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Abstract

Classically, automatic speech recognition (ASR) models
are decomposed into acoustic models and language mod-
els (LM). LMs usually exploit the linguistic structure on
a purely textual level and usually contribute strongly to
an ASR systems performance. LMs are estimated on
large amounts of textual data covering the target domain.
However, most utterances cover more specific topics, e.g.
influencing the vocabulary used. Therefore, it’s desirable
to have the LM adjusted to an utterance’s topic. Previ-
ous work achieves this by crawling extra data from the
web or by using significant amounts of previous speech
data to train topic-specific LM on. We propose a way
of adapting the LM directly using the target utterance
to be recognized. The corresponding adaptation needs
to be done in an unsupervised or automatically super-
vised way based on the speech input. To deal with
corresponding errors robustly, we employ topic encod-
ings from the recently proposed Subspace Multinomial
Model. This model also avoids any need of explicit topic
labelling during training or recognition, making the pro-
posed method straight-forward to use. We demonstrate
the performance of the method on the Librispeech cor-
pus, which consists of read fiction books, and we discuss
it’s behaviour qualitatively.

Introduction

In a typical ASR system, there is a single language model
estimating the prior probability of hypothesised word se-
quences. The parameters of such LM are optimized on
a vast amount of text data, hopefully capturing as much
of linguistic structure as possible. However, it can be
argued that while there are global characteristics of a
language, some properties of text are local to an utter-
ance or a set of utterances. These local variations may
capture speaking style, genre or topic. In this work, we
focus on exploiting the topic of an utterance.

There are several prior works in the literature that fo-
cus on adapting language models: Oftentimes, features
describing the context are provided as an additional in-
put to a neural LM [3, 13, 1]. For large scale neural
models, a mixture-of-experts approach was proposed re-
cently [7]. When adapting to very small quantities of
target data, a unigram description of topic of the target
data is proposed to be combined with an n-gram back-
ground model [10]. In context of conversational agents, a
DNN-driven mixture of n-gram LMs was proposed [15].

In most of these works, topic is considered to be a discrete
category, so separate language models are trained for dif-
ferent topics. Every test utterance is then assigned to a
topic or a mixture of topics, determining the utterance-
specific language model to be used for recognition. In
this work, we consider topic to be a continuous quantity
which is intrinsic to every utterance. Therefore, we con-
struct the utterance-specific language model, rather than
selecting or combining it from a prepared set of LMs.

Following the practice of [10], we construct these
utterance-specific LMs as unigram models. Since utter-
ances typically consist of only tens of words, such LMs
can be rather precise despite their low order. Through
a series of oracle experiments, we show that this trans-
lates to very good recognition results and further im-
provements can be achieved by interpolation with a back-
ground model. Building on these promising results, we
proceed to construct utterance-specific LMs from auto-
matic transcriptions. After applying a topic classification
model [11] inspired smoothing, we achieve a moderate,
yet consistent 2 % relative improvement in word error
rate on the Librispeech dataset.

Subspace Multinomial Model

Since we propose to adapt language models based on an
automatic transcription, we need to mitigate the effect
of errors made during the first-pass decoding. To achieve
that, we propose to smooth the resulting utterance-
specific LM through the Subspace Multinomial Model
(SMM) [11].

An SMM models a unigram description Pu(·) of an ut-
terance u in log-space:

Pu(wj) =
eηuj∑
i e
ηui

(1)

where wj is the j-th word of the vocabulary considered
and ηuj

is the (un-normalized) log-probability of the word
wj .

These log-probabilities are then modelled in a low dimen-
sional subspace:

ηu = m + Tiu (2)

Here, m is a global mean vector which can be learnt by
simply computing the relative frequencies of individual
words in the training corpus. Matrix T defines the sub-
space. Learning it is the core problem of training an
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Figure 1: Perplexity of language models obtained by log-
linear interpolation between the background and utterance-
specific LM obtained from reference transcriptions of the indi-
vidual utterances. Lower is better. The λ4g term denotes the
weight of the background LM, thus the convergence towards
the right edge.

