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Abstract
This paper describes the BUT ‘Jilebi’ team’s speech recognition
systems created for the 2018 low resource speech recognition
challenge for Indian languages. We investigate modifications of
multilingual time-delay neural network (TDNN) architectures
with transfer learning and compare them to bi-directional
residual memory networks (BRMN) and bi-directional LSTM.
Our best submission based on system combination achieved
word error rates of 13.92% (Tamil), 14.71% (Telugu) and
14.06% (Gujarati). We present the details of submitted systems
and also the post-evaluation analysis done for lexicon discovery
using unsupervised word segmentation.

Index Terms: Indian languages, low resource ASR,
multilingual, LF-MMI

1. Introduction
Automatic speech recognition (ASR) requires a large amount
of transcribed speech data to perform well which is a costly
procedure and most of the languages in the world have limited
or no-resource training data. Low resource ASR was one of
the aspects of the IARPA Babel program [1] and was also
the focus of the MGB-3 challenge [2]. Different approaches
have been suggested in dealing with low resource training data:
multilingual pre-training - using a multilingual framework to
extract features which help in improving low resource ASR
systems [3, 4], semi-supervised training - transfer learning
to adapt an ASR trained on large dataset to a low resource
language [5] and data augmentation [6]. We use all of these
techniques in our systems.

India has 22 official languages and many of these can be
considered low resourced for training an ASR system. The
Low resource Indian language ASR challenge, organized by
Microsoft India, involved building speech recognition systems
on three Indian languages: Tamil, Telugu and Gujarati. The
participants were provided with 40 hours of transcribed speech
data for training and 5 hours for development. A 5 hour held-out
blind set was later released for evaluation. The participants
had access to two pronunciation dictionaries mapped to two
different phone sets: a language specific Indic phone set and a
common IPA phone set for the three languages. The challenge
rules restricted us from using any external speech and text data
for training the models. The speech data statistics for the three
languages are shown in Table 1.

When analyzing the data we found two key issues.

• OOVs: Different transcriptions of same words in
train and dev/eval sets. Although the vocabulary
distributed for the challenge contains words from both
dev and eval sets, this is not a realistic scenario — in

post-evaluation analysis, we tried to discover the OOVs
by an unsupervised approach.

• Many nouns and proper names occur less frequently. We
try to explore various models to empirically see which
performs best in this scenario. We also use multilingual
approaches to overcome the issue of less data.

We trained monolingual acoustic models with different
architectures; time delay neural network (TDNN) [7],
bi-directional long short term memory (BLSTM) [8] and
bi-directional residual memory networks (RMN) [9] using the
Indic phone set and multilingual models using the common
phone set. The results show that multilingual TDNN with
transfer learning outperforms the monolingual TDNN by an
WER of 0.5% absolute. We use Kneser-Ney n-gram and
RNN language models for decoding and rescoring. Our best
submission was a system combination of a low rank TDNN and
a multilingual TDNN fine tuned to each language.

This paper is organized as follows: Section 2 describes
our baseline system and other approaches to acoustic modeling.
Section 3 describes the language modeling. In sections 4
and 5, we present the results with some discussions on the
post-evaluation analysis and conclusions.

Table 1: Speech data statistics of training, development and
evaluation sets

Lang. # of utterances Avg. duration of
utterances(secs)

Train Dev Eval Train Dev Eval

Tamil 39131 3081 2609 3.6 5.8 5.8
Telugu 44882 3040 2549 3.2 5.9 5.9
Gujarati 22807 3075 3419 6.3 5.8 5.2

2. Acoustic Modeling
2.1. Monolingual models

2.1.1. Baseline

Our baseline acoustic model was based on purely
sequence-trained TDNN with the lattice-free maximum
mutual information (LF-MMI) objective [7, 10] and was
trained using the Kaldi toolkit [11]. This was similar to the
approach followed by the organizers on the challenge website.

