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Abstract

Text-independent speaker verification (SV) is currently in the
process of embracing DNN modeling in every stage of SV sys-
tem. Slowly, the DNN-based approaches such as end-to-end
modelling and systems based on DNN embeddings start to be
competitive even in challenging and diverse channel conditions
of recent NIST SREs. Domain adaptation and the need for a
large amount of training data are still a challenge for current
discriminative systems and (unlike with generative models), we
see significant gains from data augmentation, simulation and
other techniques designed to overcome lack of training data.
We present an analysis of a SV system based on DNN embed-
dings (x-vectors) and focus on robustness across diverse data
domains such as standard telephone and microphone conversa-
tions, both in clean, noisy and reverberant environments. We
also evaluate the system on challenging far-field data created
by re-transmitting a subset of NIST SRE 2008 and 2010 mi-
crophone interviews. We compare our results with the state-
of-the-art i-vector system. In general, we were able to achieve
better performance with the DNN-based systems, but most im-
portantly, we have confirmed the robustness of such systems
across multiple data domains.

Index Terms: Speaker Recognition, Embedding, X-vectors,
DNN

1. Introduction

In recent years, there have been many attempts to take advan-
tage of neural networks (NNs) in speaker verification. They
slowly found their way into the state-of-the-art systems that are
based on modeling the fixed-length utterance representations,
such as i-vectors [1], by Probabilistic Linear Discriminant Anal-
ysis (PLDA) [2].

Most of the efforts to integrate the NN into the SV pipeline
involved replacing or improving one or more of the components
of an i-vector + PLDA system (feature extraction, calculation of
sufficient statistics, i-vector extraction or PLDA classifier) with
a neural network. On the front-end level, let us mention for
example using NN bottleneck features (BNF) instead of con-
ventional MFCC features [3] or simply concatenating BNF and
MFCCs [4]. Later in the modeling stage, NN acoustic models
can be used instead of Gaussian Mixture Models (GMM) for ex-
traction of sufficient statistics [5] or for either complementing
PLDA [6, 7] or replacing it [8].

The work was supported by Czech Ministry of Interior project
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program, Czech Science Foundation under project No. GJ17-23870Y,
and by Czech Ministry of Education, Youth and Sports from the Na-
tional Programme of Sustainability (NPU II) project “IT4Innovations
excellence in science - LQ1602”.
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This line of work has logically resulted in attempts to train
a larger DNN directly for the speaker verification task, i.e., bi-
nary classification of two utterances as a target or a non-target
trial [9, 10, 11, 12]. Such systems are known as end-to-end
systems and have been proven competitive for text-dependent
tasks [9, 10] as well as text-independent tasks with short test
utterances and an abundance of training data [11]. On text-
independent tasks with longer utterances and moderate amount
of training data, the i-vector inspired end-to-end system [12] al-
ready outperforms generative baselines, but at the cost of high
complexity in memory and computational costs during training.

While the fully end-to-end SV systems have been strug-
gling with large requirements on the amount of training data
(often not available to the researchers) and high computational
costs, focus on speaker recognition has shifted back to gen-
erative modeling, but now with utterance representations ob-
tained from a single NN. Such NN takes the frame level fea-
tures of an utterance as an input and directly produces an ut-
terance level representation, usually referred to as an embed-
ding [13, 9, 10, 14, 15]. The embedding is obtained by the
means of a pooling mechanism (for example taking the mean)
over the frame-wise outputs of one or more layers in the NN
[13], or by the use of a recurrent NN [9]. One effective ap-
proach is to train the NN for classifying a set of training speak-
ers, i.e., using multiclass training [13, 14, 15]. In order to do
speaker verification, the embeddings are extracted and used in a
standard backend, e.g., PLDA. Such systems have recently been
proven competitive for both short and long utterance durations
in text-independent speaker verification [14, 15].