SMM; we use the l1-SMM training procedure [8] to es-
timate it. Finally, iu is a low dimensional description of
ηu in this subspace.

We use a trained SMM to smooth an utterance-specific
language model as follows: For a given unigram distribu-
tion Pf describing the first pass transcription, we find the
low-dimensional representation if , which fits it the best.
Then the smoothed model Ps is given by composition
of (1) and (2) with iu = if . This way, only those pat-
terns from Pf are retained, which can be reconstructed
by the SMM.

Utterance specific language models

In our experiments, we work with two different sources
of utterance-specific language models:

First are oracle transcriptions. Therefore, the results
achieved with these language models cannot be directly
compared with the baseline. However, these oracle exper-
iments provide an estimate of potential of the approach
in the optimal case, where the underlying transcriptions
would be fully correct.

The second source are automatic transcriptions. We ob-
tain these transcriptions by decoding individual utter-
ances with a background language model. Therefore,
these transcriptions do contain errors.

So overall, there are four utterance-specific LMs used,
combining its source (oracle vs. automatic transcription)
and whether we apply smoothing through SMM (smooth)
or not (sharp).

We hope that the utterance-specific model will capture
different patterns than those modeled by the background
n-gram model. Therefore, we combine the utterance-
specific unigram model Pu(wn) with the background
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Figure 2: Word Error Rate of systems using an interpolation
between the background LM and an oracle utterance-specific
one. The λ4g term denotes the weight of the background LM,
thus the convergence towards the right edge. Interpolation
between the background model and an utterance-specific one
always brings improvements.

Table 1: Recognition results with different language models.
First two are estimated on 20M lines consisting of 800M to-
kens, the last one is utterance-specific, thus always estimated
on ca. 20 words in average.

LM dev-clean dev-other

4-g 4.6 % 10.7 %
LSTM 3.0 % 7.8 %

oracle 1-g 1.9 % 5.5 %

model P4g(wn|h) by means of log-linear combination:

logPc(wn|h) = λ4g logP4g(wn|h) + (1− λ4g) logPu(wn)

Librispeech ASR system

The Librispeech dataset [14] consists of ca. 1000 hours
of read English speech. The audio comes from audio-
books of the LibriVox project1; it is sampled at 16 kHz.
The dataset is split into training (960 hours), develop-
ment (dev, 10.7 hours) and testing (test, 10.5 hours)
parts. The development and testing parts are further
split by speakers into easier (-clean) and more difficult
parts (-other), approximately same size. We follow the
practice of reporting results separately for these subsets.

The dataset also defines a standard vocabulary of 200k
most common words to be used during recognition.

We use a 6-layer bidirectional LSTM RNN [5], 2 × 1000
units per layer. Output of the acoustic model is given
by 12k of CART labels [2]. The RNN was trained [12]
on the 960 hours train portion using Adam [9] with
Nesterov momentum [4]. To prevent overfitting and im-
prove generalization, dropout [6] with strength 0.2 was

1https://librivox.org
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Figure 3: Perplexity of log-linear interpolation between the
background LM and an utterance-specific one obtained from
the first pass transcription obtained by decoding with the
background LM only. Lower is better. The λ4g term denotes
the weight of the background LM, thus the convergence to-
wards the right edge.

applied between layers. Additionally, L2 regularization
with β = 0.01 was applied and noise with zero mean and
variance 10−4 was being added to the gradients.

There are also several n-gram language models provided
with the Librispeech corpus. We use the strongest one of
them, a 4-gram model, as the background model. This
model has perplexity of 146.7 on the transcriptions of
dev portion of the corpus.

Baseline results of our system are summarized in Table 1.
Despite being oblivious to any local context, the oracle
utterance-specific LM alone has significantly better re-
sults than both the baseline models.

