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Abstract

In this work, we analyze different designs of a language iden-
tification (LID) system based on embeddings. In our case, an
embedding represents a whole utterance (or a speech segment
of variable duration) as a fixed-length vector (similar to the i-
vector). Moreover, this embedding aims to capture information
relevant to the target task (LID), and it is obtained by training a
deep neural network (DNN) to classify languages. In particular,
we trained a DNN based on bidirectional long short-term mem-
ory (BLSTM) recurrent neural network (RNN) layers, whose
frame-by-frame outputs are summarized into mean and standard
deviation statistics for each utterance. After this pooling layer,
we add two fully connected layers whose outputs are used as
embeddings, which are afterwards modeled by a Gaussian lin-
ear classifier (GLC). For training, we add a softmax output layer
and train the whole network with multi-class cross-entropy ob-
jective to discriminate between languages. We analyze the ef-
fect of using data augmentation in the DNN training, as well as
different input features and architecture hyper-parameters, ob-
taining configurations that gradually improved the performance
of the embedding system. We report our results on the NIST
LRE 2017 evaluation dataset and compare the performance of
embeddings with a reference i-vector system. We show that
the best configuration of our embedding system outperforms the
strong reference i-vector system by 3% relative, and this is fur-
ther pushed up to 10% relative improvement via a simple score
level fusion.

1. Introduction
Deep neural networks (DNN) are nowadays a fundamental part
of speech processing systems [1] and, in particular, their use
in language recognition systems has outperformed many clas-
sical frameworks such as i-vectors based on acoustic features
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like Mel-Frequency Cepstral Coefficients (MFCC) or Percep-
tual Linear Prediction coefficients (PLP).

These DNNs have been included in different stages on lan-
guage recognition pipeline. One of their most common appli-
cations is to function as feature extractors, where a DNN is
trained to discriminate between phonetic units and then, the out-
put of a relatively small hidden layer (bottleneck) is used as a
new frame-by-frame representation of the input signal, replac-
ing MFCC or other traditional features. These bottleneck fea-
tures are widely used in language recognition [2, 3, 4, 5, 6] and
speaker recognition [7, 8, 9, 10], after their success in speech
recognition [11, 12].

The fact that these feature vectors are extracted for every
frame of an utterance (as is the case also for MFCCs or PLPs),
producing a variable-length sequence, poses a challenge in fur-
ther modeling. This has been addressed by the concept of i-
vectors, where we extract a compact fixed-length representa-
tion of a whole utterance, derived as a maximum a posteriori
(MAP) point estimate of the latent variable in a factor analysis
model [13, 14]. In language recognition, systems based on i-
vectors [15, 16] are very common and provide the state-of-the
art performance with classifiers as simple as the Gaussian Lin-
ear Classifier (GLC) [17].

Recently, approaches based on DNNs with a pooling mech-
anism, for obtaining an utterance level representation (usually
referred to as embedding), have been explored in speaker recog-
nition [18, 19, 20, 21].

In [22] a similar architecture to the one used in [20] has
been applied for the task of language identification (LID), show-
ing comparable performance to the one achieved by a com-
petitive i-vector system on the challenging NIST LRE 2015
dataset [23]. In that work, embeddings are obtained as outputs
of two hidden layers that follow after the pooling layer, which
is computing the mean and standard deviation over all frame-
by-frame outputs from a previous layer. The whole network
is trained with multi-class cross-entropy objective to classify
languages and extracted embeddings are then modeled same as
i-vectors with a simple Gaussian Linear Classifier (GLC).

In this work, we continue the research started in [22] while
exploring and analyzing DNN embeddings for language recog-
nition on the most recent NIST LRE 2017. In particular, we
describe the embedding subsystem submitted to this last NIST
LRE [24], and analyze further improvements made after the
evaluation period. We study the influence of increasing the size
of our original system architecture, as well as the performance
when using different input features and a wide range of aug-
mented training data. Performance for different test segment
duration is also analyzed.

