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Abstract

In this paper, we summarize our efforts in the NIST Language
Recognition Evaluations (LRE) 2017 which resulted in systems
providing very competitive and state-of-the-art performance. We
provide both the descriptions and the analysis of the systems
that we included in our submission. We explain our partitioning
of the datasets that we were provided by NIST for training and
development, and we follow by describing the features, DNN
models and classifiers that were used to produce the final sys-
tems. After covering the architecture of our submission, we
concentrate on post-evaluation analysis. We compare different
DNN Bottle-Neck features, i-vector systems of different sizes
and architectures, different classifiers and we present experi-
mental results with data augmentation and with improved archi-
tecture of the system based on DNN embeddings. We present
the performance of the systems in the Fixed condition (where
participants are required to use only predefined data sets) and
in addition to official NIST LRE17 evaluation set, we also pro-
vide results on our internal development set which can serve as
a baseline for other researchers, since all training data are fixed
and provided by NIST.

1. Introduction

It has been only two years since the previous NIST LRE 2015,
where we still saw the dominance of systems based on i-vectors
[1, 2, 3]. In 2015, there was a clear shift in the state of the art of
Language identification (LID) front-ends. Instead of relying on
standard acoustic features (such as MFCC) or outputs from vari-
ous phoneme recognizers, LID field has adopted bottleneck fea-
tures (BN) [4, 5], extracted from Deep Neural Networks (DNN)
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that are trained to classify phoneme states.

The variant of BN-DNN, which utilizes multilingual train-
ing [6] has brought additional improvements over monolingual
DNNs on NIST LRE 2009 and 2015 benchmarks[7, 8], but
we have not seen such improvements in NIST LRE2017 yet.
We attribute this partly to the different data domains of NIST
LRE2017, but we will need to conduct more research to draw
some conclusions on using multilingual BN features in NIST
LRE2017.

In our submission to NIST LRE2017, most of our systems
are still based on i-vectors and BN features, but we also fol-
lowed a general trend coming from speaker recognition [9, 10,
11], and we developed a subsystem based on DNN-embeddings.
We offer an analysis with BN features, i-vector and embed-
ding systems, but as the use of DNN embeddings is still rela-
tively new in the field, we provide more detailed description,
analysis and experimental results with our embedding system
in [12, 13]. Following the research in speaker recognition, we
explore and discuss the use of Non-linear transformation of i-
vectors [14, 15] for language recognition and we also touch the
topic of classifiers operating on top of i-vectors or embeddings
by discussing two variants of generative Gaussian Linear Clas-
sifier. Finally we briefly describe our calibration and fusion
which follows the standard recipe with a multi-class logistic re-
gression.

2. Data

We have utilized all data supplied by NIST (training and devel-
opment) for the primary (fixed) condition. All data were down-
sampled to 8kHz.

The annotated Switchboard and Fisher I and II databases
were used to train the bottleneck NN. These databases were pro-
vided for all participants to allow the use of techniques requiring
annotated speech corpora for system development.

The LRE17 training data were used to train the i-vector
system (GMM-UBM, i-vector extractor), LRE17 development
data were split into two parts. The first part was used added to
the classifier and DNN-embedding training data and the second
part was used as a held-out set, to monitor the performance dur-
ing development, and for calibration and fusion during devel-
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opment. For the final calibration and fusion before submission,
we have re-calibrated and fused all systems on the full LRE17
development set.

Our submission for the open data condition is based on
the same datasets, with the addition of 17 languages from the
IARPA BABEL data used to train the multilingual BN feature
extractor. As the additional data did not provide improvement,
and since we put a limited effort into experimenting for the open
data condition, we will concentrate our analysis only on the
fixed data condition. More details regarding the data and results
with multilingual BN features can be found in [16] and [17].

2.1. Training and development data for fixed condition

We did not follow the data partitioning suggested by NIST, but
we rather split the LRE17 training and development data to in-
clude the newly introduced datasets (VAST and MLS14) in the
training stage of our classifiers.

