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Abstract
We show an effective way of adding context information to
shallow neural language models. We propose to use Subspace
Multinomial Model (SMM) for context modeling and we add
the extracted i-vectors in a computationally efficient way. By
adding this information, we shrink the gap between shallow
feed-forward network and an LSTM from 65 to 31 points of per-
plexity on the Wikitext-2 corpus (in the case of neural 5-gram
model). Furthermore, we show that SMM i-vectors are suit-
able for domain adaptation and a very small amount of adap-
tation data (e.g. endmost 5 % of a Wikipedia article) brings a
substantial improvement. Our proposed changes are compati-
ble with most optimization techniques used for shallow feed-
forward LMs.
Index Terms: language modeling, feed-forward models, sub-
space multinomial model, domain adaptation

1. Introduction
Statistical language modeling is dominated by recurrent neural
networks since around 2010 [1]. RNN LMs achieve the best
test perplexities on most benchmarks and research community
is eager to come up with more complex architectures, e.g. deep
LSTMs [2, 3, 4] and Recurrent Highway Networks [5]. How-
ever, this comes at a cost of increased computational complex-
ity: Aside from ever-increasing size of the models, the recur-
rence itself effectively prohibits parallelization over time.

On the other hand, feed-forward neural models (FN-LM)
still outperform traditional n-grams counting models and are
trivial to parallelize over the length of the sentence. Recently, up
to 100x speed-ups were reported for the standard simple shallow
architecture, achieved by combination of several tricks [6]. This
brings FN-LM on par with n-gram look-up in terms of speed,
making it a convenient choice for practical applications.

Yet, the difference in performance between an FN-LM and
RNN LMs is vast, e.g. on Penn Treebank, single recurrent
model achieves down to 50 PPL [4], while neural 5-grams have
been reported to obtain 140 PPL [7]. This difference obviously
comes from the ability of RNN to extract useful information
from longer context.

There have been some efforts in enhancing RNN LM in-
put by contextual vectors in previous works. Some of these
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Figure 1: Neural 5-gram model enhanced by an SMM document
i-vector (iFN-LM). Green nodes represent replacing word index
by word embedding (trained together with rest of the model, no
external word2vec model is used). Gray node provides the i-
vector to the model. A separate weight matrix is associated
with every thick line in the schema.

approaches are oriented at collecting word-level context fea-
tures [8, 9]. An influential paper from Chen et al. [10] provides
an overview of incorporating “show-vectors”1 derived from dif-
ferent topic models into RNN LMs. However, the discussed
topic models consider the topic to be a categorical variable,
which is unsuitable for further neural processing.

To address these issues, we propose to enhance FN-LMs
by a document summary i-vector estimated from a variant of
Subspace Multinomial Model (SMM) [11]. This way, we al-
low the model to exploit a long context. Vectors obtained from
SMM contain topic-specific information, but represent it as a
Gaussian-distributed deviation from certain mean statistics.

In order to give a fair picture of the performance of our pro-
posed model, we not only show the improvement from a base-
line shallow network, but we also display the performance gap
to an appropriately big LSTM.

2. Subspace Multinomial Model
Let there be D documents consisting of words from a vocabu-
lary V . In the following definitions, d indexes a specific docu-
ment and j indexes a specific word wj from V . Then, cd is a
|V |-dimensional vector of counts of individual words in a given
document d.

Subspace Multinomial Model (SMM) [12], originally pro-
posed for modeling discrete prosodic features, can be used as
a probabilistic model of word densities in such documents. An
SMM treats words in the document as independent events, ef-
fectively modeling unigram probabilities:

1Work was done in context of BBC shows.
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(a) Oracle i-vector (b) Partial i-vector (c) Domain-adaptation i-vector

Figure 2: Different schemes of i-vector extraction used in this work. Blue color represents part of the document from which the i-vector
is extracted. Red arrow shows what part of the document will an LM process with this specific i-vector. Oracle i-vectors (a) are used
for all language model training in this work. Partial i-vectors (b) are used in Section 6 for comparison with other language models.
Domain-adaptation i-vectors (c) are used in Section 7 to simulate a situation, where additional topic-related data is available. Note
that (a) and (c) only compute one i-vector per document. Partial i-vectors are computed after every block of words (typically 10–30).

Pd(wj) = softmax(ηd)j (1)
Here, ηd are (unnormalized) unigram log-probabilities.

