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ABSTRACT

In this work, we present a language identification (LID) system
based on embeddings. In our case, an embedding is a fixed-length
vector (similar to i-vector) that represents the whole utterance, but
unlike i-vector it is designed to contain mostly information relevant
to the target task (LID). In order to obtain these embeddings, we
train a deep neural network (DNN) with sequence summarization
layer to classify languages. In particular, we trained a DNN based
on bidirectional long short-term memory (BLSTM) recurrent neural
network (RNN) layers, whose frame-by-frame outputs are summa-
rized into mean and standard deviation statistics. After this pooling
layer, we add two fully connected layers whose outputs correspond
to embeddings. Finally, we add a softmax output layer and train the
whole network with multi-class cross-entropy objective to discrimi-
nate between languages. We report our results on NIST LRE 2015
and we compare the performance of embeddings and corresponding
i-vectors both modeled by Gaussian Linear Classifier (GLC). Using
only embeddings resulted in comparable performance to i-vectors
and by performing score-level fusion we achieved 7.3% relative
improvement over the baseline.

Index Terms— Embeddings, language recognition, LID, DNN

1. INTRODUCTION

Similarly to other fields in speech research [1], neural networks (NN)
are becoming an essential building-block of different components
also in language recognition systems. One of the most prominent
uses of DNNs in today’s language recognition systems (as well as
in speaker recognition and in speech recognition) are the bottleneck
features (BNF). Bottleneck features were originally developed for
speech recognition [2, 3, 4] and were later very successfully ap-
plied also to language recognition [5, 6, 7, 8, 9] and speaker recogni-
tion [10, 11, 12], where they are the basis of state-of-the-art systems
and where they gradually replaced traditional acoustic features like
Mel-Frequency Cepstral Coefficients (MFCC) or Perceptual Linear
Prediction coefficients (PLP).
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The fact that these feature vectors are extracted for every frame
of an utterance (as well as senone posteriors are used in [13]), pro-
ducing a variable-length sequence, poses a challenge in modeling.
This has been addressed by the concept of i-vectors, where we ex-
tract a compact fixed-length representation of a whole utterance,
derived as a point estimate of the latent variable in a factor anal-
ysis model [14, 15]. In language recognition, systems based on i-
vectors [16, 17] are very common and provide the state-of-the art
performance with models as simple as the Gaussian Linear Classi-
fier (GLC) [18].

More recently, the use of DNNs have been explored in text-
dependent speaker recognition to replace GMM and i-vectors in or-
der to obtain an utterance level representation usually referred to as
embedding. The embedding is usually obtained by using a pooling
mechanism, for example the mean over the framewise outputs of one
or more layers in the DNN [19] or by the use of a recurrent NN [20].

Naturally, similar ideas have been applied also for language
recognition. For instance, outputs of hidden layers are averaged
over time and stacked together in [21], forming a representation for
the utterance in a high-dimensional space; or in [22], where one
of the layers in the DNN averages frame-by-frame activations, and
posteriors produced by the network are used for LID as end-to-end
approach. Also, [23] presents a DNN-based system which learns
language dependent vectors with angular proximity loss function.

Recently, a fairly simple architecture that can be directly applied
or modified also for LID has been developed for text-independent
speaker verification in [24]. Here, embeddings are obtained as out-
puts of two hidden layers (after pooling mean and standard deviation
over time), while training the whole network with multi-class cross-
entropy for speaker identification. Subsequent modeling of embed-
dings with Probabilistic Linear Discriminant Analysis [25] (PLDA)
achieves a performance comparable to i-vectors.

Motivated by all this, we developed a DNN-based language
recognition system with embeddings, following the approach used
for speaker verification in [24]. In particular, we use bidirectional
long short-term memory (BLSTM) recurrent layers in order to ex-
ploit the temporal information of the signal (whose frames are rep-
resented by bottleneck features), before the sequence summarizing
layer. Then, we pool together the mean and standard deviation statis-
tics from the output of this frame-by-frame part of the DNN (over
all frames of an input sequence). The pooled mean and standard
deviation are then forwarded through two additional fully connected
hidden layers, whose outputs will be used to extract the utterance
level embeddings. Finally, a softmax layer is used as output layer,
and the network is trained with multi-class cross-entropy objective
to discriminate between languages.