As the training data provided by NIST contained many
rather long segments, we have decided to prepare two versions
of the training data. First, we used the LRE17 training data as
is without any modification (we denote this version as full),
and second we cut all of the files containing more than 40s of
speech into cuts ranging from 2.5 to 40s (we denote this ver-
sion as cuts). We did not include the original long segment in
the resulting training list for the cuts set. Cutting the data into
many smaller segments turned out to be important for the much
smaller LRE15 training dataset (3042 segments, 248 hours of
speech, 20 languages). The LRE17 training dataset (16205 seg-
ments, 837 hours of speech, 14 languages) is, however, consid-
erably larger and we have not seen improvements from using
such dataset for training our classifiers. In this work the full
data was only used for training the non-linear transformation of
i-vectors described in Sections 6.2 and 8.6.

The LRE17 development set, on the contrary, is much
smaller (3660 segments, 28.6 hours of speech). Therefore, we
split the segments that contain more than 40s of speech into
multiple short cuts ranging from 2.5 to 40 seconds of speech.
We also kept the original long segments that we cut, obtaining a
total of 6090 segments. We decided to put 2/3 of this data into
the training sets (both cuts and full) and leave the remaining
1/3 as a held out test set. We did not attempt to detect overlap-
ping segments (nested cuts) between the two splits of LRE17
development data, but we ensured that the short cuts created by
us do not overlap with their original long segments.

It is worth mentioning, that NIST LRE17 development seg-
ments contain nested cuts of the same segment (i.e. there are
segments containing part of a particular longer segment). Af-
ter the workshop, the labels allowing us to exactly identify such
nesting were disclosed, but in this work we decided to keep
our original split. We are aware that this could have caused
some over-training, especially with system based on DNN em-
beddings.

2.2. Training data for bottleneck features

We used Fisher English database Part 1 and 2 for training. The
final training data was composed of 1800 hours of clean Fisher
augmented with another 3 copies of artificially corrupted Fisher
data. We used the fant tool [18] to mix reverberated speech and
reverberated noise with given SNR with original clean audio
file.

We generated artificial room impulse responses (IR) using
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Room Impulse Response Generator tool from E. Habets '

IRs were generated for rooms where each dimension was
limited to the range of 2-22 meters and other parameters in the
tool were set randomly.

Noises were added at SNRs ranging from 0dB to 45dB and
the noise samples of the following types were downloaded from
the Freesound.org library:

e real fan stationary noises - fan, AC, hvac, street, ventila-
tion - 115 samples from Freesound.org

e real background transient noises - dishes, motor, work-
shop, doors, city, keyboard, library, office. The character
is mainly transient, with some minor portion of station-
ary noises - 60 samples from freesound.org

e babbling noises: each created by merging speech from
100 random speakers from Fisher database using speech
activity detector - 25 samples

e artificially generated noises - various spectral modifica-
tions of white noise + 50 and 100 Hz hum - 7 samples

3. Voice Activity Detection

Our VAD consists of two carefully designed parts: a neural
network (NN) which produces per-frame scores, and a post-
processing stage which builds the segments based on the scores.

The input features for the NN consist of 15 log-Mel filter-
bank outputs and 3 Kaldi-pitch features [19]. We apply per-
speaker mean normalization estimated on the whole
unsegmented recordings. Then we apply frame splicing with 31
frame-long context, where the temporal trajectory of each fea-
ture is scaled by a Hamming window and reduced to 16 dimen-
sions by Discrete Cosine Transform. The final 288-dimensional
features (i.e. 16x18) are globally mean and variance normalized
on the NN input.

The NN was trained on the Fisher English with labels pro-
vided from ASR alignment. The input dimension is 288, while
there are 2 hidden layers, each of 400 sigmoid neurons, and the
final softmax layer has 2 outputs, corresponding to the classes:
speech, non-speech. The NN has 277k parameters.