We compared the system based on embeddings with a cor-
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responding i-vector system, both trained on the same features,
and we were able to gradually improve the performance of the
embedding system via increasing the model size and the amount
of training data until we clearly outperformed the system based
on i-vectors. We achieved further improvement by a score-level
fusion of both systems, i-vector and embedding, suggesting that
embeddings are able to extract complementary information to i-
vectors.

2. The NIST LRE 2017 database
In this section, we describe the original database provided by
NIST for LRE 2017, and explain how the data has been aug-
mented by adding noise and reverberation.

2.1. Original data provided by NIST

We experiment with the most recent NIST LRE 2017 [25]. This
benchmark consists of five clusters of similar languages, with a
total of fourteen different languages, as shown in Table 1.

Table 1: Language and clusters of the NIST LRE 2017 dataset.

Cluster Languages

Arabic Egyptian Arabic, Iraqi Arabic,
Levantine Arabic, Maghrebi Arabic

Chinese Mandarin, Min Nan

English British English, General American English

Slavic Polish, Russian

Iberian
Caribbean Spanish, European Spanish,
Latin American, Continental Spanish,
Brazilian Portuguese

In particular, we focused on the primary (fixed) condition
(except for the experiments with multilingual bottleneck fea-
tures) and we used all data supplied by NIST (training and de-
velopment) for this condition. All data was down-sampled to
8kHz.

For training the neural network used as bottleneck feature
extractor, we used the annotated Fisher I and II databases pro-
vided for the evaluation, with three copies of noisy and rever-
berated variants of the original audio files. For the experiments
with multilingual bottleneck features, this neural network was
trained using the 17 languages from BABEL program dataset 1.

In order to train the embedding neural network, we used the
set of training data released as such by the organizers, which
consists of 16205 utterances. We added two thirds of the devel-
opment data to this set, using the remaining third as a validation
set. We cut long segments from the development set expanding
it to 6090 segments. Therefore, 20301 segments were used for
training the embedding extractor and 1994 were used for vali-
dation (model selection).

For training the UBM and i-vector extractor of the reference
system, just the LRE 2017 training data was used.

Regarding the final classification stage, the training data
and the two thirds of the development set were also utilized
to train the Gaussian Linear Classifier (GLC) used as backend
for both embeddings and i-vectors. Calibration and fusion pa-
rameters were obtained using the whole development set (6090
segments).

1Collected by Appen, http://www.appenbutlerhill.com

Finally, the systems were evaluated on the full LRE 2017
evaluation dataset, which consists of 25451 test segments of ap-
proximately 3, 10 or 30 seconds of speech.

2.2. Augmented dataset

In order to analyze how the data augmentation affects the per-
formance of embedding systems, we used different techniques
to obtain corrupted copies of the DNN training data (includ-
ing the two thirds of development data used as training). The
augmented data were then used together with the original audio
files to train the DNN used for embedding extraction. In partic-
ular, we added noise and reverberation and we also changed the
tempo (speed) of the recordings.

For the noisy dataset, we prepared a set of noises that con-
sists of three sources of different types of noise:

• 272 samples taken from the Freesound library 2 (real fan,
HVAC, street, city, shop, crowd, library, office and work-
shop).

• 7 samples of artificially generated noises: various spec-
tral modifications of white noise + 50 and 100 Hz hum.

• 25 samples of babbling noises by merging speech from
100 random speakers from Fisher database using speech
activity detector.

These noises were then added to original training data at
SNR levels sampled from two ranges: 0-8 dB and 8-20 dB.

Regarding reverberation, we used a set that consists of real
Room Impulse Responses (RIR) from several databases: AIR
[26], C4DM [27, 28], MARDY [29], OPENAIR [30], RVB
2014 [31], RWCP [32]. Together, they form a set of RIR that
simulates different types of rooms: small rooms, big rooms, lec-
ture room, restrooms, halls, stairs, etc. All room models have
more than one impulse response per room, i.e. different RIR
was used for source of the signal and source of the noise to sim-
ulate different locations of their sources.