In this work, we use the model proposed by David Sny-
der [15] and extend the analysis in [16] which already presents
the x-vector (the embedding) as a robust feature for PLDA mod-
eling, and provides state-of-the-art results on NIST SRE 2016
and Speakers In The Wild (SITW) challenge. We build on top of
the available Kaldi recipe [17], and we modify the training data
set; this allows for testing also on benchmarks like NIST SRE
2010 (English telephone and microphone data), PRISM [18] (to
analyze noise and reverberation robustness), and our own far-
field dataset based on NIST SRE10. We also experiment with
training data, analyzing separately the effect of augmentation
and amount of training speakers. We decided to omit the tech-
niques necessary to obtain state-of-the-art results on SREI16,
such as adaptive score normalization or unsupervised adapta-
tion of PLDA, as we want to explore general robustness across
many channels, and provide baselines for further research. We
also provide a detailed description of additional data augmenta-
tions that we used on top of the original Kaldi recipe.
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2. Speaker Recognition Systems

Our goal is to provide a comprehensive analysis of systems
based on x-vectors. We will therefore present several systems
that differ in training of the x-vector extraction DNN, and com-
pare them with the state-of-the-art i-vector system based on
stacked bottleneck features and MFCCs.

2.1. Baseline i-vector System

For our the i-vector system, we use the simple and effective
recipe with MFCCs concatenated with stacked bottleneck fea-
tures [4].

19 MFCCs, from 24 Mel-filter banks, together with log-
energy were extracted using a 25 ms Hamming window over
10 ms frames. Bandwidth was limited to 120-3800 Hz and MFCCs
were augmented with their delta and double delta coefficients
calculated using a 5 frame window. Resulting 60-dimensional
vectors are subjected to feature warping using a 3 s sliding win-
dow before removing the silence.

Bottleneck Neural-Network (BN-NN) refers to such topol-
ogy of a NN, where one of the hidden layers has significantly
lower dimensionality than the surrounding layers. A bottleneck
feature vector is generally understood as a by-product of for-
warding a primary input feature vector through the BN-NN and
reading off the vector of values at the bottleneck layer. We have
used a cascade of two such NNs for our experiments. The out-
put of the first network is stacked in time, defining context-
dependent input features for the second NN, hence the term
Stacked Bottleneck features.

The NN input features are 24 log Mel-scale filter bank out-
puts augmented with fundamental frequency features from 4
different fo estimators (Kaldi, Snack', and other two accord-
ing to [19] and [20]). Together, we have 13 f related features,
see [21] for more details. Conversation-side based mean sub-
traction is applied on the whole feature vector, then 11 frames
of log filter bank outputs and fundamental frequency features
are stacked. Hamming window and DCT projection (0" to 5"
DCT base) are applied on the time trajectory of each parameter
resulting in (24 + 13) x 6 = 222 coefficients on the first stage
NN input.

The configuration of the first NN is 222 x Dy X Dy X
Dpen X D x K, where K = 9824 is the number of target tri-
phones. The dimensionality of the bottleneck layer, Dpnx was
set to 80 (this was shown as optimal in [22]). The dimensional-
ity of other hidden layers was set to 1500. The bottleneck out-
puts from the first NN are sampled at times t—10, t—5, ¢, t+5
and ¢t+10, where ¢ is the index of the current frame. The re-
sulting 400-dimensional features are inputs to the second stage
NN with the same topology as the first stage. The network was
trained on Fisher English corpus, and data were augmented with
two noisy copies.

Finally, the 80-dimensional bottleneck outputs from the sec-
ond NN (referred as SBN) are concatenated with MFCCs and
taken as features for the conventional GMM/UBM i-vector sys-
tem, with 2048 components in UBM and 600-dimensional i-
vectors.

Voice activity detection (VAD) was performed by the BUT
Czech phoneme recognizer [23], dropping all frames that are
labeled as silence or noise. The recognizer was trained on the
Czech CTS data, but we have added noise with varying SNR to
30% of the database.

Uhttp://kaldi.sourceforge.net, www.speech.kth.se/snack/

2.2. The Embedding System

We experiment with a DNN architecture for embeddings de-
scribed in [15] and [16]. Specifically, we use the Kaldi recipe [17]
from David Snyder and 512 dimensional embeddings extracted
from the first layer after the pooling layer (embedding-a, also
referred to as the x-vector), which is consistent with [16].

Input features to the DNN were MFCCs, extracted using a
25 ms Hamming window. We used 23 Mel-filter banks and we
limited the bandwidth to 20-3700 Hz range. 20 MFCCs were
calculated every 10 ms. This 20-dimensional feature vector was
subjected to short time mean- and variance-normalization using
a 3 s sliding window.