In the post-processing, we bypass the NN output softmax
function (allowing us to interpret the outputs as log-likelihoods),
then we convert the two outputs to logit-posteriors, and then we
smooth the score by averaging over consecutive 31 frames. In
the final step, the speech segments were extracted by threshold-
ing the posterior at the value of 0.

4. Stacked Bottleneck Features (SBN)

A bottleneck feature vector is generally understood as a by-
product of forwarding a primary input feature vector through
a NN and reading off the vector of values at the bottleneck
layer. We have used a cascade of two such NNs for our ex-
periments. The output of the first network is stacked in time,
defining context-dependent input features for the second NN,
hence the term Stacked Bottleneck Features (SBN). The NN in-
put features are 24 log Mel-scale filter bank outputs augmented
with 2 fundamental frequency features based on [20] resulting
in 26-dimensional feature vectors.

Mean subtraction is applied at the utterance level. Ham-
ming window followed by DCT consisting of Oth to 5th base
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are applied on the time trajectory of each parameter resulting in
(24 4+ 2) x 6 = 156 coefficients on the first stage NN input.

The dimensionality of the bottleneck layer was set to 80.
The dimensionality of the other hidden layers was set to 1500.
The bottleneck outputs from the first NN are sampled at times
t—10,t — 5, t, t + 5 and t + 10, where ¢ is the index of
the current frame. The resulting 400-dimensional features are
inputs to the second stage NN which has the same topology
as the first stage, except that for the bottleneck layer we also
evaluated a dimensionality of 30 in addition to 80. The 30 or 80
dimensional bottleneck outputs from the second NN (referred
as SBN) are the final features.

We experiment with two types of SBN features:

1. FSH-30 - trained on Fisher English corpus. First bot-
tleneck is 80 dimensional and the second bottleneck is
30 dimensional. There are 3 hidden layers before BN
layer in both NNs. The output layer has 9824 outputs
(triphones). During training the BN layer is connected
directly to the output layer.

2. FSH-80 - trained on Fisher English corpus. First and
second bottleneck layers are 80 dimensional. There are
2 hidden layers before BN layer in both NNs. The out-
put layer has 9824 outputs (triphones). During training,
there is one hidden layer between the bottleneck and out-
put layer.

S. DNN embeddings

For one of our systems, we use an architecture based on DNN
embeddings. It consists of a sequence summarizing DNN trained
to learn a fixed-length utterance (or segment) level representa-
tion from the frame-by-frame input features. We used FSH-30
SBN features described in a previous section. The structure of
the DNN was inspired by the embedding system presented in
[10] for speaker verification, but instead of using the time delay
feed-forward DNN, we use BLSTMs.

We can split the DNN into two parts separated by the pool-
ing (summarizing) layer. The first part of the DNN, up to the
pooling layer, works on a frame-by-frame basis, and consists of
two BLSTM layers followed by a fully connected layer. These
recurrent layers based on BLSTMs have proven their ability to
deal with temporal information without stacking of input fea-
tures (especially for very short segments in LID) [21] as they
take into account the information learned from previous (and
following) frames in the input sequence of features. After the
BLSTM layers, we add a single fully connected layer. The size
of this layer is set to 256 (for small) or 1500 (for large version
of the DNN).

Subsequent pooling layer computes mean and standard de-
viation statistics over the framewise outputs of the previous layer,
summarizing the information of a given input sequence. The
output of the pooling layer is forwarded through two additional
fully connected layers, whose output values will be later used
as embedding representations of the input utterance. Sizes of
these embedding layers are set to 512 and 300 (small), or 512
each (large).

Finally, the output is a 14-dimensional softmax layer that
provides a vector of language posterior probabilities for each
utterance. We used a sigmoid activation function for all hidden
units. An example of this architecture is depicted in Figure 1.
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5.1. Training

The DNN was trained by minimizing the categorical
cross-entropy loss function via Adam optimizer. To reduce over-
fitting, dropout rate of 30% was used in all layers, including also
dropout for gates on the recurrent BLSTM layers. The maxi-
mum number of iterations (epochs) for all experiments was set
to 400, and the final model was selected according to the best
accuracy on the validation set.