The key idea of SMM is to model them in a low-dimensional
subspace:

ηd =m+ T id (2)

Here, m ∈ R|V | is a global mean vector, typically close
to the global unigram log-probabilities. Matrix T ∈ R|V |×K

defines a K-dimensional subspace, where the variablity will be
modeled. Document specific vector id ∈ RK — from now
on called document i-vector, thanks to an analogy with a con-
cept used in speaker recognition — captures the deviation of
the document from the global mean, in the subspace spanned
by columns of T .

An SMM is trained to maximize the log-probability of
training documents:

D∑

d=1

logP (cd|T ,m, id) =
D∑

d=1

|V |∑

j=1

cdj logP (wdj) (3)

During inference, only a new i-vector is found, that explains
the document vector ĉ the best; T andm are left untouched.

In this work, we use the l1-SMM variant [11], which adds
regularization term to the objective function (3): An l1 regular-
ization on the entries of matrix T and l2 regularization on the
i-vectors themselves.

For details of the training procedure, see the respective pa-
per [11]. We use a publicly available implementation2 of l1-
SMM to obtain i-vectors.

3. Combining SMM i-Vectors with a
Feed-Forward Neural Language Model

Next, we seek to combine i-vectors with an actual language
model. As we foresee that an LSTM-based language model
already captures a lot of topic-related information in its hidden
state, we focus on feed-forward networks.

As the baseline, we use a shallow feed-forward neural net-
work (FN-LM) [13]. We refer to this architecture as neural n-
grams. Its operation is given as follows:

yt = softmax(Oht + bo) (4)
ht = tanh(W 1et−1 + · · ·+W n−1et−n+1 + bh) (5)
Here, et ∈ RE is an embedding of the input word at

timestep t. Matrices W 1,...,n−1 ∈ RH×E project the respec-
tive word embeddings to the hidden layer.

To incorporate SMM i-vectors, we replace (5) by:

ht = tanh(W 1et−1 + · · ·+W n−1et−n+1 +W ii+bh)
(6)

2https://github.com/skesiraju/smm
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Figure 3: Cosine similarity of two i-vectors: One summarizing
the complete document, the other summarizing only a prefix of
an increasing length. The solid line represents an average over
validation documents; error bars represent 2 standard devia-
tions. The dotted line represents the worst case for that partic-
ular length of prefix.

Here, i ∈ RK is the document i-vector. Matrix W i ∈ RH×K

is used to project the i-vector to the same hidden space where
the input words are aggregated. We call the resulting model
i-vector feed-forward neural language model (iFN-LM, Fig-
ure 1).

As K � |V |, the increase in number of parameters is neg-
ligible.

Furthermore, by inspecting (6), we see that the i-vector
is treated as an additional word embedding. Therefore, opti-
mization based on caching projected word embeddings [6] are
straightforward to apply. Further optimizations based on chang-
ing activation function of the hidden layer or replacing the soft-
max with NCE are completely independent of this change.

4. Using the WikiText-2 Corpus
We perform all our experiments on the WikiText-2 (WT2) cor-
pus introduced by Merity et al. [14]. This dataset contains high
quality articles from English Wikipedia. The training set con-
sists of 2 million tokens. The vocabulary is reduced to 33k
unique words by replacing infrequent words by an <unk> sym-
bol. It is less pre-processed than other datasets: the vocabulary
contains numbers, punctuation, certain mark-up tags, and capi-
talization has been kept.

In order to extract i-vectors from sensible chunks of text,
we split the corpus back into individual articles. This way, we
work with 600 training documents and 60 validation ones. The
test set also contains 60 documents.

However, we use this new information only to (1) com-
pute i-vectors from respective chunks of data and (2) shuffle
the documents between epochs. When training any recurrent
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Table 1: Performance of different unigram language models on
the WT2 validation set. The first two rows and the last one show
performance of regular unigram models.

Source of probabilities test PPL

Train data 911
Validation data 715

Partial i-vector, k=50 684
Partial i-vector, k=200 783
Oracle i-vector, k=50 667
Oracle i-vector, k=200 635

Specific document 252

networks, we pass the hidden state over document boundaries
and the models are therefore comparable. Anyway, we found
that zeroing the hidden vectors on beginning of documents has
negligible impact on final perplexity.