For training, we used default energy based VAD from the
Kaldi recipe. For embedding extraction, we applied the same
VAD as for the i-vector system.

The embedding DNN [16], can be divided into three parts.
The first part operates on the frame level and begins with 5 lay-
ers of time-delay architecture [24]. The first four layers contain
each 512 neurons, the last layer before statistic pooling has 1500
neurons. The consequent pooling layer gathers mean and stan-
dard deviation statistics from all frame-level inputs. The single
vector of concatenated means and standard deviations is propa-
gated through the rest of the network. The part of the network
where embeddings are extracted consists of two hidden layers
each with 512 neurons and the final output layer has a dimen-
sionality corresponding to the number of speakers. The DNN
uses ReLus as non-linearities in hidden layers, soft-max on the
output layer and is trained by optimizing multi-class cross en-

tropy.

3. Experimental Setup

We used the PRISM [18] training dataset definition without
added noise or reverberation to train UBM and i-vector transfor-
mation. The set comprises Fisher 1 and 2, Switchboard phase
2 and 3 and Switchboard cellphone phases 1 and 2, along with
a set of Mixer speakers. This includes the 66 held out speakers
from SRE10 (see Section III-B5 of [18]), and 965, 980, 485 and
310 speakers from SREOS, SRE06, SRE05 and SRE04, respec-
tively. A total of 13,916 speakers are available in Fisher data
and 1,991 in Switchboard data.

Five variants of gender-independent PLDA models were
trained: one only on the clean training data, the rest included
also artificially added different mixes of noises and reverbera-
tion. Artificially added noise and reverb segments totaled ap-
proximately 24000 segments or 30% of total number of clean
segments for PLDA training, see details in Sec. 3.2.

We evaluated our systems on the female portions of the fol-
lowing conditions in NIST SRE 2010 [25] and PRISM [18]:

o tel-tel: SRE 2010 extended telephone condition involv-
ing normal vocal effort conversational telephone speech
in enrollment and test (known as “condition 57).

e int-int: SRE 2010 extended interview condition involv-
ing interview speech from different microphones in en-
rollment and test (known as “condition 2”).

e int-mic: SRE 2010 extended interview-microphone con-
dition involving interview enrollment speech and normal
vocal effort conversational telephone test speech recorded
over a room microphone channel (known as “condition
4”).

e prism,noi: Clean and artificially noised waveforms from
both interview and telephone conversations recorded over
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lavalier microphones. Noise was added at different SNR
levels and recordings tested against each other.

e prism,rev: Clean and artificially reverberated waveforms
from both interview and telephone conversations recorded
over lavalier microphones. Reverberation was added with
different RTs and recordings are tested against each other.

e prism,chn: English telephone conversation with normal
vocal effort recorded over different microphones from
both SRE2008 and 2010 are tested against each other.

Additionally, we used the Core-Core condition from the
SITW challenge — sitw-core-core. SITW [26] dataset is a large
collection of real-world data exhibiting speech from individu-
als across a wide array of challenging acoustic and environ-
mental conditions. These audio recordings do not contain any
artificially added noise, reverberation or other artifacts. This
database was collected from open-source media. The sitw-core-
core condition comprises audio files each containing a continu-
ous speech segment from a single speaker. Enrollment and test
segments contain between 6-180 seconds of speech. We scored
all trials (both genders).

We also test on NIST SRE 2016 [27], but we split the trial
set by language into Tagalog (srel6-tgl-f) and Cantonese (srel6-
yue-f). We use only female trials (both single- and multi-session).
We did not use SRE’16 unlabeled development set in any way.

The speaker verification performance is evaluated in terms
of the equal error rate (EER).

3.1. NIST Retransmitted Set (BUT-RET)

To evaluate the impact of room acoustics on the accuracy of
speaker recognition, a proper dataset of reverberant audio is
needed. An alternative that fills a qualitative gap between un-
satisfying simulation (despite the improvement of realism [28])
and costly and demanding real speaker recording is retransmis-
sion. We can also advantageously use the fact that a known
dataset can be retransmitted so that the performances are read-
ily comparable with known benchmarks. Hence, this was the
method to obtain a new dataset.