We also changed the audio playback speed (tempo) to 0.9
and 1.1 of original speed. We used SoX tool which changes
speed of audio files but keeps their original pitch.

Finally, these perturbations are combined so that reverber-
ation is applied to audio files already corrupted with noise, or
noise is added on top of audio files where the tempo has been
modified (referred to as noised tempos in the experimental part).

3. Stacked bottleneck features
A bottleneck feature vector is generally understood as a by-
product of forwarding a primary input feature vector through
a DNN and reading off the vector of values at the bottleneck
layer. In this work, we feed the embedding DNN with stacked
bottleneck feature (SBN) vectors.

In our case, they are extracted from a cascade of two DNNs
trained for the task of automatic speech recognition (ASR).
Thus, the bottleneck feature vector output by the first network
is stacked in time, defining context-dependent input features for
the second one (hence the term “stacked”). The input features
for this first DNN are 24 log Mel-scale filter bank outputs aug-
mented with 2 fundamental frequency features based on [33],
resulting in a 26-dimensional feature vector. Then, mean sub-
traction is applied at the utterance level, and Hamming window
followed by DCT consisting of 0th to 5th base are applied on the
time trajectory of each parameter resulting in (24+2)×6 = 156

2http://www.freesound.org
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coefficients to feed the first network. The bottleneck outputs
from the first network (80 dimensional) are sampled at times
t − 10, t − 5, t, t + 5 and t + 10, where t is the index of the
current frame. The resulting 400-dimensional features are then
used as inputs for the second stage DNN.

DNNs used as bottleneck feature extractors have the same
architecture: three hidden layers with 1500 hidden units each, a
bottleneck layer and an output layer. The dimensionality of the
bottleneck layer is set to 80 for the first network and either 30
or 80 (depending on the experiment) for the second one. For the
experiments with monolingual bottleneck features (SBN30), we
trained the networks with Fisher English (I and II), and with
9824 outputs (triphones). For experiments with multilingual
bottleneck features (SBN80, ML), we used BABEL dataset with
17 languages and 15558 outputs (tied triphones per each lan-
guage). This network is trained using block softmax as output
layer [34].

The outputs from the bottleneck layer of the second DNN
(referred to as SBN) are the final features used in this work as
input vectors for both embedding and i-vector systems.

4. DNN-based embedding system
In this section, we describe the embedding DNN used in this
work. This DNN is trained to classify the 14 target languages,
and it is used as embedding extractor. It is meant to provide
fixed-length embeddings that summarize the whole segment or
utterance and extract useful information about the language.
Thus, it is not used as end-to-end system for LID from the out-
put posterior probabilities but as embedding extractor. Classifi-
cation is further performed through a Gaussian linear backend
(described in section 6).

4.1. Architecture

The architecture of the embedding DNN used in this work fol-
lows the same structure as the one used in [22], with some
changes for different experiments.

The DNN consists of two parts separated by the pooling
(summarizing) layer. The first part, which works on a frame-
by-frame basis, comprises two bidirectional LSTM (BLSTM)
layers with 256 cells each, followed by a fully connected layer.
These recurrent layers based on BLSTMs have proven their
ability to deal with temporal information without stacking of
input features (especially for very short segments in LID) [35]
as they take into account the information learned from previous
(and following) frames in the input sequence of features. Af-
ter these BLSTM layers, we add a single fully connected layer,
which size is set to 256 (for small DNN) or 1500 (for large
DNN) depending on the experiment.

A subsequent pooling layer computes mean and standard
deviation statistics over the frame-by-frame outputs of the pre-
vious layer, summarizing the information of a given input se-
quence. The output of this pooling layer is forwarded through
two additional fully connected layers, whose output values will
be later used as embedding representations of the input utter-
ance. The size of these embedding layers are set to 512 and 300
for the small architecture, or 512 each for the large network.

