Recognition Workshop, 2014, pp. 123–130.

[8] Jahangir Alam, Gautam Bhattacharya, and Patrick
Kenny, “Speaker verification in mismatched con-
ditions with frustratingly easy domain adaptation,”
in Proc. Odyssey 2018 The Speaker and Language
Recognition Workshop, 2018, pp. 176–180.

[9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky,
“Domain-adversarial training of neural networks,”
J. Mach. Learn. Res., vol. 17, no. 1, pp. 2096–2030,
Jan. 2016.

[10] Qing Wang, Wei Rao, Sining Sun, Lei Xie,
Eng Siong Chng, and Haizhou Li, “Unsupervised
domain adaptation via domain adversarial training
for speaker recognition,” in ICASSP. 2018, pp.
4889–4893, IEEE.

[11] Martı́n Arjovsky, Soumith Chintala, and Léon Bot-
tou, “Wasserstein generative adversarial networks,”
in Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, 2017, pp. 214–223.

[12] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu,
“Wasserstein distance guided representation learn-
ing for domain adaptation,” in AAAI. 2018, pp.
4058–4065, AAAI Press.

[13] Mireia Diez, Lukáš Burget, and Pavel Matějka,
“Speaker diarization based on bayesian hmm with
eigenvoice priors,” in Odyssey 2018, The Speaker
and Language Recognition Workshop, 2018.

[14] Arsha Nagrani, Joon Son Chung, and Andrew Zis-
serman, “Voxceleb: A large-scale speaker identifi-
cation dataset,” in Interspeech 2017, 18th Annual
Conference of the International Speech Communi-
cation Association, Stockholm, Sweden, August 20-
24, 2017, 2017, pp. 2616–2620.

[15] Joon Son Chung, Arsha Nagrani, and Andrew Zis-
serman, “Voxceleb2: Deep speaker recognition,” in
Interspeech 2018, 19th Annual Conference of the
International Speech Communication Association,
Hyderabad, India, 2-6 September 2018., 2018, pp.
1086–1090.

[16] Hossein Zeinali, Hossein Sameti, and Themos
Stafylakis, “Deepmine speech processing database:
Text-dependent and independent speaker verifica-
tion and speech recognition in persian and english,”
in Proc. Odyssey 2018 The Speaker and Language
Recognition Workshop, 2018, pp. 386–392.