During training, the gradients are estimated over batches of
210 segments of 3 seconds duration. Each batch is created by
selecting 70 audio files and then from each audio file, randomly
selecting 3 segments. One epoch is completed when all files
from the training list, which varies for the small and large ar-
chitecture, have been seen by the network. The small DNN is
trained on a balanced set derived from the full training dataset.
This set is limited to 15 hours of clean speech per language.
The large NN is trained on all data from our full training set
which is further augmented by adding two noisy versions for
each training segment.

The model selection was performed according to the val-
idation accuracy on the held out test set, which we split into
3 second sequences, resulting in 23782 samples for validation
(about 19h of speech). After the training is finished, we ex-
tract both embeddings for each utterance, but now we do not
constrain the length of the segment to 3 seconds, but forward
the whole segment. Finally we concatenate both embeddings
and obtain a single fixed-length vector per utterance which we
subsequently model as i-vectors with the Gaussian Linear Clas-
sifier (GLC) described in section 6.1. We train the GLC on the
full training dataset.
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Figure 1: Example of embedding DNN architecture.

6. Classifiers

6.1. Gaussian linear classifier / Multi-Gaussian classifier

Generative modeling of i-vector point—estimates for language
recognition has proven to be an effective alternative to discrim-
inative classifiers based on Logistic Regression or Support Vec-
tor Machines. In [2], we have proposed a simple linear classifier
based on Gaussian distributions which provides accuracies sim-
ilar to those of linear discriminative approaches. The model as-
sumes that, for each language, the corresponding i-vector point—
estimates p,; are generated according to:
pi~ N (me, A7) M

where my is a language—dependent mean vector and A~ is
a covariance matrix, shared among all language distributions.



The model parameters can be easily obtained by Maximum—
Likelihood estimation. The class—conditional log—likelihood
for p, given language ¢ can be computed as:

tog Py ]£) = 5 Tog |A] — £ (s, — m) Aps; — me) +

@)
where £ is a data—independent constant. We denote this classi-
fier as GLC.

Since development and evaluation data comprise different,
possibly mismatched, data sources, and we also observed a rel-
evant mismatch between development data and previous LRE
data, we also propose a modified Gaussian classifier, named
Multi-Gaussian Classifier (MGC), able to better model these
different sources. The MGC classifier assumes that i-vectors of
each language-source combination are generated by a different
Gaussian distribution according to

/‘Li NN(m&S7A71) 9 (3)

where s denotes the source. For this evaluation, we considered
three sources, namely, VAST, MSL14 and previous LRE data.
At test time a language score is computed from a GMM whose
components are the Gaussian distributions associated to the tar-
get language, assuming uniform weights over the data sources.

6.2. Non-Linear transformation

Following the success of Non-Linear PLDA (NL-PLDA) [14]
for speaker verification, we propose to apply the technique for
language recognition tasks. To this extent, we trained a NL—
PLDA model using the formulations given in [14], assuming
that the classes are languages rather than speakers. The model
is given by

z=Uy+=x
L =f(2), “4)

where z is the original i-vector, y represents a language factor
sampled from Y ~ N(0,I), = represents inter—session and
residual noise sampled from X ~ A(0,A™'), and f is an
invertible transformation. Following [14], function f was ob-
tained as a composition of affine and non-linear elementwise
sinh—arcsinh transformations [22, 23]. The model was trained
using the EM procedure detailed in [14].

