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Abstract
The task of spoken pass-phrase verification is to decide whether
a test utterance contains the same phrase as given enrollment
utterances. Beside other applications, pass-phrase verification
can complement an independent speaker verification subsystem
in text-dependent speaker verification. It can also be used for
liveness detection by verifying that the user is able to correctly
respond to a randomly prompted phrase. In this paper, we build
on our previous work on i-vector based text-dependent speaker
verification, where we have shown that i-vectors extracted using
phrase specific Hidden Markov Models (HMMs) or using Deep
Neural Network (DNN) based bottle-neck (BN) features help to
reject utterances with wrong pass-phrases. We apply the same
i-vector extraction techniques to the stand-alone task of speaker-
independent spoken pass-phrase classification and verification.
The experiments on RSR2015 and RedDots databases show that
very simple scoring techniques (e.g. cosine distance scoring)
applied to such i-vectors can provide results superior to those
previously published on the same data.

1. Introduction
Utterance Verification (UV) is the task of confirming the con-
tent of a given utterance and answering the question of whether
the user uttered the prompted pass-phrase or not. In this pa-
per, we focus on spoken pass-phrase verification, where one or
more spoken examples are given for the required pass-phrase.
In other words, the task is to verify whether a test utterance
(from, possibly, a previously unseen speaker) contains the same
pass-phrase as a given enrollment utterance or a set of enroll-
ment utterances. UV is a subtask of text-dependent Speaker
Verification (SV), where the correctness of the uttered pass-
phrase needs to be verified together with the speaker identity.
Here, the UV component helps to prevent from replay attacks
using a random utterance of the target speaker.

A single model is often used in text-dependent SV to jointly
address both UV and SV tasks. For example, in our previous
work on i-vector based text-dependent SV [1, 2, 3], HMMs
constructed specifically for each pass-phrase were used to ex-
tract sufficient statistics in order to make the resulting i-vectors
both speaker and phrase specific. Further text-dependent SV
experiments have shown that it is enough to use the more
conventional Universal Background Model - Gaussian Mixture
Model (UBM-GMM) if the i-vectors are extracted from BN
features [4, 5]. The frame-by-frame BN features are obtained
from a DNN, which is trained to extract phonetic information
from the acoustic context (300 ms) around the current frame.
I-vectors extracted from such BN features contain lots of infor-
mation about the phonetic content of the corresponding utter-

ances and are very good for rejecting utterances with incorrect
pass-phrases.

Although a single model can be used to jointly address both
UV and SV tasks, there is still good reason to have stand-
alone (speaker-independent) system for utterance verification
or classification. In text-dependent SV, for example, replay
attacks with pre-recorded correct pass-phrases are very diffi-
cult to reject. A possible way to tackle this problem is to use
anti-spoofing techniques based on detecting typical distortions
in recorded and replayed audio [6] or using audio fingerprint-
ing [7] to detect a replay of an enrollment utterance. However,
these techniques are often not very reliable. An alternative is to
use a liveness detection using a separate UV subsystem as fol-
lows: in one step, a standard text-dependent SV is used to verify
the speaker, while in the second step the user is prompted some
random phrase, which he needs to pronounce to prove his re-
sponsiveness. Speaker identity can be verified from this second
phrase in more text independent fashion. More importantly, the
correctness of the phrase can be verified by the UV subsystem.
The prompted random phrase can be in a textual form or can be
represented by audio recording. The later case is of our main
interest. Note that the UV techniques can be also applied to
other problems than the text-dependent SV. An example can be
re-scoring detections in keyword spotting or query-by-example
system [8].

In this work, we experiment with the aforementioned i-
vector based text-dependent SV techniques. However, we
apply these techniques to the stand-alone task of (speaker-
independent) spoken pass-phrase verification or classification.
We show that the i-vectors extracted in the described way con-
tain predominantly information about the lexical content of the
utterance and are therefore excellent representations for this
task. We also show that our solution based on the simple i-
vector representation outperforms the previously proposed and
often more computationally complex methods, which serve as
our baseline [9].

