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ABSTRACT

This paper deals with far-field speaker recognition. On a cor-
pus of NIST SRE 2010 data retransmitted in a real room
with multiple microphones, we first demonstrate how room
acoustics cause significant degradation of state-of-the-art i-
vector based speaker recognition system. We then investigate
several techniques to improve the performances ranging from
probabilistic linear discriminant analysis (PLDA) re-training,
through dereverberation, to beamforming. We found that
weighted prediction error (WPE) based dereverberation com-
bined with generalized eigenvalue beamformer with power-
spectral density (PSD) weighting masks generated by neural
networks (NN) provides results approaching the clean close-
microphone setup. Further improvement was obtained by
re-training PLDA or the mask-generating NNs on simulated
target data. The work shows that a speaker recognition system
working robustly in the far-field scenario can be developed.

Index Terms— Speaker recognition, microphone array,
beamforming, dereverberation, audio retransmission

1. INTRODUCTION

Performances of close-talk speaker recognition (SR) have sig-
nificantly improved in the past 10 years, mainly due to the in-
troduction of i-vectors [1]. However, far-field recognition still
remains challenging. The reason is a distortion of the original
speech signal. When a speaker talks in a room, sound waves
propagate through air and get reflected on walls and obsta-
cles. Owing to absorption of materials, they are attenuated
and then they spread to the room again. It results in reverber-
ation. Therefore, a microphone records multiple copies of the
original speech.

Following [2], methods coping with reverberation can be
divided into two groups: front-end- and back-end-based. As
far as front-end-based approaches are considered, Cepstral
Mean and Variance Normalization (CMVN) [3] of features
is a straightforward option since it has been shown to cope
well with convolutive distortion. However, a room impulse
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response (RIR) usually exceeds the length of a spectral anal-
ysis window, thus CMVN cannot tackle the effect of late re-
verberation. It can be then treated as an additive noise [4].

There have been other successful works related to re-
verberation-robust feature extraction. Zhang et al. [5] made
use of deep neural networks (DNN). In this case, authors
used DNN-based bottleneck features. The DNN is capable of
transforming reverberant Mel-frequency cepstral coefficients
(MFCC) to a new more discriminative space. They also pro-
posed to map noisy features to their clean counterparts with
denoising autoencoder (DAE).

When dealing with reverberation on a signal level, weight-
ed prediction error (WPE) methods [6, 7] have proven to be
very efficient at suppressing room acoustic effects. They are
based on delayed linear prediction and are suitable for speech
enhancement. Improvements in automatic speech recognition
using the WPE are described for instance in [8].

Some methods (such as the WPE) may process both
single- and multi-channel data. Therefore, multiple simulta-
neously recording microphones organized in microphone ar-
rays [9] may be used when dealing with far-field recognition.
The microphone arrays can serve as noise suppressors and
at the same time means for dereverberation, as they mitigate
the effects of reflected signals to some extent. Beamforming
usually denotes steering the microphone arrays to a specific
direction: among such techniques, the most intuitive one is
delay-and-sum (DS) [10], using the fact that a sound wave
impinges on different microphones at different time instants
due to propagation delay. However, DS neglects the effect of
room acoustics. Another beamformer is minimum variance
distortionless response (MVDR), meant to suppress spatially
correlated noise [9]. The MVDR beamformer is a result of
optimization problem which minimizes the residual noise
of the output subject to a distortionless constraint [11]. Re-
cently, neural networks (NN) were incorporated into acoustic
beamforming [12]. Heymann et al. employed them to es-
timate masks for noise and target signals that are used to
compute power spectral density (PSD) matrices of noise and
speech, respectively. Having them, the MVDR or generalized
eigenvalue (GEV) beamformers [13] can be expressed.

The following text is structured as follows: In section 2,
a new dataset is described. SR system parameters are given
in section 3. Section 4 deals with performed experiments.
Finally, conclusions are drawn in section 5.
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Fig. 1. Floor plan of the room in which the retransmission
took place. Coordinates are in meters and lower left corner is
the origin. Dashed rectangle borders area displayed in Fig-
ure 3.