While we work with the original vocabulary for all per-
plexity evaluations, we use a different setup for training the
SMM and subsequently estimating i-vectors: We use the
CountVectorizer component from Scikit-Learn [15] to
lowercase all data, ignore punctuation and remove non-ASCII
symbols. This way, the SMM vocabulary is reduced to 29k
unique words.

5. Behaviour of Partial i-Vectors
Since we want to compare iFN-LM with other LMs in terms of
perplexity, we cannot extract i-vectors from whole documents
in test time, as that would mean that iFN-LM could access fu-
ture words. This leads to extracting i-vectors from the data the
LM has already processed. However, it would be costly to re-
compute the i-vectors at each timestep. Also, we do not want
the iFN-LM to respond to local variations in i-vectors, as those
are generally not informative about the topic.

Therefore, we first explore how partial i-vectors (Figure 2b)
differ from the oracle i-vector (Figure 2a) as the former repre-
sent an increasing portion of a document. We do this in two
experiments on the validation data: First, we compute cosine
similarity between the partial and the oracle i-vector in the K-
dimensional latent subspace. Second, we construct a simple
language model conditioned on the i-vectors and compare the
perplexity with other unigram models:

p(wj |i) = softmax(Oi+ b)j (7)

We have performed these experiment with two different i-
vector extractors, with latent representations of K = 50 and
K = 200 dimensions. Both regularization coefficients (l1 on
T and l2 on id) were set to 10−4. We have trained the models
using orthant-wise learning [11] until convergence.

Figure 3 shows how partial i-vectors evolve in the latent
space. We can see that both SMM models produce partial
i-vectors that converge consistently to the oracle i-vector, in
term of cosine similarity. Additionaly, the standard deviation
of cosine similarity is rather small. And as expected, the 50-
dimensional SMM is more robust in extracting partial i-vectors.

Table 1 compares i-vector LMs with different unigram
models. We can see that all i-vector systems perform better than
the unigram LM estimated on the training data. Further, we see
that in case of K = 50, LM based on partial i-vectors is also
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Figure 4: Performance of neural n-gram models as a function
of their size. We display the best model by validation perplexity,
selecting from different dropout values and random initializa-
tions.

better than the unigram LM estimated on the validation data.
For K = 200, the noise in partial i-vectors becomes too large
and the resulting system is worse than the validation unigrams.

Given the above results, we use the 50-dimensional SMM
for further experiments; we train with oracle i-vectors and we
evaluate as appropriate.

6. Evaluating Perplexity Improvements
While the main goal is to show how iFN-LM can be used to
achieve improvements in domain adaptation setup, it is instruc-
tive to first study its impact on test perplexity, just as other LM
works report. To do so, we process the validation and the test
data using the partial i-vectors scheme (Figure 2b).

6.1. Training details

We implemented the model using PyTorch [16]3. We optimized
the models using Stochastic Gradient Descent without momen-
tum. We started with learning rate 1 and halved it if the valida-
tion perplexity measured at the end of an epoch did not improve.
We were training on 20 documents in parallel, processing 30
successive words in parallel (like typical RNN LM with batch
size 20 and BPTT 30). We were training the models until con-
vergence, which occurred typically in less than 30 epochs. We
experimented with different values of dropout in range 〈0, 0.5〉,
applied to the word embeddings and the hidden layer. When ex-
perimenting with the size of the model, we kept the embeddings
as long as the hidden layer, i.e. E = H .

The LSTM models we use as contrastive systems were
trained using the cuDNN blackbox implementation, as exposed
by PyTorch. These models have 2 layers of LSTM. In this case,
we set the initial learning rate to 20 and we clipped gradient
norms at 0.25.

We did not use Monte-Carlo dropout [17] in test-time.

6.2. Results

We evaluate the model in terms of perplexity on the test portion
of WT2. We explore the performance of the model as a function
of the size of the hidden layer, see Figure 4.

We can see that the gain from adding i-vectors into the sys-
tem is significant and consistent, for all considered model sizes
and history lengths. As expected, the biggest improvement is

3https://www.github.com/ibenes/BrnoLM
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Figure 5: Performance of different models in the case of domain
adaptation. The x-axis goes over amount of data excluded from
evaluation and used for domain adaptation, see Figure 2c for
illustration. Thus, on the left end, the i-vectors are estimated
from the least amount of data (as little as endmost 5 % of ev-
ery document), while in the right, only a very short prefix of
documents is used for perplexity computation.

achieved in case of the weakest — 3-gram — system. However,
the 5-gram and 7-gram systems benefit a lot as well.