We followed the approach usual in Kaldi recipes
for training Gaussian mixture models (GMM-HMM).
A monophone GMM-HMM was initially trained on 16
dimensional PLP features with 3 Kaldi pitch features on
the 10000 shortest utterances of the training data. We
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Table 2: Comparison of baseline system’s WER(%) on dev set: BUT and challenge organizers

System GMM TDNN
Tamil Telugu Gujarati Tamil Telugu Gujarati

Baseline(Organizers) 33.5 40.1 23.7 19.4 22.6 19.7
Baseline(BUT) 21.2 23.7 16.3 16.1 17.1 12.5

Low rank TDNN - - - 15.6 16.5 12.2

applied a per-speaker mean normalization and a global
variance normalization on all the input features. Then
three GMM-HMM triphone models are trained. A regular
GMM-HMM on the same input features along with their first
and second derivatives is trained. Then we train a GMM-HMM
on linear discriminant analysis (LDA) transformed features.
Finally a speaker adaptive (SAT) GMM-HMM on the fMLLR
adapted features. The fMLLR-SAT GMM system was
built with 6000 tied triphone states. We use the alignments
fMLLR-SAT GMM-HMM for TDNN supervision.

The input features to TDNN were 40 high resolution
MFCCs with 100 dimensional i-vectors for speaker
adaptation [12]. We also performed speed perturbation to
augment 3× the training data at speeds 0.9, 1.0 and 1.1, and
then volume perturbation by a random factor between 0.1 and
2. The i-vector extractor was trained on the speed perturbed
data. The baseline TDNN network had nine layers and eight
million parameters. TDNN trained with LF-MMI uses lower
frame rate and we prune the fMLLR-SAT GMM-HMM tree
to produce one HMM state per phone. The resulting tree had
3500 tied states.

For decoding, we used a 3-gram modified Kneser-Ney
language model trained using SRILM [13]. The challenge
organizers used Kaldi LM for their 3-gram language model.

Our baseline system outperforms the organizers’ one on
the development set in all the three languages because of the
difference in network architecture and number of parameters in
the acoustic model. The results are shown in Table 2.

2.1.2. Low rank TDNN

Then, we explored an architecture of TDNN different from
our baseline. We use the same LF-MMI objective function,
input features, i-vectors and fMLLR-SAT GMM system
as in our baseline system. The major difference is the
addition of a) bottleneck linear transformation layer after every
affine transformation of batchnorm ReLU layer and b) skip
connections. This changes can be seen in recipes of Kaldi
version 5.41. We can assume this to be a low-rank factorization
of the TDNN at every ReLU+linear layer pair. Table 2 shows
the improvement over the baseline TDNN on the dev set and
Table 3 gives the number of layers and parameters.

Table 3: Architecture of BUT baseline and low rank TDNN

System Parameters Layers

Baseline 8 mil 9
Low rank 18.5 mil 11

2.1.3. BRMN and BLSTM

In this section, we describes our experiments with bi-directional
residual memory neural network (BRMN) architecture [9] as a

1egs/swbd/s5c/local/chain/tuning/run tdnn 7n.sh

way to model short-time dependencies using deep feed-forward
layers having residual and time delayed connections. Here,
the number of layers in BRMN signifies both the hierarchical
processing depth and temporal depth. The computational
complexity in training BRMN is significantly smaller than for
deep recurrent networks due to its feed-forward design. The
recognition experiments are performed with BRMN having 12
layers where each layer is a [1024 × 512] dimensional weight
matrix with ReLU activation. The residual connections flow
by skipping over every two layers. The model is trained using
truncated BPTT with a minibatch size of 20 and a maximum of
40 parallel utterances in each minibatch. The initial learning
rate is set to 0.0005 and reduced automatically for the next
epoch by a factor of 0.5 if cross-entropy loss degrades. `2
regularization weight is fixed to 0.00001 and momentum is
set to 0.9. We use the Indic phone set for these experiments.
BRMN and BLSTM were both trained using CNTK [14] by
extracting GMM-HMM alignments from Kaldi [11] toolkit.