2. TEST DATASET

To evaluate the impact of room acoustics on the accuracy of
speaker recognition and efficiency of dereverberation meth-
ods, a proper dataset of reverberant audio is needed. An alter-
native that fills a qualitative gap between unsatisfying simula-
tion (despite the improvement of realism [14]) and costly and
demanding real speaker recording is retransmission. We can
also advantageously use the fact that a known dataset can be
retransmitted so that the performances are readily comparable
with known benchmarks.

The retransmission took place in a room whose floor plan
is displayed in Figure 1. The loudspeaker-microphone dis-
tance rises steadily for microphones 1. . . 6 to study deterio-
ration as a function of distance. Microphones 7. . . 12 form a
large microphone array to explore beamforming.

For this work, a subset of data released for NIST Year
2010 Speaker Recognition evaluations (SRE) was retransmit-
ted. The dataset consists of 932 recordings with durations
of three and eight minutes; 459 files include female voices
and 473 include male voices. The total number of speakers is
300: 150 males and 150 females. Recordings from all micro-
phones were synchronized at sample precision. The dataset is
being gradually enlarged incorporating yet other rooms with
different acoustics and recording procedures. BUT plans to
release the dataset when finished; the version used to produce
our results is available now on request.

3. SPEAKER RECOGNITION SYSTEM

In all the experiments we used an i-vector based speaker
recognition system [1]. It comprises the classical components
of feature extraction, universal background model represented
by Gaussian mixture model (GMM-UBM), i-vector extrac-
tion, and probabilistic linear discriminant analysis (PLDA).

We used Mel-frequency cepstral coefficients (MFCC) of

dimension 60 (including ∆ and ∆∆) as features. They were
extracted from recordings in 10 ms steps (window length was
20 ms) and short time CMVN with 3-second window was im-
plicitly applied to them. Such features were used for training
of gender-independent GMM-UBM with 2048 components.
The training dataset, which was a subset of PRISM set [15],
consisted of 15600 telephone and microphone files including
both female (1174) and male (813) speakers. Given a set of
features and with the use of the GMM-UBM, sufficient statis-
tics were computed. I-vectors, based on statistics, of dimen-
sion 600 were projected to 200-dimensional space using lin-
ear discriminant analysis (LDA). Latent variables in PLDA
were of the same dimension. I-vector extractor and PLDA
were trained on 86680 telephone and microphone files from
PRISM set including 9663 female and 7013 male speakers.

4. EXPERIMENTS

All the results of experiments presented in this section are
expressed in equal error rates (EER). For convenience, we
show only female test data results. The baseline accuracy –
2.5% EER – was obtained on clean test data before the re-
transmission (original system, clean test data in Table 1).

4.1. Adverse effects of distance on speaker recognition
The aim of the first experiment was to discover whether there
is a significant correlation between loudspeaker-microphone
distance and SR accuracy. Therefore, we evaluated retrans-
mitted test data captured by individual microphones with the
original SR system. The results are displayed in Figure 2.
All the microphones were intentionally divided into groups:
line, array and auxiliary. Inter-microphone distance of sen-
sors lying on line is one meter. All of them are in front of the
loudspeaker and the line connecting them runs in the direc-
tion of sound wave propagation. Microphones seven to twelve
form a microphone array. The remaining sensors are auxil-
iary. Regarding line, an approximate correlation deflected by
local acoustic conditions is visible. The same holds for auxil-
iary microphones. The reason for lack of correlation in array
is illustrated in Figure 3. Apparently, loudspeaker directivity
pattern is the cause (see microphones 9 and 10 that are in line
with the loudspeaker diaphragm).

4.2. System adaptation
Since the SR system consists of multiple components (sec-
tion 3), adaptation may be performed on different stages of
the processing chain. Our previous experiments revealed that
mainly PLDA adaptation is of interest due to a great impact
on results and low computational demands [16].