The retransmission took place in a room whose floor plan
is displayed in Figure 1. The outcome of retransmission is sup-
posed to be used for many tasks in the future, hence the layout of
microphones is intentional. The loudspeaker-microphone dis-
tance rises steadily for microphones 1... 6 to study deterioration
as a function of distance. Microphones 7... 12 form a large mi-
crophone array mainly focused to explore beamforming. Here,
we use them as single microphones in different positions with
respect to the speaker.

For this work, a subset of NIST SRE 2010 data was retrans-
mitted. The dataset consists of 459 female recordings with du-
rations of three and eight minutes. The total number of female
speakers is 150. The files were played in sequence and recorded
simultaneously by a multi-channel acquisition card that ensured
sample precision synchronization.

We denote the retransmitted data as condition BUT-RET-x,
where BUT-RET-orig, represents original (not retransmitted)
data and BUT-RET-avg represents the average of results from
all fourteen microphones.

3.2. PLDA Augmentation Sets

For extension of the PLDA training set, we created new artifi-
cially corrupted training sets from the PRISM training set.
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Figure 1: Floor plan of the room in which the retransmission
took place. Coordinates are in meters and lower left corner is
the origin.

3.2.1. Adding Noise

We prepared a noise dataset from three sources of different types
of noise:

e 272 samples (4 minutes long) taken from the Freesound
library 2 (real fan, HVAC, street, city, shop, crowd, li-
brary, office and workshop).

e 7 samples (4 minutes long) of artificially generated noises:
various spectral modifications of white noise + 50 and
100 Hz hum.

e 25 samples (4 minutes long) of babbling noises by merg-
ing speech from 100 random speakers from Fisher database
using speech activity detector.

Noises were divided into three disjoint groups for training (223
files), development (40 files) and test (41 files). Development
and test subsets are not used in this work.

3.2.2. Reverberation

We prepared two sets with room impulse responses (RIRs). The
first set consists of real room impulse responses from several
databases: AIR [29], C4DM [30, 31], MARDY [32], OPE-
NAIR [33], RVB 2014 [34], and RWCP [35]. Together, they
form a set with all types of rooms (small rooms, big rooms, lec-
ture room, restrooms, halls, stairs etc.). All room models have
more than one impulse response per room (different RIR was
used for source of the signal and source of the noise to simulate
different locations of their sources). Rooms were split into two
disjoint sets, with 396 rooms for training, 40 rooms for test.

The second set consists of artificially generated room im-
pulse responses using “Room Impulse Response Generator” tool
from E. Habets [36]. The tool can model the size of room (3
dimensions), reflectivity of each wall, type of microphone, po-
sition of source and microphone, orientation of microphone to-
wards the audio source, and number of bounces (reflections) of
the signal. We generated a pair of RIRs for each room model
(one used for source of the sound, one for source of the noise).
Again we generated two disjoint sets, with 1594 RIRs for train-
ing and 250 RIRs for test. The test subset is not used in this
work.

2http://www.freesound.org
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Figure 2: The process of data preparation (corruption) for new
SRE condition design.

3.2.3. Composition of the Augmented Training Set

To mix the reverberation, noise and signal at given SNR, we fol-
lowed the procedure outlined in Figure 2. The pipeline begins
with two branches, when speech and noise are reverberated sep-
arately. Different RIRs from the same room are used for signal
and noise, to simulate different positions of sources.

The next step is A-weighting. A-weighting is applied to
simulate the perception of the human ear to added noise [37].
With this filtering, the listener would be able to better perceive
the SNR, because most of the noise energy is coming from fre-
quencies that the human ear is sensitive to.

In the following step, we set a ratio of noise and signal en-
ergies to obtain the required SNR. Energies of the signal and
noise are computed from frames given by original signal’s voice
activity detection (VAD). It means the computed SNR is really
present in speech frames which are important for our recogni-
tion (frames without voice activity are removed during process-
ing).

After the combination, where signal and noise are summed
together at desired SNR, we filter the resulting signal with tele-
phone channel. In case we want to add only noise or reverbera-
tion, the appropriate part of the algorithm is used.

3.3. Embedding Augmentation Sets

We experimented with four sets of DNN training data.We kept
most of the parameters from the original recipe. Every speaker
has to have at least 6 utterances (set to 8 in the original recipe)
and every utterance has to be at least 500 frames long. The con-
sequence of this constraint is having fewer speakers, especially
in training on clean data, because there, utterances were not du-
plicated by the augmentation. It is worth noting that increasing
the number of training speakers also increases the model size
due to the larger output layer.