PLDA models (including NL-PLDA) can be directly used
to compute language recognition scores. In [24] we have shown
that the GLC backend provides a very good approximation of
the PLDA scores, provided that the set of i—vectors for each
language M, is large. In particular, we have shown that, in this
case, the posterior distributions of the language factors y| M
become sharp, and thus can be replaced by MAP point esti-
mates ¢, = argmaxy P(y|M,). Furthermore, the product
Uy, converges to the class mean m,. For this reason, rather
than directly using NL-PLDA for scoring, we chose to simply
apply the estimated transformation on i—vectors, and to classify
the transformed patterns using a GLC. This approach allowed
us to also train the MGC backend on the transformed i—vectors.
It is worth noting that, in contrast with our previously proposed
i-vector Gaussianization approach [15], the NL-PLDA trans-
formation is aware of language labels.

7. Calibration and fusion

After classification scores have been obtained from using the
aforementioned techniques, we applied pre-calibration and fu-
sion in score-space. Both are trained on the dev subset (NIST

50

LRE17 dev). During development, we were calibrating and fus-
ing on the 2/3 of LRE17 dev that we also added into the train-
ing data. For the final submission, we calibrated and fused on
the whole LRE17 dev including our short cuts. Both stages are
implemented by multi-class logistic regression [25].

Our logistic regression solutions to calibration and fusion
were simple, to avoid over-training. For pre-calibration, an in-
dividual system has a trainable scale factor and an offset vector.
In fusion, every system gets a single trainable scale factor, while
every language gets a trainable score offset. The parameters are
trained via optimizations of prior-weighted multi-class cross-
entropy. We used a uniform prior (flat) over all 14 languages
for both pre-calibration and fusion.

7.1. Cluster-dependent system fusion

Some of our systems use cluster dependent subsystems [5] fused
into one system by simple average of their scores, which sim-
plifies the development and provides sufficient robustness. Such
system is then denoted by CD.

Basically it is a simple fusion of 5 (as there are 5 language
clusters) i-vector based systems, where the individual UBMs
are trained only on data belonging to the particular cluster (Ara-
bic, Chinese, English, Iberian, Slavic). The training data for
T-matrix were however common for all individual cluster de-
pendent subsystems.

8. Experiments and analysis

In this section, we will analyze and comment numerous ex-
periments that we performed with our systems during LRE17
development and in the post-evaluation period. Primarily, we
report results on the unmodified LRE17 evaluation dataset de-
noted as EVL. For the purpose of deeper analysis and as refer-
ence we also report results on the held out test set that we used
for system development, denoted as DEV. All results are given
as equalized actual cost, which is a primary evaluation metric
for LRE17 [26].

8.1. Classifiers and general observations

Most of our systems are based on the 30 dimensional bottle-
neck features trained on Fisher English (FSH-30). We var-
ied the topology and size of GMM and i-vector extractor, we
added delta coefficients at the input, we experimented with post-
processing of the i-vectors and we used different classifiers. If
not stated otherwise, our classifiers (GLC, MGC) are trained
on the full training data. During the development, we observed
that unlike in LRE15 [8], including the short cuts in the training
was not necessary as the amount of provided training data for
LRE17 is sufficiently large.

The Table 1 summarizes the components of individual sys-
tems and points out the difference between submitted and post-
evaluation architecture. We can immediately notice that the
MGC classifier is most-likely overtrained since we always
achieve better results with simple GLC. It is worth noting that
the MGC classifier was designed specifically for the LRE17
when we expected two different data sources in the evaluation
data. Its good performance on the development set compared to
evaluation set suggest that we should experiment with redesign-
ing our data-split — especially avoiding overlapping speech be-
tween training and test due to the nested segments.

We can also observe that we managed to improve our em-
bedding system by using large DNN trained on more data to-
gether with augmentation. We are now actively working on



Table 1: Results of the core systems and fusions.
results.