Unlike [22], we used the extracted embeddings (instead of pos-
teriors) to train a generative model for classification (GLC). Our ar-
chitecture is also simpler than the one presented in [21], with smaller
embedding layers, and yields better results.
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We compare the performance of the system based on embed-
dings with a corresponding i-vector system that is trained using the
same features. We report the performance on the NIST LRE 2015
and achieve comparable results which suggests that systems based
on embeddings are a viable approach to be explored for LID. Fi-
nally, we further improve the results of the strong baseline by means
of a score-level fusion which suggests that the DNN modeling has
been able to extract complementary information out of the same bot-
tleneck features.

2. THE NIST LRE 2015 DATASET

We report our results on the most recent and challenging NIST LRE
2015 benchmark [26]. The data that we used for training the DNN
and subsequent Gaussian Linear Classifiers are composed of the
dataset shipped by NIST for the fixed condition of the evaluation.
Our bottleneck feature extractor was on the other hand trained on
the Fisher English corpus instead of the allowed Switchboard.

The NIST LRE 2015 dataset consists of recordings from 20 dif-
ferent languages, clustered into six groups according to language
similarities [26]. A training dataset provided by NIST was split
into two disjoint parts: training and development (dev) datasets [27].
These datasets were created by randomly selecting 60% for the train-
ing part and 40% for the dev set. The segments belonging to the
development set were further split into short cuts of different dura-
tions that contain from 3 to 30 seconds of speech. After splitting the
data and dividing the dev segments into cuts, we ended up with 3042
segments (248 hours of speech) in training set and 42295 segments
(146 hours of speech) in dev set.

Moreover, a balanced training subset (up to 15 h per per lan-
guage) was randomly selected and used for the DNN training (the
one used as embedding extractor) and UBM training of the refer-
ence i-vector system in order to partially compensate big differences
in the amount of available training data per language. However, no
data augmentation was performed for the classes with less than 15 h
of speech. The resulting dataset contains 2316 segments out of orig-
inal 3042. Furthermore, we randomly selected 979 segments (up to
50 per language) from the dev set for the purposes of cross-validation
and model selection during DNN training.

Finally, we used the full train set (3042 segments) to train the
GLC and the dev set was used to obtain calibration parameters. The
systems were evaluated on the full LRE 2015 evaluation dataset,
which consists of 164334 test segments of different durations.

3. DNN EMBEDDINGS FOR LANGUAGE
IDENTIFICATION

In this section, we describe the proposed architecture of the DNN
that is trained to classify languages and at the same time provides
fixed-length embeddings that summarize the whole utterance and ex-
tract useful information about the language.

3.1. Input features

A bottleneck feature vector is generally understood as a by-product
of forwarding a primary input feature vector through a DNN and
reading off the vector of values at the bottleneck layer. In this work,
we feed the embedding DNN with stacked bottleneck feature (SBN)
vectors.

In our case, they are extracted from a cascade of two DNNs
trained for the task of automatic speech recognition (ASR). Thus,
the bottleneck feature vector output by the first network is stacked in

time, defining context-dependent input features for the second one
(hence the term “stacked”). The input features for this first DNN are
24 log Mel-scale filter bank outputs augmented with 2 fundamental
frequency features based on [28], resulting in a 26-dimensional fea-
ture vector. Then, mean subtraction is applied at the utterance level,
and Hamming window followed by DCT consisting of 0th to 5th
base are applied on the time trajectory of each parameter resulting in
(24 + 2) × 6 = 156 coefficients to feed the first network. The bot-
tleneck outputs from the first network (80 dimensional) are sampled
at times t− 10, t− 5, t, t+5 and t+10, where t is the index of the
current frame. The resulting 400-dimensional features are then used
as inputs for the second stage DNN.

Both DNNs were trained using Fisher English corpus and have
the same architecture: three hidden layers with 1500 hidden units
each, a bottleneck layer (dimensionality set to 80 and 30 for the first
and second network, respectively), and an output layer with 9824
outputs (triphones).

