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1 あらまし

近年，目的話者の特徴を表現した補助情報を用いて，混合
音声から目的話者の音声を選択的に抽出する方法 Speaker-
Beamを提案、検討してきた。本稿では、SpeakerBeam処
理の低演算化を目的とした新たなニューラルネットワーク
構造を提案し、実雑音・残響環境下での実験により、その
効果を確認する。

2 Introduction

Recently deep learning has been used intensively for
processing mixtures of speech signals. For example, sev-
eral approaches have been proposed for speech sepa-
ration such as deep clustering [1], deep attractor net-
works [2] and permutation invariant training (PIT) [3].
Speech separation approaches separate a speech mixture
into all its sources. Consequently, it usually requires
knowledge or estimation of the number of sources in the
mixtures. Moreover, there is a permutation ambiguity
at the output, i.e. the mapping between the sources and
the separation outputs is arbitrary. For some applica-
tions, these issues limit the practical uses of separation
methods.

We have recently proposed SpeakerBeam, which is an
alternative approach for processing mixtures of speech
signals [4, 5]. SpeakerBeam extracts only the speech sig-
nal that corresponds to a target speaker, instead of sep-
arating all source signals. SpeakerBeam uses an aux-
iliary adaptation utterance containing only the speech
of the target speaker to compute the characteristics of
the voice of the target speaker. SpeakerBeam can then
focus on extracting only speech of that speaker based
on the speech characteristics. This framework alleviates
the permutation ambiguity problem and does not need
knowledge of the number of speakers in the mixtures.

The original SpeakerBeam [4] required a large number
of parameters, which was not practical. In this paper, we
present a compact version of SpeakerBeam and evaluate
it with noisy and reverberant speech mixtures.

3 Compact SpeakerBeam

Figure 1 is a schematic diagram of SpeakerBeam. It
consists of two neural networks, a sequence summary
network, and a target speech extraction network. The
sequence summary network inputs the auxiliary adapta-
tion utterance and outputs a vector, a(s), characterizing
the target speaker as [6],

a(s) =
1

T

T∑
t=1

G(a
(s)
t ), (1)
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Fig. 1 Schematic diagram of SpeakerBeam.

where a
(s)
t represents the amplitude spectrum of the tth

frame of the adaptation utterance, T is the number of
frames of the adaptation utterance, and G(·) consists of
an auxiliary neural network.

The target speech extraction neural network inputs
the amplitude spectrum features of the mixture and out-
puts a time-frequency mask that indicates regions where
the target speaker is active. The extraction network con-
tains an adaptation layer that inputs the vector charac-
terizing the target speaker, a(s), as auxiliary input. This
adaptation layer makes the extraction network able to
focus on extracting the speech of the target speaker only.
The original version of SpeakerBeam uses a factorized
adaptation layer [7]. Such a factorized layer requires a
large number of parameters, making it difficult to train
and deploy. Here we call this approach SpeakerBeam
with factorized adaptation layer (“SpeakerBeam FA”).

Here we proposed a simpler adaptation layer that sim-
ply scales the activation with weights obtained from the
auxiliary network as,

hout = a(s) ⊙ hin, (2)

where hout and hin are the output and input of the
adaptation layer. This approach is related to subspace
LHUC[8], that was recently proposed for speaker adap-
tation of acoustic models for automatic speech recogni-
tion. We call this new version SpeakerBeam with scaling
adaptation layer (“SpeakerBeam SA”).

4 Experiments

4.1 Data

We tested SpeakerBeam on two different artificially
created corpora. The first corpus consists of English



Table 1 SDR for English and Japanese mixtures.

size ENG JP
Mixture - 0.15 dB -2.0 dB
PIT 134 M 8.8 dB 4.8 dB
SpeakerBeam FA 212 M 9.9 dB -
SpeakerBeam SA 134 M 9.8 dB 5.0 dB

mixtures generated by mixing WSJ utterances without
noise or reverberation [1]. The training set consists of 30
hours of speech. The second corpus consists of mixtures
of Japanese utterances taken from CSJ [9]. This dataset
includes background babble noise, music, and reverber-
ation. The SNR ranges from 0 to 20 dB. The training
set consists of 157 hours of speech.

We also present results of real recordings that mimic
the mixing conditions of the Japanese noisy and rever-
berant mixtures. For all experiments, we used an ut-
terance of the target speaker different from that in the
mixture as adaptation utterance.

4.2 Settings

The network configuration consists of 3 BLSTM lay-
ers with 512 units for the forward and backward passes
and a 512 × 1024 projection layer followed by a tanh
activation at the output of each BLSTM layer. The out-
put layer is a fully connected layer followed by a sigmoid
to output mask values in the range [0, 1].

For SpeakerBeam, we replaced the layer after the first
BLSTM layer by a factorized (FA) or scaling adaptation
(SA) layer. For “SpeakerBeam FA” we used 30 factors.
For the sequence summary network, we used 2 fully con-
nected layers with 200 units and ReLu activation func-
tions. The output layer of the auxiliary network consists
of a linear layer followed by a time averaging operation.
The input features of the extraction and auxiliary net-
works consist of amplitude spectrum.

We compare SpeakerBeam with a PIT-based separa-
tion network with a similar network configuration, ex-
cept that it outputs 2 masks (one for each source in the
mixtures). In case of PIT, we assumed oracle target
speaker selection after separation. Consequently, PIT
performance should be understood as upper-bound per-
formance for PIT-based target speech extraction.

We evaluate performance in terms of signal to distor-
tion ratio (SDR) [10].

4.3 Results and discussions

Table 1 shows the performance of the English and
Japanese mixtures. The proposed “SpeakerBeam SA”
performs similarly to “SpeakerBeam FA” but with a
much smaller network, making it more practical to use.
SpeakerBeam also outperforms PIT based separation
with oracle target speaker selection for both tasks. This
confirms that SpeakerBeam can extract a target speaker
even in severe noisy conditions.

The results of Table 1 were obtained with simulated
data. We also tested using the model trained on simu-
lated Japanese mixture for processing of real recordings.
Figure 2 shows the spectrograms of mixture of 2 female
speakers with babble background noise, the headset for
both speakers and extracted speech for real recordings
with one microphone and 8 microphones. When using
multiple microphones, SpeakerBeam is combined with a
beamformer as in [4, 11]. Looking at the spectrograms,

(a) Mixture

(b) Speaker 1

(d) Extracted 1 (1ch)

(f) Extracted 1 (8ch) (g) Extracted 2 (8ch)

(e) Extracted 2 (1ch)

(c) Speaker 2

Fig. 2 Spectrograms of (a) a real recording of a mix-
ture of two female speakers, (b)-(c) headset of recordings
of each target speaker and SpeakerBeam outputs for (d)-
(e) single (1ch) and (f)-(g) multi-microphone (8ch) pro-
cessing.

we can confirm that SpeakerBeam successfully extracts
the target speakers even for such challenging conditions.
Interested readers can evaluate the speech extraction
performance in our demo video [12].
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