To adapt generatively trained PLDA, we performed train-
ing data augmentation by introducing close-to-target data to
learn the far-field recordings channel. Since there is not much
reverberant data for supervised PLDA training, we used im-
age method simulation of room acoustics [17, 18] to obtain
room impulse responses (RIR). The PLDA training data then
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Fig. 2. Correlation between loudspeaker-microphone dis-
tance and EER on female test data.

Fig. 3. Floor plan cutout with interpolated EER values on fe-
male recordings. (The top-right corner values may be incor-
rect because we do not have enough data for interpolation.)

consisted of (i) the original training data as described in sec-
tion 3, (ii) a copy of the original training data (same number of
files) convolved with RIRs of simulated rooms with random
dimensions and random placement of microphones. Volumes
of simulated rooms ranged from 18.4 m3 to 600 m3 (volume
of the real room falls within this interval). The result of de-
scribed adaptation is referred to as adapt simu in Figure 4.

Next, we wanted to examine the adaptation using retrans-
mitted data. Owing to the lack of such data we followed jack-
knifing schema: the test data were divided into two equally
large parts from each microphone. Each of them contained
the same number of both male and female speakers. Then the
PLDA was trained on the original data with the first part of the
test data (the original training dataset was extended by 6524
files) and then tested on the second part of the test data. This
was repeated with swapped splits and the outcomes averaged.
The results are shown in Figure 4 – adapt retrans. It is visible
that the performance is worse compared to adapt simu. How-
ever, it is worth mentioning that relative average improvement
of EER for adapt simu is 40.3% and 32.5% for adapt retrans.
However, adapt simu PLDA saw much more reverberant data
than adapt retrans which might be the reason for having big-
ger improvement. We created a concatenated condition with
both simulated and retransmitted data which is denoted as
adapt both and we see that there is a nice improvement of
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Fig. 4. Comparison of system adaptation methods in terms of
EER. Only female test recordings are considered.

the adapt simu which shows that the in-domain data helps. It
should be also noted that adapt retrans assumes knowledge of
the target room and positions of microphones; none of them
might be known in a real scenario.

4.3. Dereverberation
Two techniques for dereverberation were explored: weighted
prediction error (WPE) and denoising/dereverberation neu-
ral network autoencoder (DNS). For application of WPE, we
used Matlab p-code1 by the authors of [6, 7].

The autoencoder used for denoising/dereverberation con-
sists of three hidden layers with 1500 neurons in each layer.
The input of the autoencoder was a central frame of a log-
magnitude spectrum with a context of +/- 15 frames (in total
3999-dimensional input). The output is a 129-dimensional
enhanced central frame. We used Mean Square Error (MSE)
as objective function during training. Fisher English database
parts 1 and 2 were used for training the autoencoder, approx-
imately 1800 hours of audio. The datasets were artificially
corrupted with noise on SNR level 0-21dB from Freesound
library 2 and RIRs were taken from AIR database [19].

Results obtained using the original PLDA (no adapta-
tion) to capture only the effect of signal pre-processing are
shown in Figure 5. It can be seen that WPE (wpe10) achieved
great suppression of late reverberation, especially for close-
to-source microphones. However, when reverberation time
prolonged, WPE even caused accuracy deterioration. The
filter of wpe10 had 10 coefficients. To deal better with long
reverberations, we extended the number to 15 (wpe15). It
improved all the results, not only those that suffered degra-
dation. On the contrary, the neural network denoising (dns)
achieved very stable improvements.

4.4. Beamforming and combination with dereverberation
In this section, effects of beamforming and dereverberation
applied to microphones 7 to 12 are presented. In Table 1, we

1http://www.kecl.ntt.co.jp/icl/signal/wpe
2http://www.freesound.org
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Fig. 5. Comparison of dereverberation methods in terms of
EER. Only female test recordings are considered.

show all the results and we also compare different systems:
the original, the system retrained with simulated data (section
4.2), the system adapted with dereverberated data. The only
difference between training data for two last systems is that
for the latter, reverberant data were processed by correspond-
ing dereverberation method to tackle acoustic channel.