Finally, the output is a 14-dimensional softmax layer that
provides a vector of language posterior probabilities for each
utterance. We used a sigmoid activation function as a non-
linearity for all hidden units. An example of this architecture
is depicted in Figure 1.
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Figure 1: Architecture of the proposed embedding DNN for lan-
guage recognition. The size of the layers that are not specified
in this figure varies according to the experiment.

4.2. Training

The DNN used to extract the embedding representations of ut-
terances is first trained to classify sequences among the set
of 14 target languages. The loss function that is optimized is
multi-class cross-entropy, via Adam optimizer. To reduce over-
fitting, dropout rate of 30% was used in all layers, including also
dropout for gates on the recurrent BLSTM layers. The maxi-
mum number of iterations (epochs) for all experiments was set
to 400, and the final model was selected according to the best
accuracy on the validation set.

During training, gradients are estimated over batches of 210
samples. These batches are created randomly selecting 9 sec-
onds of speech (3 fragments of 3 seconds of speech) from 70
different input audio files. The length of input sequences is set
to 3 seconds of speech (300 frames). One epoch is completed
when all the files from the input list are seen by the network.
The training list is different depending on the experiment, and
therefore, different number of hours are used for training de-
pending on the available data for that experiment (amount of
augmented data), ranging from approximately 50.7 to 558 h per
epoch (from the experiments with just original audio files to the
experiment with 11 copies).

Validation segments are the same in all the experiments, and
were split into 3 second sequences, resulting in 23782 samples
for validation (about 19 h of speech).

4.3. Embedding extraction

For the embedding extraction, input features for each segment
are forwarded through the already trained DNN up to the em-
bedding layers in order to obtain the embedding-based repre-
sentation. Thus, the output layer is not used in this stage.

Even though we feed the DNN with a fixed length of se-
quences of 3 seconds during training for our experiments (ex-
cept one experiment presented in section 7.4), the length of
the segments for the embedding representation extraction is not
constraint. Instead, for this forward pass, the whole segment is
used as input to the DNN to obtain one embedding per utterance
from each embedding layer.

Finally, the extracted embeddings are concatenated as
a fixed-length utterance representation for the LID backend
(GLC).
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5. Reference i-vector system
In order to compare performance of embeddings for the LID
task, we use as reference two state-of-the-art i-vector based sys-
tems. These systems follow the classical i-vector pipeline [15]
for LID.

In particular, two diagonal-covariance UBMs with 2048
and 4096 Gaussian components respectively were trained us-
ing the same 30 dimensional stacked bottleneck features that
we used to train the embedding DNN, described in section 3.
We also trained the systems after adding their delta coefficients,
i.e. using 60-dimensional input feature vectors.

For the purposes of GMM and i-vector extractor training,
we used only the original LRE 2017 training dataset (with no
augmentation and without the two thirds of development data).
The total i-vector extractor was trained in 10 iterations and the
dimensionality of i-vectors was set to 600 and 800 for each of
the systems.

6. LID backend
6.1. Gaussian Linear Classifier (GLC)

The Gaussian Linear Classifier (GLC) is a simple and com-
monly used backend for LID [15, 17].

This backend is used in our experiments on top of both
i-vectors and embeddings, in order to obtain the vector of 14
class-conditional log-likelihoods for each segment.

The model of each language is represented by a Gaussian
distribution with mean computed over i-vectors or embeddings
of each given language and a shared covariance matrix that is
computed over all training data as a weighted average of within-
class covariance matrices. This generative model is trained on
the full training list, with no data augmentation.

6.2. Calibration and fusion

After scoring, our score vectors obtained as outputs of the GLC
are pre-calibrated. Also, in section 7.5, we present a score level
fusion of two systems (i-vector and embeddings) which are pre-
viously pre-calibrated.

For the purpose of pre-calibration and fusion, a simple
solution was chosen to avoid over-training. Thus, a multi-
class logistic regression model is trained using the scores (log-
likelihoods) from the development set (including our short
cuts).