It is interesting that 5-gram and 7-gram i-vector systems
are already close to each other in performance, approximately
twice closer than their i-vector-free counterparts. From this, we
hypothesise that the specific word-order only matters in a short
window before the current timestep and older history can be
quite effectively modeled by its unigram statistics. Similar ef-
fect is exploited by classical n-gram cache models [18].

7. Domain Adaptation Scenario
Finally, we seek to evaluate iFN-LM in a simulated domain-
adaptation setup. We do this by dividing every document in the
test set into two parts (Figure 2c): A prefix of the data is pro-
cessed by the LM — this is the scored part of the document. The
remaining suffix is used for estimate the corresponding i-vector.
Note, that this way we never use the introductory paragraph for
i-vector estimation.

We pick the best performing models by validation perplex-
ity from Section 6, both with and without i-vectors. Then, we
evaluate their test perplexity in the domain-adaptive setup, with
the size of domain section ranging from 0.05 to 0.95. Results
are presented in Figure 5 as a function of the relative size of the
domain section.

The results imply that systems employing i-vectors are
rather robust to the amount of data used for i-vector estimation:
Even when using as little as 5 % of the data for i-vector estima-
tion, a 3-gram iFN-LM is slightly better than a 5-gram FN-LM,
and a 5-gram iFN-LM outperforms a 7-gram FN-LM by a large
margin. Further, while it always helps to add more domain data
for i-vector estimation, the improvements are modest once we
use at least 20 % of the documents.

The LSTM model shows an interesting behaviour, which
is convenient to analyze from right to left. It works well for
very short prefixes of the documents. This is in line with the
performance of FN-LMs, which suggest that the initial parts of
the documents are actually easy data. Then, as the processed
portion of every document grows, the performance gets worse
and the effect is much more pronounced than in case of feed-
forward models. Once at least 20 % of every document has been

Table 2: Performance of best models with different length of
considered history. In case of domain adaptation, initial 75 %
of every document is used for scoring, i-vector is extracted from
the remaining 25 %.

LM scoring Domain adaptation
Model FN-LM iFN-LM FN-LM iFN-LM

3-gram 189.13 143.80 189.09 149.09
5-gram 165.00 131.35 164.99 135.78
7-gram 158.18 127.90 158.20 134.16

LSTM 100.45 104.61

seen (point 0.8 in the graph), LSTM gives better average per-
formance as more and more of the document is processed. We
hypothesise that this gradual improvement actually corresponds
to the LSTM building a better topic representation in its hidden
state. The degradation of performance in the right end, before
the breaking point at 0.8, remains unexplained.

8. Summary of the Results
To summarize our experiments, we compare the best achieved
results in every category. Table 2 captures the perplexities on
the test portion of WT2.

We see that iFN-LM always outperforms a simple FN-LM
by a significant margin. In the case of regular LM scoring, the
addition of i-vectors effectively halves the distance between the
feed-forward model and an LSTM. This approximately holds
also for domain adaptation, despite the noisy estimate of the
i-vectors.

We have also experimented with addition of i-vectors into
the LSTM, but achieved improvements were negligible, around
1 point of PPL.

9. Conclusions
In this work, we have enhanced a shallow feed-forward neural
language model with document summary i-vector extracted us-
ing a Subspace Multinomial Model, abbreviating the resulting
model as iFN-LM. This contextual information is introduced in
such a way, that is has a negligible impact on the total number
of parameters. Also, as the i-vector can be formally understood
as an additional word embedding, iFN-LM is open to all opti-
mizations applied to FN-LM.

We have first explored behaviour of SMM i-vectors when
they are computed from different amounts of data. Based on
our findings, we proposed an effective way of training, when a
single i-vector represents the whole document during the train-
ing of any language model. Then, we have trained iFN-LMs
of different sizes on the WikiText-2 dataset. These models al-
ways outperformed their i-vector-free counterparts by a signif-
icant margin, on average halving the gap to a two-layer LSTM
having the same number of hidden units per layer.

Finally, we have shown that iFN-LM can be success-
fully exploited in domain adaptation setup. We have observed
that SMM i-vectors introduce significant performance improve-
ments already when extracted only from 5 % of the respective
documents.

Our future work in this direction will be oriented towards a
detailed analysis of topic representation inside the hidden layers
of LSTM LMs.
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