2. Baseline Utterance Verification Methods
The effort on UV described in the literature is quite limited.
In [9], four systems are described, which constitute a good ex-
ample of the standard techniques for UV. We use these systems
and the corresponding results as our baseline. In some of our
experiments with i-vector based UV, the same setup as in [9] is
used to make the results directly comparable. Here, we provide
the only brief description of these baseline systems. For more
detailed description, we kindly refer the reader to [9].

The system denoted as UV1 uses Mel-Frequency Cep-
stral Coefficients (MFCCs) with their first and second order

Odyssey 2018 The Speaker and Language Recognition Workshop
26-29 June 2018, Les Sables d’Olonne, France

372 10.21437/Odyssey.2018-52

http://www.isca-speech.org/archive/Odyssey_2018/abstracts/43.html


derivatives and a GMM-UBM with 512 Gaussian components
trained on TIMIT data. The utterance models are adapted
from the GMM-UBM using the standard relevance maximum-
a-posteriori (MAP) adaptation [10] and the log-likelihood ratio
between the utterance and the UBM serves as the UV score.
Note that this technique only models the distribution of acous-
tic features in the training utterances, but does not try to model
the temporal structure of the uttered phrases.

The system denoted as UV2 uses 5-state HMM with the
left-to-right topology to model the temporal structure of utter-
ances. Each state is modeled using a GMM, which is MAP
adapted in a similar manner and from the same GMM-UBM as
in the case of the system UV1. Viterbi alignment of frames to
HMM states is used to train phrase specific models on training
utterances and to evaluate the log-likelihood ratio score for the
test utterances.

The UV3 system uses perhaps the most conventional ap-
proach to spoken utterance verification: dynamic time warping
(DTW) [11] is used to frame-align utterances and to calculate
the distances between the utterances. Euclidean distance be-
tween MFCC feature vectors is used as the frame-to-frame dis-
tortion. Note that the DTW based UV could be further improved
by using more sophisticated frame-to-frame distortions [12] or
by calibrating the resulting DTW scores to make them proper
UV log-likelihood ratios [13]. These improvements are, how-
ever, not considered in this work.

UV4 makes use of a DNN based automatic speech recog-
nition (ASR) system trained on TIMIT data using Kaldi [14]
toolkit. Each test utterance is forced-aligned to the known ref-
erence transcript of a given pass-phrase and the acoustic score
(pseudo log likelihood) for this alignment is used as the UV
score. Note that this system performs UV using the pass-phrase
given as text, unlike the other methods described in this paper,
which rely on spoken pass-phrase.

3. i-vector Based Utterance Verification
In this work, we use i-vectors as fixed length low-dimensional
representations of speech utterances. First, i-vectors were pro-
posed for the task of text-independent speaker recognition [15],
but soon became popular for other tasks of utterance level clas-
sification or verification such as language, gender, signature,
age or emotion recognition [16, 17, 18, 19]. In the probabilis-
tic model for i-vector extraction, a low-dimensional latent vari-
able is used to representing utterance specific GMM. I-vector
is the MAP point estimated of the latent variable adapting the
corresponding GMM to a given speech utterance. For more de-
tails on the i-vector model, we kindly refer the reader to other
sources [15, 5]. Here, we only recall that the i-vector can be
inferred from sufficient statistics, which are collected from the
speech utterance. To collect the sufficient statistics, we need an
alignment of speech frames to i-vector model Gaussian compo-
nents. This alignment is traditionally obtained using an under-
lying UBM-GMM.