The 30 dimensional bottleneck outputs from the second DNN
(referred to as SBN) are the final features used in this work.

3.2. Architecture

The DNN used to extract the embeddings is depicted in Fig. 1. The
structure was inspired by the architecture used in [24], but we in-
troduced some modifications. Generally speaking, we can split the
DNN into two parts separated by the pooling layer.
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Fig. 1. Architecture of the proposed DNN for language recognition
with embeddings.

The first part of the DNN (up to the pooling layer) works on
a frame-by-frame basis. It consists of two bidirectional LSTM
(BLSTM) layers followed by a fully connected layer, with 256 hid-
den units each. We used recurrent layers based on LSTM units due
to their success in related works ([29, 30]) and its ability to deal with
temporal information, especially over short utterances (Time Delay
NN architecture (TDNN) was used in [24] instead).

Then, the pooling layer computes mean and standard deviation
of the previous layer activation values (over all the frames in a given
input sequence), and is further followed by two fully connected lay-
ers whose outputs are later used to extract embeddings. Finally, the
output is a 20-dimensional softmax layer that provides a vector of
language posterior probabilities for each utterance.

Sigmoid activation function was used as a non-linearity for all
hidden units.
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3.3. Training

The embedding DNN is trained to optimize multi-class cross-
entropy loss function, via Adam optimizer. To reduce over-fitting,
dropout rate of 30% was used in the BLSTM layers for both cells
and gates. Gradients are estimated over batches of 200 samples. The
maximum number of iterations (epochs) for all experiments was
set to 200, and the final model was selected according to the best
accuracy on the validation set.

During training, both train and validation segments were split
into 3 second sequences (300 frames) with no overlap and no stack-
ing of frames. This resulted in 173109 samples (sequences) for train-
ing (approximately 144 h of speech), and 3631 samples for valida-
tion (about 3 h of speech).

3.4. Embedding extraction

Once the DNN is trained, input features for each segment are for-
warded through the network up to the embedding layers in order to
obtain the embedding-based representation.

It should be pointed out that even though we feed the DNN with
3 second segments during training, this is not done for the embed-
ding extraction. In order to extract embeddings for each utterance,
we do not constrain the length of the segment to 3 seconds, but in-
stead we forward the whole segment to obtain one embedding per
utterance from each embedding layer.

The extracted embeddings are used either independently or con-
catenated as a fixed-length utterance representation for the LID back-
end (GLC).

4. LID SYSTEM BACKEND

In order to compare the performance of i-vectors and the proposed
embeddings, both were modeled and calibrated in the same man-
ner. We also briefly mention the fusion of the two systems since it
brought an improvement in performance over the i-vector baseline.

4.1. Reference i-vector model

The i-vector based system used as reference in this work follows the
classical i-vector pipeline [16] for LID. A diagonal-covariance UBM
with 2048 components was trained using the same 30 dimensional
stacked bottleneck features described in section 3.1.

For the purposes of GMM and i-vector extractor training, we
used the same balanced dataset as for the embedding-DNN (up to
15 h per language). The total i-vector extractor was trained in 10
iterations and the dimensionality of i-vectors was set to 600.

4.2. Gaussian Linear Classifier

A simple Gaussian Linear Classifier [16, 18] is used on top of the
i-vectors or embeddings in order to obtain the vector of 20 class-
conditional log-likelihoods for each segment. Model of each lan-
guage is represented by a Gaussian distribution with mean computed
over i-vectors of given language and covariance matrix that is com-
puted over all training data and which is shared across all models.
This generative model is trained on the full training dataset.

4.3. Calibration and fusion

We trained a multi-class logistic regression on top of the develop-
ment set scores (log-likelihoods) to obtain a scaling factor and offset

vector. All of the scores (dev end eval) are then transformed (cali-
brated) using these parameters.

In the results section, we report also starred versions of the
Cavg [26] (dev∗ and eval∗). This means that instead of being trained
on a separate held-out calibration set (development set), the cali-
bration parameters were trained on that set itself. The difference
between starred and non-starred Cavg suggests the dataset shift
between development and evaluation sets or calibration problems.