A basic delay-and-sum (DS) uses generalized cross-
correlation with phase transform weighting (GCC-PHAT) in
order to estimate time difference of arrival (TDOA) as it was
shown to be less prone to effects of reverberation [20]. Min-
imum variance distortionless response beamformer (MVDR)
assumes noise to be diffuse [21] rather than directional as
there was no point source of noise during retransmission. We
also tested BeamformIt tool [22] which performs weighted
delay-and-sum and other advantageous signal processing. We
found the following techniques useful: reference microphone
computation, channel weighting, Viterbi decoding and N-best
GCC-PHAT values consideration. All of them are referred to
as BeamformIt. From the results shown in the middle part of
Table 1, it can be seen that none of these methods was able to
outperform the best individual microphone.

FW GEV refers to the generalized eigenvalue beam-
former that uses PSD masks estimated by a feed-forward
neural network. First, we used the NN3 trained by the authors
of [12]. Despite being trained mainly to cope with noise,
the beamformer was able to deliver promising results on our
reverberant test data. To tackle reverberation, we altered
training data and re-trained the NN (FW GEV rever). The
ideal speech masks were computed out of the clean data con-
volved with the first 50 ms of random RIRs (this was shown
to be beneficial in [23]). Noise masks were computed analog-
ically taking the rest of RIRs into account. FW GEV rever
brought a substantial improvement especially when no de-
reverberation technique was used. Overall, the best results
were obtained with the combination of WPE (15 coefficients)
and FW GEV rever (only 4.2% EER relatively worse than in
the clean data case; the best single microphone results on re-
verberant data was 274.2% relatively worse for comparison).

3https://github.com/fgnt/nn-gev

Table 1. Beamforming and dereverberation methods and
their combinations. The EER values in percent were obtained
by evaluating female test recordings. “Best” and “worse”
denote the results from the best and worst performing indi-
vidual microphones 7 to 12. WPE refers to the 15-coefficient
WPE, DNS to the NN denoising/dereverberation.

Test data
Original
system

Simulated
data adapt.

Dereverb.
data adapt.

clean 2.5158 2.5158 -

reverberant best 9.4150 5.6383 -
worse 16.4570 8.9097 -

DNS best 6.3707 5.0314 4.0881
worse 11.1948 8.2789 7.4468

WPE best 3.8783 3.6689 3.5639
worse 10.1678 9.2244 7.8674

DS 14.1456 9.0147 -
MVDR 13.6241 7.4422 -
BeamformIt 9.4339 6.0797 -
FW GEV 10.0716 5.5556 -
FW GEV rever 7.5408 4.931 -

DNS + DS 9.3292 6.7086 6.1845
DNS + MVDR 9.4456 6.4989 5.7545
DNS + BeamformIt 8.4906 6.8365 6.1845
DNS + FW GEV 7.3592 5.6603 5.2411
DNS +

FW GEV rever 6.2863 4.2978 4.5041

WPE + DS 6.1845 6.0797 5.6577
WPE + MVDR 6.1799 5.0314 4.9267
WPE + BeamformIt 5.0297 4.3047 4.0881
WPE + FW GEV 2.8276 2.7253 2.6206
WPE +

FW GEV rever 2.7253 2.8303 2.7253

5. CONCLUSIONS

In this work, we explored multiple beamforming and dere-
verberation techniques along with system adaptation to deal
with a far-field speaker recognition. Moreover, we introduced
a new dataset of recordings retransmitted in real-world acous-
tic conditions.

We have shown that combinations of the discussed meth-
ods can deliver significant improvements. The best results
were obtained by applying WPE dereverberation and subse-
quent neural network based GEV beamforming while using
WPE data adapted PLDA. The EER was then only 4.2% rela-
tively worse than the EER measured on clean data.

Only one room was considered in the experiments. There-
fore, applicability in different acoustic conditions should be
further studied as well as realistic (not re-recorded) data. An-
other challenge will be non-synchronous recordings and mov-
ing speakers.
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