3.1. HMM based frame alignment methods

In our previous works on text-dependent SV [1, 2] and also text-
prompted SV [3], i-vectors were extracted using HMM based
alignment. For this purpose, phoneme recognizer is first trained,
where mono-phone 3-state HMMs are used with state distribu-
tions modeled using GMMs. Given the known transcriptions of
enrollment and test utterances, the phrase specific HMMs are
constructed from the mono-phone HMMs. The Viterbi algo-

rithm is then used to obtain the alignment of the frames to the
HMM states in order to collect the sufficient statistics. Note
that, while there is a specific HMM built for each phrase, there
is only one set of Gaussian components (Gaussians from all
the HMM states of all phone models) corresponding to a sin-
gle phrase-independent i-vector extraction model. The i-vector
extractor is trained and used in the usual way, except that, it
benefits from the better alignment of frames to Gaussian com-
ponents as constrained by the HMM model. More details on
this i-vector extraction method can be found in [1, 5].

For text-dependent SV, it was shown [1, 2] that this
alignment extraction strategy produces more phrase specific i-
vectors, which are especially effective for rejecting utterance
with wrong pass-phrases. For the same reason, this technique is
also suitable for utterance verification task as demonstrated in
our experiments. One the drawback of this approach is that we
need to know the phrase specific phone sequence for construct-
ing the corresponding HMM.

3.2. Bottleneck features

MFCCs were conventionally used as the speech features for i-
vector extraction. More recently, however, significant improve-
ments were obtained for both text-dependent [4, 5] and text-
independent [20, 21, 22] verification task from using BN fea-
tures or concatenated MFCC+BN features. Note that BN fea-
tures were previously successfully used also in other areas of
speech processing [23, 24, 25].

BN features are frame-by-frame extracted using a bottle-
neck DNN, which is typically trained for phone classification.
Bottleneck DNN is a neural network with a specific topology,
where one of the hidden layers has significantly lower dimen-
sionality than the surrounding layers. A bottleneck feature vec-
tor is generally understood as a by-product of forwarding a pri-
mary input feature vector through the DNN, while reading the
output of the bottleneck layer where the relevant information
is compressed into a low dimensional vector. In this work, we
use more elaborate architecture for BN features called Stacked
Bottleneck Features [26]. This architecture is based on a cas-
cade of two such BN DNNs. The BN output of the first net-
work is stacked in time, defining context-dependent input fea-
tures for the second DNN. The input features to the first stage
DNN are 36 log Mel-scale filter bank outputs augmented with
3 fundamental frequency features [26] and normalized using
conversation-side based mean subtraction. The outputs from
the BN layer of the second stage DNN are then taken as the final
output features (i.e. the features to train the i-vector model on).
With this architecture, each output feature vector is effectively
extracted from at least 30 frames (300 ms) of the input features
in the context around the current frame. Therefore, each BN
feature vector contains important information about the pho-
netic context around the current frame, which is further prop-
agated to the i-vector extracted from these features. This makes
BN feature based i-vectors very phrase specific even when ex-
tracted using the conventional UBM-GMM model (i.e. there is
no need for the HMM based alignment), which was previously
demonstrated in text-dependent SV experiments [4, 5].

3.3. Scoring methods

In our experiments, we consider both the task of close-set pass-
phrase classification and open-set pass-phrase verification. To
classify or compare i-vectors, we use only two very simple tech-
niques, namely Linear Gaussian Classifier (LGC) and cosine
similarity scoring.
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3.3.1. Linear Gaussian Classifier (LGC)

For each class (pass-phrase) i = 1 . . .K, LGC assumes Gaus-
sian distribution of i-vectors N (w|µi,Σ). Each class is mod-
eled by its own mean vector µi. All the classes, however, share
the same average within-class covariance matrix Σ, which is
typically estimated as

µi =
1

Ni

Ni∑

n=1

wn
i (1)

Σ =
1

N

K∑

i=1

Ni∑

n=1

(wn
i − µi)(w

n
i − µi)

T , (2)

where Ni is the number of training samples (i-vectors) for
phrase i and wn

i is the nth training sample of phrase i. Once
the model is trained on the training (or enrollment) utterances,
evaluation data can be classified by simply selecting the class
with the highest posterior probability:

P (i|w) =
N (w|µi,Σ)P (i)∑K

k=1N (w|µk,Σ)P (k)
, (3)

were we assume equal priors P (i) for all classes. To be con-
sistent with results from [9], we also report the performance in
terms of Equal Error Rate (EER) for LGC, where the posterior
probabilities serve as the verification score for the correspond-
ing classes. In this case, however, we cannot talk about open-set
verification as the score from the close-set of K phrases de-
pends on each other through the normalization in the posterior
probability calculation.