A 3-layer BLSTM with 512 dimensional memory cells
and 300 dimensional projection matrix are employed in this
network. BLSTM is trained using truncated backpropagation
through time (BPTT) with a minibatch size of 20. It also
includes latency control technique with 22 past frames and 21
future frames as mentioned in [15] to limit future context size.
The BLSTM training follows similar configuration as explained
in BRMN.

Table 4 shows the speech recognition performance for
all three languages on dev set using BRMN and BLSTM
models. The BRMN shows consistent gain over BLSTM for all
languages and shows absolute 0.2% gain with i-vectors. This
shows that BLSTM suffers with less data compared to BRMN
and we observed overfitting after a few epochs. The addition
of 40-dimensional i-vectors did not help BLSTM, instead it
degraded its performance consistently across all languages.
Sequence-level training using sMBR (state minimum Bayesian
risk) criterion gave absolute 0.1% gain for Tamil and 0.3-0.4%
gain for Telugu and Gujarati.

2.2. Multilingual models

2.2.1. Transfer learning TDNN

A multilingual neural network was trained by pooling the three
languages using the common IPA phone set. The acoustic
model was based on the low rank TDNN architecture from
Section 2.1.2 with 7000 tied states.

The hidden layers of a neural network learn the higher order
representations of the input features. In transfer learning, a
source model is trained on a large corpus and then the weights
of the hidden layers are transfered to a smaller target dataset and
re-trained for a similar or different task. In this approach, both
models must be trained using the same objective function.

We use the transfer learning approach discussed in [16].
In our experiments the source and target models were the
multilingual and monolingual TDNNs trained with LF-MMI
objective. We transferred all layers of a pre-trained source
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model and retrained with higher learning rate for the last layer
for 2 epochs using target labels. The learning rate of the
transferred layers (excluding last) is reduced by a factor of
0.25 of the initial learning rate. New alignments and lattices
are generated using the multilingual TDNN model. In transfer
learning the last layer is not transfered because source and target
use different phone sets and trees but in our experiments we
transfer all the layers since we use the same context-dependency
tree of the source network. A new target lexicon with word
pronunciation of source lexicon is created and target words not
present in source lexicon are treated as OOVs. Phone LM used
to create the denominator graph is generated by the weighted
combination of alignments from source and target.

More experiments are required to analyze the effect of
number of transferred layers in the scope of the challenge.

2.2.2. Multilingual BRMN and BLSTM

In case of multilingual experiments, a common phone set
created using IPA rules is used to initially build a multilingual
BRMN acoustic model with block-softmax layer with an initial
learning rate of 0.005. This model is further adapted for each
language using language dependent softmax layer in two steps,
first, the pre-initialized multilingual hidden layers are frozen
and only the last layer is retrained for 5 epochs with initial
learning rate set to 0.00001. The resulting model is then
retrained across all layers for 10 epochs with initial learning rate
set to 0.0005. Multilingual BLSTM (Multi-BLSTM) is trained
in a similar fashion as in Multi-BRMN.

The recognition performance of Multi-BLSTM and
Multi-BRMN are denoted in Table 4. The results show that
Multi-BLSTM showed slight gain compared to Mono-BLSTM
with i-vectors model for Telugu and Gujarati, but degraded
for Tamil. In case of Multi-BRMN, there was consistent
and significant gain over its monolingual version across
all three languages. It is interesting to notice that both
multilingual models trained without i-vectors performed well
over monolingual models trained with i-vectors.