The statistics of the training data for all four models are
listed in Table 1. Our first model was trained only on “clean”
original data without any augmentation. The second model
(Aug 1.) was trained on augmented data, but the number of
speakers was limited to be the same as in the first model. The
third model (Aug II.) was similar to the second but without any
limitation.

In the original Kaldi recipe, training data were augmented
with reverberation, noise, music, and babble and combined with
original clean data. The package of all noises and room im-
pulse responses can be downloaded from OpenSLR® [38], and
includes MUSAN noise corpus (843 noises).

For data augmentation with reverberation, the total amount
of RIRs is divided into two lists for medium and small rooms.
A probability of selecting a small or medium room is the same.
We add the reverberation to obtain a single replica of original
training data.

For augmentation with noise, we created three replicas of
the original data. The first replica was augmented by adding
MUSAN noises at SNR levels in the range of 0-15 dB. In this
case, the noise was added as a foreground noise (that means
several non-overlapping noises can be added to the input audio).
The second replica was augmented by music at SNRs from 5 to
15dB as background noise (one noise per audio with the given
SNR). The last noisy replica of training data was created by
augmentation with babble noise. SNR levels were at 13-20 dB
and we used 3-7 noises per audio. All augmented data were
pooled and a random subset of 128k audios was selected and
combined with clean data. The process of data augmentation is
also described in [16].

For the last model (Aug III.), we add our augmentation:
real room impulse responses and stationary noises described
in Sec. 3.2. The original RIR list was extended by our list of
real RIRs and we kept one reverberated replica. Our station-
ary noises were used to create another replica of data with SNR
levels in range 0-20 dB. We combined all replicas and selected
a subset of 150k files. As a result, we obtained 11383 speakers
after filtering.

Table 1: Numbers of speakers, utterances and speech length
used for training the embedding DNN.

Parameter [Elmbedding E-Augl. E-Augll. E-AuglIL
-clean
speakers 3359 3359 9544 11383
utterances 58965 72371 211906 268219
speech duration [h] 2488 3494 10289 13288

4. Experiments and Discussion

We conducted a set of experiments with embeddings to ana-
lyze their robustness in different data domains. We also perform
analysis with embedding DNNs aimed at answering the follow-
ing two questions: (i) How do embeddings compare to the tra-
ditional state-of-art system with multi-condition training? (ii)
How does the embeddings’ performance depend on the amount
and type of the training data for the embedding DNN?

In our experiments with i-vectors (600-dimensional vec-
tors) and x-vectors (512-dimensional vectors), we used identical
preprocessing. First, we reduced the dimensionality by LDA to
200 dimensions and then we subjected the reduced vectors to
the global mean- and length- normalization [1, 39]. Speaker
verification is performed by means of PLDA [40]. We do not
include any adaptive score normalization, unsupervised PLDA
adaptation or other tricks that are necessary to achieve the best
possible performance on SRE16.

3http://www.openslr.org/resources/28/rirs_
noises.zip
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Figure 3: Results on retransmitted NIST data for all microphone
from Fig. 1. Ordered by EER from the baseline system. Red
bars are for the baseline, blue bars for the Embedding-Aug III.

As areference and cross-check, we include results with em-
beddings from the original Kaldi [16] recipe in Table 2. Our
implementation of PLDA was trained on the same list as in the
recipe and, this time only, we used a similar form of adaptive
score normalization. We did not perform unsupervised PLDA
adaptation, so these results are comparable to the unadapted
ones as they are printed by the recipe.

Table 2: Results (EER [%]) achieved with original Kaldi recipe
from [16, 17]. Results are presented on gender-independent
conditions.

Condition BN-baseline Embedding-Kaldi
srel6-tgl 19.5 19.8
srel6-yue 9.10 6.90
sitw-core-core 7.68 7.14

4.1. Comparison with the Baseline

At first, we will focus on the comparison of the baseline system
with our best embedding system (Embedding - Aug III) in Ta-
ble 3. Results are separated into two main blocks: for the base-
line system and for the embedding system. Columns of each
block represent different scenarios in PLDA training. In the first
column, the results correspond to the system where the PLDA
was trained only on the clean data without any augmentation.
In the next five columns, we list the results for multi-condition
training. We trained five different PLDAs, every time using a
different mix of corrupted data added to the training list: N -
PLDA extended by the noised data, AR - PLDA extended by
the data corrupted with artificial generated RIRs, RR - PLDA
extended by the data corrupted with the real RIRs. (A/R)R+N -
PLDA extended by the data with both types of distortion (noise
and reverberation).