3.3.2. Cosine Similarity Scoring

Cosine similarity scores are also used in our experiments to per-
form classification and verification of i-vectors. In this case, the
enrolled pass-phrase models are obtained as a simple average of
training (or enrollment) i-vectors. Note that there is no need to
estimate any covariance matrix for this scoring method, which
makes it more robust for the cases where only few training ex-
amples are available. To perform classification of a test utter-
ance, we can select the class with the highest cosine similarity
score. For the detection task (i.e. to evaluated EER), we simply
use the cosine similarity score as the verification scores. Note
that in this case, verification scores for individual pass-phrases
are completely independent of each other and the obtained EER
can be correctly interpreted as open-set pass-phrase verification
performance.

Again, to be consistent with results from [9], we alterna-
tively normalize the cosine similarity scores using the so-called
Max-Norm method. In this case, for each test utterance, the
maximum of cosine scores over all other the K − 1 phrases is
subtracted from the original cosine scores. The same normal-
ization is also used for some of the results from [9], which are
also presented for comparison in Table 2. Although the normal-
ization (seemingly) improves the classification and verification
results, we no more deal with the open-set verification problem
just like in the case of LGC.

3.3.3. Motivation for simple classifiers

We have used t-SNE [27] to reduce 400-dimensional i-vectors
extracted using UBM-GMM from MFCC+BN features into 2-
dimensional space. The i-vectors were taken from all male
speakers from the RSR2015 test set. Figure 1 shows the plot of
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Figure 1: Male i-vectors from the RSR2015 database reduced to
2-dimensional space using t-SNE. There are 30 well separated
clusters corresponding to different phrases.

the resulting vectors for 30 phrases of the RSR2015 database.
Each point in the plot corresponds to one i-vector and is colored
according to the phrase label. One can see that i-vectors from
different phrases form nicely separated clusters in the t-SNE
space. Moreover, all classes have roughly Gaussian distribu-
tion with the same within-class covariance matrix. Although, in
general, t-SNE provides nonlinear transformation of the origi-
nal space, the nicely separated clusters and simple distributions
make us believe that pass-phrase verification should be an easy
task in this i-vector space and simple scoring technique should
be sufficient.

4. Experimental setup
We report results on Part1 of the RSR2015 database [28] as well
as Part1 of the RedDots database [29]. RSR2015 comprises
recordings from 30 different phrases. The same phrases appear
in three disjoint subsets of speakers background, development
and evaluation set. Each speakers repeats each phrase 9 times.
The male utterances from the background set (50 speakers) are
used for training the classifiers. The results are reported on male
part of the evaluation set (57 speakers). The development set is
not used in our experiments.

Part1 of RedDots contains 49 male speakers, each pro-
nouncing several times 10 common pass-phrases. For the re-
sults reported in Table 2, the evaluation setup defined at UEF
university was adopted to make our results directly comparable
with those previously reported in [9]. In this setup, all utter-
ances from 9 different speakers are used to train the 10 pass-
phrase models (In total, 1485 utterances are used for training,
roughly 148 utterances per pass-phrase) and 30 other speakers
are selected for the evaluation set. Note that 10 out of the 49
male speaker were not used at all in our experiments. For the
results reported in Table 3 analyzing the performance for re-
duced amount of training data, several subsets of the 9 training
speakers are used and evaluation set remains unchanged.
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Table 1: Performance of the i-vector based methods on
RSR2015 .

Classification EER
Error [%] [%]

LGC 0.0 0.000
Cosine 0.0 0.007
Cosine Max-Norm 0.0 0.000

A UBM-GMM with 1024 components, alignment HMMs
with 3 states and 8 components in each state and a 600-
dimensional i-vector extractor are trained using LibriSpeech
database [30] and the background set of RSR database. BN
feature extractor was also trained on LibriSpeech [5].