Table 4: Recognition performance on dev data with KN 3-gram
LM. The mono-lingual system used Indic phone set lexicon and
multi-lingual system used IPA phone set lexicon

Dev set % WER
(languages) Tamil Telugu Gujarati

With BRMN - CE (sMBR)
Mono 16.1 (16.0) 17.6 (17.4) 13.1 (13.0)
Mono (+ivec) 15.9 (15.8) 17.4 (17.0) 12.9 (12.8)
Multi 15.8 (15.7) 16.8 (16.5) 12.6 (12.5)

With BLSTM - CE (sMBR)
Mono 16.3 (16.2) 18.0 (17.9) 13.6 (13.5)
Mono (+ivec) 16.6 (16.5) 18.4 (18.3) 13.8 (13.7)
Multi 16.7 (16.6) 18.1 (18.0) 13.5 (13.4)

With Low rank TDNN - LFMMI
Mono (+ivec) 15.6 16.5 12.2
With Transfer Learning
Multi (+ivec) 15.2 16.0 11.9

3. Language Modeling
A 3-gram language model is prepared with all train and dev
text (Table 1) along with the evaluation vocabulary list. RNN

language model (RNNLM) is also prepared by following the
recipe in Kaldi, with a few modifications in fine-tuning. The
RNNLM is built with 100 dimensional embedding (input)
layer and a single LSTM layer containing 100-dimensional cell
followed by output layer. RNNLM rescoring gives consistent
improvement on both the low rank TDNN and transfer learning
models. Table 5 shows the comparison of the languages models
on the dev set for the three languages.

Table 5: Comparing % WER of KN 3-gram and KN 3-gram with
RNNLM rescoring on dev set

LM Tamil Telugu Gujarati

Low rank TDNN
KN 3-gram 15.6 16.5 12.2
RNNLM 15.3 16.1 12.0
Transfer learning
KN 3-gram 15.2 16.0 11.9
RNNLM 15.0 15.7 12.0

4. Results and Discussions
Table 6 shows the results of various acoustic models on eval
set. Evaluation models were trained using the data from both
train and dev sets. We used a Kneser-Ney 3-gram language
model with a new lexicon including the evaluation vocabulary.
The RNNLM rescoring provided good performance on dev set
but failed on eval set with performance degradation (0.4% on
Telugu).

Low rank TDNN with skip connections gave considerable
absolute improvement of 0.6-1.1% over baseline TDNN.
Transfer learning further improves by an additional 0.5-0.7%
absolute over the low rank TDNN system. ROVER [17] was
used to combine the CTM hypotheses of the systems. Our
primary submission was a system combination with low rank
TDNN and low rank TDNN with transfer learning. We also
combined the primary submission with mono BRMN but it did
not improve the performance.

As an post-evaluation experiment, we tried to improve
multilingual BRMN (Multi BRMN) model as it showed
considerable gains over multilingual BLSTM models. In this
experiment, the i-vectors were also fed into the system after
transforming them using a single feed-forward layer and adding
the resulting output with the second layer of final Multi-BRMN
model. This strategy is adopted from the multilingual model
adaptation procedure in [18]. During adaptation, the final
layer is retrained for 8 epochs with an initial learning rate of
0.0001 and further retrained across all layer for 15 epochs
with initial learning rate of 0.005. The resulting Mult-BRMN
model showed considerable gain over monolingual BRMN
(BRMN) which can be devoted to inclusion of i-vectors and
better initialization as denoted in Table 6. Multi BRMN gives
absolute gain of 1.2% and 1.1% for Telugu and Gujarati over
monolingual BRMN model with ivectors also seen in Table 6.

4.1. Unsupervised lexicon discovery

This section outlines the lexicon discovery strategy we explored
post evaluation. This was not required for the evaluation
because the organizers provided a full lexicon containing the
words from evaluation set as well.

The motivation comes from the nature of orthography in
Indian languages. Most of them share similar properties, where
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Table 6: % WER of post-evaluation models and submitted
models on the evaluation set

Eval set % WER
(languages) Tamil Telugu Gujarati

BRMN (+ivec) 14.6 15.7 15.3
Low rank TDNN (A) 14.5 15.5 15.1
Multi BRMN (+ivec) 14.1 14.5 14.2
Sys. comb. of A+B+Multi
BRMN (+ivec)

13.8 14.3 13.9

Submitted systems

Transfer learning TDNN (B) 14.0 14.9 14.4
Sys. comb. of A+B + BRMN
(+ivec)