The table is also divided into blocks according to the test
data domain: telephone channel (conditions tel-tel, srel6-1gl-f,
srel6-yue-f), various microphones (conditions int-int, int-mic,
prism,chn, sitw-core-core), artificially corrupted data with ad-
ditive noise prism,noi and reverberation prism,rev, far-field mi-
crophone data (retransmitted) BUT-RET-avg.

When analyzing the telephone block, we can observe a sig-
nificant drop in performance on relatively clean English data

tel-tel. This can be perhaps explained by a very good match in
the training data for i-vectors w.r.t. clean telephone conversa-
tions. On more challenging SRE16, where we deal with new
and noisier telephone channels (landline and cellular telephone
networks from China and Philippines), we observe a clear im-
provement on Cantonese. Results on Tagalog are almost the
same and the reason for a low performance w.r.t. Cantonese is
still unexplained.

In the domain which involves microphone data, we see some
mixed results on easier conditions like in-mic and prism,chn.
We observe that the prism,chn has been much better with the
i-vector system and conversely int-mic is much better with the
embedding one. On more difficult conditions like in-int and
sitw-core-core, we can already see improvements with the em-
bedding system, which can be further improved by multi-condition
training in PLDA.

In the artificially created noisy and reverberant condition,
we can see better performance from the i-vector baseline when
training the PLDA without augmentation. When augmenting
the PLDA training list, the difference in performance is low-
ered, but the baseline system still appears to handle reverbera-
tion better.

We have to admit that we are seeing inconsistent (and usu-
ally worse than the baseline) results with this embedding sys-
tem on our other internal artificially created noisy and rever-
berant conditions. Luckily, we are continuously working on re-
transmitting the SRE data in real rooms, mostly for the purposes
of our research in speaker recognition with microphone arrays
and far-field data [41]. Experiments with these retransmitted
data show consistently better or similar performance of the em-
bedding system and a positive effect of multi-condition training
of PLDA. We can see the performance on data recorded over
individual microphones in Figure 3. Placement of microphones
and room dimensions are depicted in Figure 1. The embed-
ding system has always outperformed or matched the i-vector
baseline. In case of three microphones (11, 8 and 7), the perfor-
mance of embeddings was only marginally worse.

4.2. Analysis of Embedding DNN Training

Now we will focus on the analysis with training of the embed-
ding system. We will vary the amount of training data (and
also training speakers) by the means of augmentation and look
closely at the results. Results from all four embedding networks
are listed in Table 4. The first block represents the system
trained only on original (“clean”) data, without any augmen-
tation. Every next block represent the system with increasing
number of training utterances, speakers and types of noise in
the augmentation (see Section 3.3 and Table 1).

Trends in the multi-condition PLDA training for all four
systems are the same as in Table 3, so for the sake of clarity, we
report only cases with real impulse responses and noise.

The first two blocks represent the same network. The dif-
ference is in augmentation: while Embedding-clean was trained
only on clean, Embedding-Aug 1., is trained with augmented
data, but we kept the number of speakers identical for both. We
can clearly see that just adding additional hours of training data
consistently improved the performance and also that the trend
of contribution of the multi-condition PLDA training to the per-
formance is the same.

The second and the third blocks represent the comparison
of different numbers of speakers in training and therefore also
change in the model size (size of the output layer of the net-
work). Embedding-Aug 1. has 3359 speakers as the output, while
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Table 3: Comparison of bottle-neck i-vector baseline with neural network embedding in various data domains. Both blocks are divided
into columns corresponding to the systems trained in multi-condition fashion (with noised and reverberated data in PLDA). Results
(EER [%)]) in each column correspond to the different PLDA multi-condition training set: N - noise, (A/R)R- artificial/real reverberation,

or both (+).
BN Baseline Embedding-Aug III.
PLDA clean PLDA extension data PLDA clean PLDA extension data