For pre-calibration, each individual system has a trainable
scale factor and an offset vector. For fusion, each system gets
a single trainable scale factor, while every language gets a
trainable score offset. The parameters are trained via optimiz-
ing prior-weighted multi-class cross-entropy, using an uniform
(flat) prior over all 14 languages for both pre-calibration and
fusion.

6.3. Evaluation metrics

In order to compare the results of the experiments in this work,
we use the primary metric for LRE 2017 Cprimary as defined
in the evaluation plan [25], computed with the available NIST
tool.

Moreover, we show some results using the Cavg metric used
in previous LRE 2015 evaluation [23].

7. Experiments and results
7.1. Results for reference i-vector systems

To establish baselines for our embedding systems, we list the
results of the i-vector systems based on the same 30 dimensional
SBN features in Table 2. We present two variants with smaller
and larger UBM and i-vector size. The performance of a larger
system with SBN30D features is clearly the best and would be
also among the best single systems we developed for NIST LRE
2017 [36]. For the smaller system we also present the variant
without including the delta coefficients to have an exact match
of the input features with many of our embedding systems.

Table 2: Results of i-vector reference systems comparing dif-
ferent input features (SBN30 with and without deltas), and size
of UBM and i-vector dimensionality. GLC backend is used on
top of the i-vectors.

Cprimary × 100

Input features 2048/600 4096/800

SBN30 23.58 -
SBN30D (+deltas) 19.80 18.53

7.2. Experiments on input features and different architec-
tures for embeddings

In this section we present results of embedding systems with
larger and smaller model and compare three different input fea-
tures and two training sets. Results are summarized in Table 3.

Table 3: Results comparing different input features (SBN),
training data lists and architectures of the DNN. Both columns
show results on stacked embeddings (a+b) with GLC backend.

Cprimary × 100

Small (812) Large (1024)

Max. 15h per language, SBN30 24.07 22.20

Full list, SBN30 22.18 19.86
Full list, SBN30D (+deltas) 21.69 18.95
Full list, SBN80 (ML) 23.41 20.18

Full list, SBN30 + 2 noises 20.60 19.03
Full list, SBN80 (ML) + 2 noises 20.62 18.32

The two architectures used for these experiments, referred
to as small and large, follow the structure shown in Figure 1.
They consist of an input layer (with 30, 60 or 80 input units de-
pending on the features), followed by two BLSTM layers (256
cells each) and a fully connected layer, which size is set to 256
for the small network and 1500 units for the large one. Then,
after the pooling layer, the two hidden layers whose outputs are
used as embeddings, have 512 and 300 units for the small net-
work, and 512 units each for the large architecture. Output lay-
ers are both 14 dimensional layers, corresponding to the target
languages of this work.

As we can see, the large configuration outperforms the
small one in all the cases. The stacked embeddings are 1024-
dimensional for the big network, and 812-dimensional for the
other, which might influence these gains. Moreover, increas-
ing the size of the layer before pooling allows the network to
capture more information from the frame based part, and these
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larger statistics that are further propagated through the DNN
should contain a better summary for the utterance level side of
the network.

In Table 3, we compare results on two different training
lists. The first row shows results using a training list that con-
strains the maximum number of hours per language to 15 h,
which was our submission for the NIST LRE 2017. This was
done in order to partially compensate the unbalanced dataset
available. However, using the full training list has proven to
work better in our setup.

Furthermore, we explore three different input features. All
of them are stacked bottleneck (SBN) features extracted as de-
scribed in section 3. We experimented with 30-dimensional
SBN (SBN30), trained with just English data, and their 60-
dimensional variant that contains delta coefficients (SBN30D).
According to these results, including this temporal information
at the input seems beneficial for the task, even though the archi-
tecture based on BLSTM is also taking into account the context
of each frame given in the input sequence. These delta coeffi-
cients also helped the i-vector reference system. We also used
80-dimensional SBN from a multilingual network, which out-
performs systems using SBN30 when noisy data is included in
the training list. This suggests that increasing the input fea-
ture size (and therefore the whole model size) makes the net-
work more prone to overfitting or simply too large to train on
a smaller dataset and that can be partially compensated by aug-
menting the training data with their noisy versions. The last two
rows of the table show that adding noisy data outperforms re-
sults with just original data for both architectures and different
input features. Next section further explores and extends this
training data augmentation.