In order to evaluate EERs, the verification scores for the
individual pass-phrases are simply polled. We understand that
it is questionable to use such pooled EER in the case of close-
set problem, where the verification scores are normalized using
the scores from the competing hypothesis (i.e. our results with
LGC and Cosine Max-Norm). Nevertheless, we also include
such results in order to allow for comparison with the baselines
from [9]. For the RSR2015 database, each evaluation utterance
forms one target trial and 29 non-target trials corresponding to
the remaining pass-phrases. Similarly, one target and 9 non-
target trials are formed for each evaluation utterance from Red-
Dots.

5. Results
5.1. RSR2015 Results

First, we report results on male utterances from RSR2015 eval-
uation set. This is an example of a scenario where plenty
of training examples are available for each of 30 pass-phrases
(50 × 9 = 450 training utterances per phrase). Further, we
deal here with the ideal condition, where UBM and i-vector ex-
tractor are trained on training data of the same phrases. This
leads to nearly faultless recognition performance for any of the
scoring technique as presented in Table 1. In this case, we have
chosen i-vectors extracted using UBM-GMM from MFCC+BN
features, which was the configuration previously providing ex-
cellent performance in text-dependent SV task [4, 5].

5.2. RedDots Results

Table 2 shows results for more challenging RedDots database.
The phrase models are still trained on relatively many exam-
ples. As mentioned in section 4 there are about 148 examples
from 9 different speakers for each pass-phrase. But the data are
recorded under more challenging conditions and the UBM and
i-vector extractor are trained on data of mismatched phrases.
Note also that, in the case of LGC, within-class covariance ma-
trix (i.e. Eq. (2)) was estimated on RSR2015 on data of different
phrases (i.e. in a phrase independent fashion). Only the class
means were estimated on RedDots data.

The first section of Table 2 shows results obtained with the
baseline systems, which were described in Section 2. These
results are borrowed from Table 5 of [9] and are directly com-
parable with our result from the second section of Table 2. The
results show that the proposed i-vectors (again UBM-GMM and
BN features are used) easily outperform even the fusion of the
previously published baseline methods from [9]. We have man-

Table 2: Comparison of the i-vector bases methods with the
baseline methods from [9] on RedDots data.

Method No-Norm Max-Norm Classification
EER [%] EER [%] Error [%]

UV1 9.31 2.08 –
UV2 5.54 1.11 –
UV3 24.81 7.80 –
UV4 16.60 4.56 –
Fused (UV1 . . . UV4) 6.13 1.43 –

LGC 0.11 – 0.25
Cosine 0.61 0.10 0.25

Table 3: Comparison of features, alignment methods and dif-
ferent amount of training examples on RedDots. Three training
i-vectors are used per speaker. The results are EERs [%]

Number of Speakers

Method Feature / Align 1 2 3 5 9

MFCC / GMM 61.01 7.78 3.70 2.71 1.45
LGC MFCC / HMM 9.60 1.55 1.16 1.15 0.85

MFCC+BN / GMM 39.11 1.10 0.21 0.15 0.14

MFCC / GMM 24.54 16.7 12.9 10.1 7.17
Cosine MFCC / HMM 19.19 9.58 7.18 4.87 3.02

MFCC+BN / GMM 7.53 2.00 1.35 0.95 0.55

Cosine
Max-Norm

MFCC / GMM 15.51 8.18 5.67 3.62 2.01
MFCC / HMM 9.79 3.51 2.36 1.16 0.50

MFCC+BN / GMM 2.52 0.35 0.30 0.20 0.10

ually inspected the utterances where the i-vector based systems
made an error, and we have observed that those were most
severely corrupted utterances (i.e. mispronunciation, only si-
lence, etc). Note also the very good performance of the Cosine
similarity with no normalization, which is the result for the true
open-set pass-phrase verification task.