Condition H - N AR RR  AR+N RR+N \ - N AR RR  AR+N RR+N \
tel-tel 0.94 1.04 0.92 0.93 0.92 0.93 1.3 143 1.27 1.27 1.28 1.29
srel6-tgl-f 21.88 21.24 2176 21.82 2192 2193 22.73 2252 22,69 22.87 2253 2256
srel6-yue-f 13.45 13.02 1335 1345 13.39 13.44 10.36 9.61 1037 1045 10.46 10.61
int-int 3.88 4.07 3.75 3.77 3.76 3.73 3.36 3.72 3.25 3.29 3.24 3.22
int-mic 1.85 1.69 1.75 1.76 1.78 1.78 1.33 1.43 1.3 1.3 1.24 1.22
prism,chn 0.40 0.46 0.39 0.39 0.37 0.36 0.62 0.81 0.6 0.61 0.61 0.61
sitw-core-core 8.09 7.85 8.11 8.02 8.04 8.03 7.87 7.3 7.84 7.72 7.32 7.41
prism,noi 243 1.98 2.45 2.45 2.16 22 2.76 1.9 2.72 2.63 2.09 2.11
prism,rev 1.42 1.39 1.38 1.30 1.36 1.31 2.08 2.02 1.91 1.79 1.69 1.6
BUT-RET-orig 1.45 1.58 1.46 1.47 1.48 1.43 1.73 1.73 1.65 1.69 1.69 1.63
BUT-RET-avg 11.64 1148 1149 112 11.59 11.12 11.51 10.78 10.86 10.21 10.4 9.71

Table 4: Results (EER [%)]) obtained in four scenarios. Each block corresponds to the system trained on different data (see Table 1).
Blocks are divided into columns corresponding to the systems trained in multi-condition fashion (with noised and reverberated data in
PLDA). Each column correspond to the different PLDA multi-condition training set: N - noise, RR - real reverberation, or both (+).

Embedding-clean Embedding-Aug I.

Embedding-Aug II. Embedding-Aug III.

PLDA clean PLDA extension data PLDA clean PLDA extension data PLDA clean PLDA extension data PLDA clean PLDA extension data
Condition I - N RR  RR+N | N RR  RR+N | N RR  RR+N | N RR  RR+N |
tel-tel 2.56 2.94 2.55 2.65 2.05 245 1.94 1.9 1.38 1.61 1.34 1.32 1.3 1.43 1.27 1.29
srel6-tgl-f 27.25 2699 27.26 27.1 25.02 2494 2486 24.89 22.69 22.14 2271 2237 2273 2252 22.87 2256
srel6-yue-f 15.51 1578 1545 1522 14.12 1331 14.05 13.89 10.27 9.9 10.43 1045 10.36 9.61 1045  10.61
int-int 5.01 5.57 5.0 4.84 4.49 484 447 4.28 345 3.87 345 3.39 3.36 372 329 322
int-mic 2.15 2.44 2.11 2.02 1.86 233 1.84 1.81 1.33 1.29 1.34 1.27 1.33 1.43 1.3 1.22
sitw-core-core 10.9 11.02 1078  10.44 9.75 9.54  9.58 9.21 7.86 742 7.62 7.42 7.87 7.3 7.72 7.41

Embedding-Aug II. has seen 9544 speakers. Again, we can see
the same trend as before and additional improvements in per-
formance. The exception is the Tagalog condition of SRE16,
which seems to be different and possibly too much out-of-do-
main.

The last block represents the largest network (Embedding-
Aug III.). We extended the number of speakers and we also
added more augmented data to the training. We added also the
augmentation data for the PLDA multi-condition training (see
Section 3.2), we added real room impulse responses and addi-
tional set of stationary noises. This brought small improvements
on the tel-tel condition. On the srel6-yue-f and sitw-core-core,
we can see similar performance, with the exception of small
improvement achieved with PLDA+N. On the remaining con-
ditions, the largest network has kept its robustness and similar
performance.

5. Conclusion

We can conclude that the analyzed embedding architecture shows
a robust performance under various conditions. We have pre-
sented new results on well-known benchmarks and we have per-
formed an analysis with far-field data. We have verified that
this architecture is indeed data-hungry by extending the origi-
nal recipe with our collection of augmentation data and at the
same time further improving the performance.
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