Comparison of GLC and MGC which reflect our submission and postevaluation

Systems Difference Submission Postevaluation
EVL (DEV)  EVL (DEV)

[1] SBN30D ClusterDep 4096/800 MGC — GLC 18.68 (14.57)  16.88 (17.94)

[2] SBN30D 4096/800 NLPLDA MGC — GLC 19.80 (17.30)  19.30 (20.30)
More data +

[3] DNN embedings data augmentation, 24.07 (19.55)  19.61 (16.14)
large DNN

[4] SBN80 4096/800 (iXtractor with FSH+SWB) MGC — GLC 21.35(18.05)  18.79 (19.41)

Primary Fusion [1 + 2 + 3 + 4] - 16.60 (12.96)  16.78 (15.14)

Fusion of ivector systems only [1 4 2 + 4] - - 15.71(16.52)

improving this system and we have summarized our findings
in [13].

Last two rows of Table 1 contain fusions. We can see that
each of the improved post—evaluation systems achieves better
performance on EVL than the corresponding system used for
the original submission. On the contrary, the performance on
the DEV set is, in general, worse. Surprisingly, the overall fu-
sion is sligthly worse also on the EVL set. This is caused by
a different behavior of the embedding system, which has im-
proved in both datasets and received a large weight in the fusion
compared to the best i-vector system. By removing the embed-
ding system from the fusion we indeed obtain better results on
the evaluation set. This behavior is most-likely caused by over-
training of our embedding system and reminds us that, com-
pared to i-vectors, using these DNN-based architectures comes
with a risk and requires more careful planning when designing
the training lists.

8.2. Feature extraction analysis

The results in Table 2 show the performance of different bot-
tleneck features. Stacked bottleneck features are composed of
two NN in cascade. The first line belongs to the results ob-
tained with features from the first stage of our topology (bot-
tlenecks). The second line are the results with stacked bottle-
necks, which provide approximately 3% absolute improvement.
The third line shows the effect of augmenting the SBN features
with their delta coefficients. The gain is again 3% absolute
for 30 dimensional features, while 80 dimensional SBN suf-
fered from a small degradation. The experiment was performed
with FSH-30 and FSH-80 and i-vector system based on 2048
Gaussians, 600 dimensional i-vector, transformed by means of
Within Class Covariance Normalization (WCCN) followed by
length normalization, and GLC.

Table 2: Analysis of bottleneck features, stack bottleneck fea-
tures and effect of delta coefficients.

System BNF30 BNF80

EVL (DEV)  EVL (DEV)
BN - 23.22 (23.94)
SBN 23.71(26.51)  20.41 (20.84)
SBN +delta  19.78 (21.53)  20.82 (21.14)

8.3. Size of iVector system

The results in Table 3 show the analysis of the i-vector system
size. We used GMM-UBMs with diagonal covariance compo-

o1

nents. There is a clear gain when using 4096 Gaussians in UBM
and more than 400 dimensional ivectors. The experiments were
performed with FSH-30D, WCCN+L2 and GLC.

Table 3: Analysis of the i-vector system size.

i-Vector 2048 Gaussians 4096 Gaussians
dimensionality EVL (DEV) EVL (DEV)
400 20.26 (21.54) 19.12 (21.42)
600 19.78 (21.53) 18.68 (20.08)
800 19.57 (21.31) 18.77 (20.42)

8.4. Cluster dependent system

The results in Table 4 show approximately 2% absolute gain of
a CD system over a single system. The disadvantage is that the
system is 5 times slower.

Table 4: Comparison of single system with Cluster dependent
system. Systems are based on FSH-30 features.

System 1 system CD
EVL (DEV)  EVL (DEV)

2048/600  19.78 (21.53)  17.92 (19.47)

4096/800  18.77 (20.42) 16.88 (17.94)

8.5. Data augmentation

We also analyzed the effect of data augmentation for BNF ex-
tractor training. The results of the i-vector system (again based
on FSH-30D, 2048 Gaussians, 600 dim. i-vectors, WCCN + L2
and GLC) in Table 6 show the performance of BNF trained with
clean data only, and with clean and augmented data with 2 noisy
copies, respectively. The results show a 4% absolute difference
between these two systems.