We also provide results of the score level fusion in section 5.3
again obtained by means of logistic regression. Each pre-calibrated
system gets a single trainable scale factor, while every language gets
a trainable score offset.

The parameters are trained via optimizing multi-class cross-
entropy, using a flat prior over all 20 languages for both pre-
calibration and fusion.

5. EXPERIMENTS AND RESULTS

In this section, we present the results of our proposed embedding
system and the corresponding baseline i-vector system in terms of
average Cavg as defined for NIST LRE 2015 [26]. First, we analyze
the performance achieved with i-vectors and embeddings of different
size in Table 1. Then, encouraged by the results of smaller embed-
dings, we analyze the effect of further reducing the dimensionality
with PCA in Tables 2 and 3. Given the fact that our DNN is trained
directly for the given task, we also analyze the performance when
taking DNN posteriors as scores in Table 4. Finally, we perform a
score level fusion and we show in Table 5 that the DNN was able to
extract complementary information and our systems fuse well with
the i-vector baseline.

5.1. Embeddings

Inspired by the DNN architecture used in [24] for text-independent
speaker verification, we started our experiments with two embed-
ding layers of sizes 512 and 300 respectively. We experiment with
using the two embeddings independently and stacking both of them.
Results can be seen in Table 1.

Table 1. Comparison of i-vectors with embeddings of different size.

Cavg × 100

System dev∗ eval eval∗

Reference i-vector 4.54 16.93 14.91

DNN 1 emb a (512) 5.92 20.26 18.68
DNN 1 emb b (300) 4.47 19.03 16.25
DNN 1 emb a conc b (812) 5.77 20.04 17.87

DNN 2 emb a (256) 4.71 18.82 16.52
DNN 2 emb b (150) 4.75 19.04 16.71
DNN 2 emb a conc b (406) 4.88 19.19 16.84

DNN 3 emb a (128) 5.51 19.02 17.01
DNN 3 emb b (75) 4.76 19.05 16.62
DNN 3 emb a conc b (203) 5.37 19.30 16.93

When looking at the results on dev set in Table 1, we see that
embeddings achieved similar performance as the very competitive
i-vector baseline. The differences in performance on the evaluation
set suggest that the embeddings extracted from the discriminative
model are more sensitive for the domain shift which is happening
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between dev and eval datasets. Similar differences between Cavg

and C∗
avg for both embeddings and i-vectors suggest that both sys-

tems received comparable calibration.
By comparing the results of embeddings of different size, we see

a better performance of DNN 2 system which produces embeddings
of the half size w.r.t. DNN 1 (DNN 3 further halves the embeddings
of DNN 2). This behavior was expected as compared to the system
in [24] we deal with a closed-set problem and much lower number
of classes. These results also suggest that the embeddings of larger
size contain more detrimental information about channel as all net-
works reached the same performance on the training data. Motivated
by this observation, we explore further dimensionality reduction via
Principal Component Analysis (PCA) in Tables 2 and 3.

As shown in Table 2, reducing the dimensionality of concate-
nated embeddings from DNN 1 by PCA improves the results. The
best performance is achieved by keeping the first 100 dimensions
which results in approximately 7% relative improvement on eval.

Table 2. Applying PCA to concatenated DNN 1 embeddings.

Cavg × 100

PCA dim dev∗ eval eval∗

No PCA (812) 5.77 20.04 17.87
500 5.02 19.26 16.55
300 4.38 18.79 15.99
100 3.89 18.67 16.05
25 5.67 19.98 17.91

Finally, we compare the PCA post-processing using the concate-
nated embeddings from all DNNs in Table 3. We can observe that
with smaller embeddings, we are able to reduce the dimensional-
ity further to 25 and still gain some performance improvement. We
achieved the best results with embeddings from DNN 2 whose con-
catenated dimensionality 406 is close to the typical i-vector (400 or
600). In terms of Cavg , we achieved the performance of 17.44%
which is already close to our i-vector baseline with 16.93%.

Table 3. Applying PCA to concatenated embeddings.