Oracle experiments

We begin our experiments with oracle transcriptions as
source for the utterance-specific LMs.

We start by looking at the perplexity of the combined
LM (Figure 1). As expected, there is no principal differ-
ence between dev-clear and dev-other, because acous-
tic signal has not been taken into account yet. Com-
paring the sharp LMs with the smooth ones, we can see
that the perplexity is significantly deteriorated by the
smoothing. In both cases, the interpolation improves
significantly over the better of the two models combined.
And in both cases, the overall behaviour is very smooth
w.r.t. the interpolation coefficient λ4g.

Moving on to the recognition results (Figure 2), we can
see the overall properties transfer very well: Interpolation
between an utterance-specific model and the background
model always brings significant improvements over the
baseline. Sharp models perform better, the difference is
more pronounced on dev-other, as there the language
model is more relied upon. The optimal background
weight λ4g is consistent with the values for best perplex-
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Figure 4: Word Error Rate of second pass decoding with in-
terpolation between the background model and an utterance-
specific LM obtained from first pass transcription by decoding
with the background LM only. The λ4g denotes weight of the
background LM, thus the convergence towards the right edge.
No improvement is achieved by interpolation with utterance-
specific LMs without smoothing.

ity: 0.3 for the sharp models and 0.6 for the smoothed
ones.

Second pass experiments

We start the discussion of utterance-specific language
models derived from automatic transcription by inves-
tigating their perplexity (Figure 3). Since the utterance-
specific language models contain errors from the first pass
recognition, it is natural that there is a significant dif-
ference in the perplexity of sharp models between the
dev-clean and dev-other portions. On the other hand,
there is hardly any difference for the smooth models, sug-
gesting that the SMM has been successful in smoothing
the errors away. Note that while the interpolation of
the sharp model with the background 4-gram model has
achieved the best result also on dev-other, it only im-
proves over the baseline in a narrow region of the inter-
polation weight where the background LM is dominant.
Therefore, it is not expected that the second-pass recog-
nition with this combined LM will behave differently than
the first-pass one.

Then, we run the recognition with these LMs (Figure 4).
In this case, there are no improvements when using sharp
utterance-specific LMs. When the utterance-specific LM
is smoothed through an SMM, there are improvements of
around 2 % relative on both dev-clean and dev-other.
Unlike with the oracle LMs, the optimal weight of the
background model is higher (λ4g = 0.8) than in case of
tuning perplexity (λ4g = 0.6). This can be explained
by the fact that utterance-specific LM is favoured when
optimizing for perplexity, because it already summarizes
information from the acoustic signal. This information is
readily available again during the second pass decoding,
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Table 2: Comparison of Word Error Rate on the dev and test portions of Librispeech. No test results included for the sharp
models, because they have not achieved any improvement on the dev data.

LM λ4g dev-clean dev-other test-clean test-other

4-g 4.6 % 10.8 % 5.0 % 11.5 %
+ sharp 1-g 1.0 4.6 % 10.8 % — —
+ smoothed 1-g 0.8 4.5 % 10.6 % 4.9 % 11.3 %

so more weight is put back on the background model.

Finally, we transfer the optimal interpolation coefficients
to the test set; the results are reported in Table 2. The
improvements do transfer to the fully unseen data.

Conclusion

In this work, we have been investigating the possibil-
ity of using utterance-specific language models. Through
experiments on the Librispeech corpus, we have shown
that a unigram description of a recording is potentially
a very powerful model. When used in a two-pass de-
coding scheme, it was necessary to smooth the first-
pass transcription to reduce the impact of recognition er-
rors. Then, a consistent improvement of 2 % relative was
achieved on all four evaluation portions of the dataset.

Our future work in this direction is to remove the infor-
mation bottleneck of describing an utterance only by a
single automatic transcription and a bag-of-words repre-
sentation thereof.
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