7.3. Experiments on data augmentation for embeddings

Deep neural networks are known to be prone to overfitting,
which in our setup was supported by the existing gap in perfor-
mance between the held-out subset separated from the devel-
opment set (whose remaining two thirds were included in the
training set for the embedding DNN) and the actual evaluation
dataset.

Increasing the amount of training data partially solves that
problem. In our case, we extended the training dataset by per-
forming data augmentation through addition of noise, reverber-
ation and tempo variations of original audio files as described
in section 2.2.

In Table 4, we compare the performance of embedding sys-
tems trained with up to 11 copies of the original training data
with different augmentations. These results are also presented
graphically in Figure 2 showing the Cprimary × 100 metric
and grouped by number of copies. Although we will discuss
results using the primary metric of the NIST LRE 2017, Table 4
also includes results on Cavg as defined in LRE 2015 for the
sake of comparison with results split per test segment durations
in section 7.4.

General trends show that increasing the number of copies
of the data yields improvements in performance. In particu-
lar, adding any noisy version of the data (combined or not with
other corruptions) for training the embedding extractor makes
the system more robust against data mismatch and brings grad-
ual performance gains. The only two cases in which data aug-
mentation does not improve the system trained only on original
data are the ones in which just reverberation or tempo variations
without any noise addition are performed over the original audio
files. In these cases, the performance is even slightly degraded.

Table 4: Results with different data augmentations for DNN
training with GLC backend. Results are shown as Equalized
Cprimary × 100 from NIST LRE 2017 and Cavg × 100 from
LRE 2015.

Training data Cprimary Cavg

Original 19.86 3.97

+ 1 reverb (clean) 20.33 4.06
+ 1 reverb (noise 8-20dB) 19.01 3.90
+ 1 noise (8-20dB) 19.40 3.77

+ 2 noises 19.03 3.85
+ 2 tempos 20.06 3.97
+ 2 reverbs 19.40 3.99
+ 2 noised tempos 18.84 3.73

+ 2 tempos + 1 noise (8-20dB) 19.57 4.00

+ 2 noises + 2 tempos 19.37 3.81
+ 4 noised tempos 18.95 3.93
+ all (4) noises (8-20dB) 18.64 3.79

+ all (7) noises 18.69 3.82

+ all (10) augmentations 17.96 3.67

We have also performed a similar analysis for the i-vector
system, where we did not see any benefits from data augmenta-
tion [24].

7.4. Results per duration

In order to evaluate how the embedding systems are influenced
by the use of 3 second sequences for training, we show some
examples of performance split by test segment durations (3, 10,
30 seconds and all pooled together) in Figure 3.

In this figure, we show the results in terms of Cavg × 100
and we experiment with the system from the fourth row in Ta-
ble 4 (with one noisy copy of the data). Blue bars correspond to
training with fixed-length 3 second sequences and yellow bars
correspond to the system where each minibatch was selected
to contain sequences of random duration between 2 and 3 sec-
onds. Despite the restriction in input sequences length, the blue
system still performs better even for the shortest duration con-
dition (3s) and keeps a small performance gain also for longer
durations. So far, we were not able to exploit variable training
segment durations to achieve better performance or robustness
of our DNN embedding architecture.

In Figure 4, we also present the comparison of performance
between the best embedding system (the last row of Table 4)
and the best i-vector system (SBN30D, 4096/800). The embed-
ding system outperforms the i-vector system for all durations,
increasing the gap in performance for shorter durations.