From the results in Table 2, we can see that both LGC and
Cosine distance perform similarly. This is understandable real-
izing the close relation between the two scoring methods: LGC
with identity within-class covariance matrix applied to length
normalized i-vectors1 would produce class likelihood propor-
tional to Cosine distance. In reality, the within-class covariance
matrix will not be far from identity as the i-vector extractor is
trained to produce standard normal distributed i-vectors. More-
over, the Max-Norm applied to Cosine distance scores can be
seen as an approximation to the softmax normalization embed-
ded in equation 3.

5.3. Features, Alignments and Amount of Training Data

Table 3 compares results obtained with the different proposed
i-vector extraction variants: UBM-GMM vs. HMM alignment,
MFCC vs. MFCC+BN features. For LGC, within-class covari-
ance matrix was again estimated on RSR20105 data. The results
show the degradation of the performance with the decreasing

1However, note that we do not apply the length normalization in the
case of LGC scoring in our experiments.
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number of training examples (and training speakers). Here, we
use only three training examples per speakers and the columns
of the table correspond to the number of speakers considered for
the training. With only MFCC features, HMM alignment per-
forms better than UBM-GMM in almost all cases. This is due to
the HMM ability to model the temporal structure of individual
phrases, which has been previously shown to be very effective
for rejecting the wrong phrase trials [4, 1]. The best perfor-
mance is achieved with MFCC+BN with UBM-GMM align-
ment. In this case, the information about the temporal structure
of phrases is encoded directly in the BN features, which are ex-
tracted from a considerably large context window (i.e. more
than 300 ms). This allows us to obtain the superior performance
even with the simpler UBM-GMM alignment.

Again, excellent results can be obtained with MFCC+BN
features and the simple Cosine similarity scoring without any
normalization, considering that this corresponds to open-set
verification task. In this case, acceptable performance is
achieved just with 3 samples from 5 speakers (still outperform-
ing all the baseline systems from Table 2), which might lead to
very useful and practical applications.

The simplicity of the i-vector based scoring methods and
the relatively low number of parameters that need to be esti-
mated on the training data of matching pass-phrases makes our
approach suitable also for the cases with very limited amount of
training examples. As can be seen from the results, acceptable
performance can be obtained even with only 2 training speakers.

In the case of only single enrollment speaker, the results for
LGC based scoring seems to be quite unstable as compared to
Cosine distance (e.g. note the surprisingly high 39.11% EER
for MFCC+BN / GMM). Our further analysis revealed that this
was due to the insufficient data used for the estimation of the
LGC within-class covariance matrix. As mentioned above, the
covariance matrix is pre-estimated on the RSR2015 data of mis-
matched pass-phrases. Estimating the covariance matrix on
more (still mismatched) data helped alleviated this problem.

6. Conclusions
In this paper, we proposed simple but effective i-vector based
spoken pass-phrase verification methods and evaluated them on
two standard databases: RSR2015 and RedDots. Experimen-
tal results have shown the effectiveness of the methods, which
achieved almost zero error rate on both databases and signifi-
cantly outperformed previously published result.

The main reason for the excellent performance of these
methods is the suitability of i-vectors for utterance verification.
I-vector extracted from short duration utterance contains pre-
dominantly information about the phonetic content of the utter-
ance. Therefore, such i-vectors naturally form phrase specific
cluster in the i-vector space without any need for channel com-
pensation and score normalization [1, 4], which are otherwise
necessary for tasks like speaker verification.

The advantages of the proposed methods are simplicity,
speed, very low overhead and excellent performance. Another
interesting property is suitability of these methods for low re-
source scenarios, which is allowed by their good performance
with little amount of training data.

Although the proposed methods have achieved near zero
error rate on both databases, we can hardly say that the pass-
phrase verification is a solved problem. Much larger databases
with plenty of phrases will be necessary to reliably evaluate
the verification methods and also to analyze the possible per-
formance degradations due to the phrase similarity. This is an

open topic for future works.
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