A second set of experiments was performed with data aug-
mentation for i-vector extractor and backend training. The re-
sults listed in Table 5 show little differences between the sys-
tems and we do not see clear benefits of adding augmented data
to the i-vector extractor and GLC training.

8.6. Non-Linear PLDA

The final set of experiments compares the GLC classifier with
a system based on NL-PLDA. NL-PLDA estimates both the
PLDA parameters and a non—linear transformation of i—vectors,



Table 5: Effect of data augmentation in iVector and GLC training.

System iXtractor GLC iXtractor +GLC
EVL (DEV) EVL (DEV) EVL (DEV)
No augmentation 19.78 (21.53)  19.78 (21.53) 19.78 (21.53)
+ 2 x data augment. noise (0-8dB, 8-20dB)  19.69 (19.77)  20.01 (22.35) 19.69 (20.94)
+ 2 x data augment. tempo (0.9, 1.1) 19.73 (19.38)  20.06 (21.58) 19.90 (19.03)
+ 4 x data augment. noise + tempo 19.84 (20.28)  19.95(21.77) 19.84 (20.28)

Table 6: Effect of data augmentation in BNF training.
Data EVL (DEV)

23.72 (23.34)
19.78 (21.53)

clean
clean + 2 copies (submission)

thus training the model requires a larger amount of data. Since
the number of original segments was limited, it was not possi-
ble to reliably estimate NL-PLDA models only from the full
dataset. The NL-PLDA model was therefore estimated from
the cuts training set. Table 7 shows the results of applying the
NL—transformation on i—vectors for GLC and MGC classifiers.
The experiments were performed with FSH-30D, 4096 Gaus-
sians and 800 dimensional i-vectors.

Comparing the results in the first two rows, we can observe
that the NL-PLDA transformation allows improving the results
on both the EVAL and DEV sets, especially when combined
with MGC. Surprisingly, the transformed i-vectors do not incur
in the same degradation as the original i-vectors when the GLC
backend is replaced by the MGC classifier. On the other hand,
GLC models trained with the full training set achieve slightly
better results, probably due to a better fit between the distribu-
tion of the training and test i-vectors. Finally, the last row shows
that the a simple average of the scores of non-linear and linear
models allows further improvement of the actual cost on both
datasets, with a negligible impact on testing time.

Table 7: Results of system with Non-Linear PLDA transforma-
tion and GLC/MGC.

Transformation GLC MGC
EVL (DEV) EVL (DEV)
[1] Linear (cuts) 19.8 (21.3) 22.7 (19.8)
[2] Non linear (cuts) 19.3 (20.3) 19.8 (17.3)
[3] Linear (full) 18.7 (20.0) 20.7 (16.8)
[2] + [3] (Same weight)  18.2 (19.2) 19.4 (15.8)

9. Conclusion

In this paper, we have summarized and documented part of our
efforts for the NIST LRE 2017. We have, in detail, analyzed the
architecture of our baseline i-vector systems which still formed
the basis of our submission. Our analysis with DNN models
(BNF and DNN embeddings) and data augmentation has con-
firmed the current trend of augmenting still small training sets
to obtain better performance.

Compared to few years back, having a larger amount of
training data has perhaps caused the improvement we saw with
the i-vector system, where we doubled its usual size to 4096
Gaussians in UBM and 800 dimensional i-vectors.
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Participation in NIST LREs is always a great research op-
portunity when teams of researchers work on a common goal,
try new techniques and improve the state-of-the-art. This time,
we have followed the trend from speaker recognition and de-
veloped a DNN-embedding system that is showing promising
results and is currently being actively developed. Another in-
teresting technique that comes from speaker recognition and is
presented here is the non-linear transformation of i-vectors that
has shown robust results for LID and can be perhaps applied
also to DNN embeddings.

During our work on LRE17, we have also realized that our
rather complex and well-tuned bottleneck features can be very
useful for the research community and we have decided to de-
scribe them in more detail and make the trained models and
extraction scripts available [17].
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