14.3 14.8 15.0

Sys. comb. of A+B 13.9 14.7 14.1

words (morphemes) can be combined to form a compound
word, following certain morpho-phonological rules. This
process is called Sandhi. Conversely, a word can be split
into its constituents based on the same rules. This behavior
is more prominent in Dravidian language family (Kannada,
Malayalam, Tamil, Telugu, etc,.) and it makes them highly
agglutinative. This gives rise to the possibility of several new
words, including proper nouns. Moreover, it also depends on
the choice of the person speaking and transcribing. Fig. 1 shows
one such example from Telugu, where a compound proper noun
is formed by the concatenation of two sub words (nouns). For
such languages, ASR systems benefit by having a huge lexicon
with all the compound words and sub words.

Figure 1: An example of discovered compound proper noun
from two sub words (nouns) in Telugu.

Most of the earlier work in discovering the words from
Sandhi or sandhi splitting was based on linguistic rules, and
recently seq2seq based neural networks were used to learn
these mappings for Sanskrit [19]. However, it requires training
data constituting of compound words and their constituent
morphemes. We used existing models and tools to discover
some of these compound and sub words. More specifically,
we used unsupervised word segmentation based on nested
Pitman-Yor language model [20]. In brief, given a sequence
of characters without any word boundaries, the model discovers
most likely word segments, that maximizes the likelihood of
the character n-gram language model and the nested word level
n-gram language model. This model and its extensions were
used for discovering lexicon from acoustic input [21], and also
from lattices [22, 23].

We make use of the open source implementation of the
model2 to obtain several segmentations of every utterance from
training data. We chose various hyper-parameters (order of
character and word level language models) that encourage over
and under segmentation. Additionally, we set the average word
length to be {4, 8}, which serves as the mean parameter for
Poisson distribution. This resulted in several word segments (10
times the size of current vocabulary). For example, see Fig.1.

2https://github.com/fgnt/LatticeWordSegmentation

Table 7: Statistics of discovered words with the corresponding
improvements in word error rates (WER) on eval set.

Lang. # of OOV
words

# of words
discovered

WER
before

WER
after

Tamil 3935 501 29.0 27.7
Telugu 2349 358 25.4 24.5
Gujarati 2342 308 19.5 19.0

To test the viability of the segmentation approach,
we considered only training and development data for
segmentation, and later checked how many of the new words
from segmentation, appear in the evaluation lexicon. Then, we
decoded the eval set with low rank TDNN (Table 6) model
and the existing language model but with updated lexicon
containing the discovered words. These statistics are presented
in Table 7, along with the corresponding improvement in word
error rates (i.e., if we were not given evaluation lexicon, these
will be the improvements in WER). It is important to note that
this segmentation is a naı̈ve approach, and will only discover
a subset of words that are result of Sandhi and sandhi splitting,
and it does not involve learning any morpho-phonological rules.

5. Conclusions
In this paper, we presented the details of the BUT team’s
submissions to the low resource speech recognition challenge
for Indian languages. We investigated various monolingual
and multilingual acoustic models for low resource training
data in Tamil, Telugu and Gujarati. Results showed that
feed-forward networks perform better than recurrent networks
for low resource languages. Models with low rank TDNN
architecture trained with LF-MMI objective outperforms the
traditional TDNN. We also used a transfer learning approach
to adapt a multilingual TDNN model which improves further.
Our best submission was a ROVER combination of the two
systems. During post evaluation, we explored automatic lexicon
discovery using unsupervised word segmentation, exploiting
the agglutinative nature of Indian languages. With this approach
we were able to discover 12 - 15% of OOVs, at the expense
of having a huge lexicon (almost 10 times the size of given
lexicon).

In future, we will continue to explore lexicon discovery
techniques as it was observed to be a promising direction,
especially for Indian languages. We would also like to analyze
the individual effects of linear bottleneck layers and skip
connections in the low rank TDNN network. We will also look
at substituting CE followed by sMBR objective with LF-MMI
in BRMN.
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