7.5. Fusion i-vector and embeddings

Both i-vector and embedding extractors are trained on top of the
same bottleneck features. However, these utterance representa-
tions are extracted with very different models, which are likely
to leverage different information contained in the initial frame
representation of the signal.

This hypothesis is supported by the 10% relative improve-
ment w.r.t. the best reference i-vector system (see Table 5), ob-
tained with a simple score level fusion of the best i-vector and
embedding system. This result suggests that i-vectors and em-
beddings are complementary representations of the same utter-
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Figure 2: Influence of the number of copies of the original data
used to train the DNN in the performance (Cprimary × 100) of
the resulting embeddings for LID.
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Figure 3: Comparison of performance (in terms of Cavg× 100)
split by test segment duration between two embedding systems
with fixed or variable sequence length in the DNN training.

ances, which can be exploited to create a better and more robust
LID system.

8. Conclusions
Recently, DNNs trained to extract utterance level embeddings
have become a fair competitor to traditional i-vectors for both
speaker [20] and language recognition [22]. In this work, we
explored an architecture for the embedding DNN based on
BLSTMs and we analyzed the effect of data augmentation and
different configurations of bottleneck features on DNN training
and performance of the LID system. We have also compared
how are the embedding systems performing with segments of
different durations and compared the results with i-vectors.

We have performed our analyses on the most recent NIST
LRE 2017 and our results suggest that the proposed DNN sys-
tems are data-hungry, and that adding noise to the original train-
ing data in combination with other perturbations such as re-
verberation or speed changes significantly improves the perfor-
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Figure 4: Comparison of performance (Cavg × 100) per du-
ration between the best embedding system (all augmentations)
and the best reference i-vector results.

Table 5: Results of i-vector system, best embedding system and
score level fusion.

System Cprimary × 100

i-vector (4096/800) 18.53
Embeddings (best, all augm) 17.96

Fusion (score level) 16.66

mance.
The best configuration of the embedding system outper-

forms already the strong i-vector system, and a simple score
level fusion of both approaches is able to further improve the
overall LID performance. We consider DNN embeddings to
be a promising line for research in language recognition and
related fields, since they provide compact utterance representa-
tions and achieve state-of-the-art results.
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[4] Pavel Matějka, Le Zhang, Tim Ng, Harish Sri Mallidi,
Ondřej Glembek, Jeff Ma, and Bing Zhang, “Neural net-
work bottleneck features for language identification,” in
Proceedings of Odyssey 2014. 2014, International Speech
Communication Association.

44



[5] F. Richardson, D. Reynolds, and N. Dehak, “Deep neural
network approaches to speaker and language recognition,”
IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1671–
1675, Oct 2015.

[6] Bing Jiang, Yan Song, Si Wei, Jun-Hua Liu, Ian Vince
McLoughlin, and Li-Rong Dai, “Deep bottleneck features
for spoken language identification,” PloS one, vol. 9, no.
7, pp. e100795, 2014.

[7] Daniel Garcia-Romero and Alan McCree, “Insights into
deep neural networks for speaker recognition,” in INTER-
SPEECH 2015, 16th Annual Conference of the Interna-
tional Speech Communication Association, Dresden, Ger-
many, September 6-10, 2015, 2015, pp. 1141–1145.

[8] Sibel Yaman, Jason Pelecanos, and Ruhi Sarikaya, “Bot-
tleneck features for speaker recognition,” in Proceedings
of Odyssey 2012. 2012, International Speech Communica-
tion Association.

[9] Mitchell McLaren, Yun Lei, and Luciana Ferrer, “Ad-
vances in deep neural network approaches to speaker
recognition,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP
2015, South Brisbane, Queensland, Australia, April 19-
24, 2015, 2015, pp. 4814–4818.

[10] Alicia Lozano-Diez, Anna Silnova, Pavel Matějka, Ondřej
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bek, Ondřej Novotný, Jan Pešán, Karel Veselý, Lucas On-
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