Cavg × 100 (eval)

System None 100 25

DNN 1 emb a conc b (orig 812) 20.04 18.67 19.98
DNN 2 emb a conc b (orig 406) 19.19 18.11 17.44
DNN 3 emb a conc b (orig 203) 19.30 18.70 18.13

5.2. Posteriors

As our DNNs for embedding extraction are in fact trained to discrim-
inate between languages, and softmax layer outputs corresponding
posterior probabilities for each of the 20 target languages, we also
analyze the use of these posteriors directly as scores. This approach
corresponds to the end-to-end training and the results are summa-
rized in Table 4. Although results on the dev set are similar to the i-
vector system, this approach seems to generalize slightly worse than
raw embeddings.

Comparing results in Tables 3 and 4, we can observe that PCA-
reduced embeddings safely outperformed the system based on pos-
teriors. Our results suggest that using embeddings together with a

simple model (GLC) is a viable research direction, especially if we
consider that the DNN does not necessarily have to be trained exactly
on the target languages.

Table 4. Performance of individual DNN systems when taking pos-
terior probabilities as scores.

Cavg × 100

System dev∗ eval eval∗

Ref. i-vector 4.54 16.93 14.91
DNN 1 posteriors 4.90 20.37 17.26
DNN 2 posteriors 3.94 19.68 16.64
DNN 3 posteriors 5.00 19.76 16.95

5.3. Fusion

In this section, we present improvements obtained with a simple
score level fusion (as described in section 4.3) between the reference
i-vector system and the best embedding-based system presented in
previous sections (DNN 2 emb a conc b + 25 dimensional PCA).
We also show the fusion of the reference i-vector system and the
posterior probability outputs from the network. Looking at Table 5,
we can see that both fusions improve results, suggesting that these
different approaches can extract complementary information from
the same input features.

Table 5. Comparison of single systems and their fusions.

Cavg × 100

System dev∗ eval eval∗

(1) Ref. i-vector 4.54 16.93 14.91
(2) DNN 2 emb a conc b + PCA (25) 3.67 17.44 15.86
(3) DNN 2 posteriors 3.94 19.68 16.64

Score fusion (1)+(2) 2.99 15.69 13.52
Score fusion (1)+(3) 3.04 16.41 13.19

6. CONCLUSIONS

In this work, we presented a DNN architecture with embeddings for
language identification. The DNN is trained to discriminate between
languages and at the same time learns an utterance level representa-
tion of input segments. These fixed-length representations i.e., em-
beddings are further used to train a generative classifier (GLC). This
is a novel approach for the problem of LID and is in line with the re-
search that has proven to be promising for speaker verification [24].
Our results are comparable with a state-of-the-art i-vector system on
the NIST LRE 2015 setup. Also, we would like to highlight that
using embeddings instead of posteriors from the DNN provided bet-
ter results, and points towards the direction of training more gen-
eral DNNs i.e., trained on much larger and variable set of languages,
that can provide more general embeddings usable across various LID
tasks.
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Reynolds, and Réda Dehak, “Language recognition via i-
vectors and dimensionality reduction,” in Proceedings of In-
terspeech 2011, 2011, pp. 857–860.
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and Najim Dehak, “Exploiting hidden-layer responses of deep
neural networks for language recognition,” in Proceedings of
Interspeech 2016, 2016.
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marizing neural networks for spoken language recognition,” in
Proceedings of Interspeech 2016, 2016, pp. 3285–3289.

[23] G. Gelly and J.L. Gauvain, “Spoken language identification
using lstm-based angular proximity,” in Proceedings of Inter-
speech 2017, 2017.

[24] David Snyder, Daniel Garcia-Romero, Daniel Povey, and San-
jeev Khudanpur, “Deep neural network embeddings for text-
independent speaker verification,” in Proceedings of Inter-
speech 2017, 2017.

[25] S. J. D. Prince, “Probabilistic linear discriminant analysis for
inferences about identity,” in Proc. International Conference
on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007.

[26] “The 2015 NIST Language Recognition Evaluation
Plan (LRE15),” http://www.nist.gov/itl/iad/mig/upload/
LRE15 EvalPlan v23.pdf.
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