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ABSTRACT

Speech separation that separates a mixture of speech signals into
each of its sources has been an active research topic for a long time
and has seen recent progress with the advent of deep learning. A
related problem is target speaker extraction, i.e. extraction of only
speech of a target speaker out of a mixture, given characteristics of
his/her voice. We have recently proposed SpeakerBeam, which is
a neural network-based target speaker extraction method. Speaker-
Beam uses a speech extraction network that is adapted to the target
speaker using auxiliary features derived from an adaptation utter-
ance of that speaker. Initially, we implemented SpeakerBeam with a
factorized adaptation layer, which consists of several parallel linear
transformations weighted by weights derived from the auxiliary fea-
tures. The factorized layer is effective for target speech extraction,
but it requires a large number of parameters. In this paper, we pro-
pose to simply scale the activations of a hidden layer of the speech
extraction network with weights derived from the auxiliary features.
This simpler approach greatly reduces the number of model parame-
ters by up to 60%, making it much more practical, while maintaining
a similar level of performance. We tested our approach on simulated
and real noisy and reverberant mixtures, showing the potential of
SpeakerBeam for real-life applications. Moreover, we showed that
speech extraction performance of SpeakerBeam compares favorably
with that of a state-of-the-art speech separation method with a simi-
lar network configuration.

Index Terms— Target speech extraction, Neural network,
Adaptation, Auxiliary feature, Speech enhancement

1. INTRODUCTION

In our everyday life, people’s speech often overlaps with noise or
other people’s voice, making it hard to understand especially for
automatic speech recognition (ASR) systems. Recently, there has
been a great interest in using deep learning approaches to tackle this
problem [1-4]. Most of the works focus on blind source separa-
tion (BSS) approaches such as deep clustering [2] or permutation
invariant training (PIT) [4, 5], to separate a mixture of speech sig-
nals into each of its sources. For example, PIT consists of a neural
network that predicts masks for extracting speech for each source in
the mixture. The training of such a network is made possible thanks
to the use of a permutation invariant loss. Deep learning-based BSS
approaches have shown to be very successful at separating speech
mixtures even when using a single microphone. However, BSS ap-
proaches may suffer from a global source permutation issue, i.e. the
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output associated with a given speaker may change depending on
the mixtures being processed. Moreover, BSS approaches usually
require knowing or estimating the number of sources in the mixture.

In many applications, we may not be interested in separating all
speech signals, but rather extract only speech of a target speaker.
BSS approaches may not be the best candidate to tackle this problem
because of the global source permutation issue. We have recently
proposed a speaker aware neural network-based approach called
SpeakerBeam [6,7] for target speaker extraction. SpeakerBeam uses
an adaptation utterance spoken by a target speaker to extract auxil-
iary features representing his/her speech characteristics and adapts
a speech extraction neural network to extract his/her voice based on
these auxiliary features. By focusing only on extracting the target
speaker voice, SpeakerBeam can mitigate the global source permu-
tation problem of BSS approaches, and does not require information
about the number of sources in the mixture.

The adaptation process used by SpeakerBeam is related to auxil-
iary feature based speaker adaptation of acoustic models for ASR. A
common approach consists of concatenating i-vectors with the input
of the neural network [8]. However, this approach was found to be
not powerful enough for the target speech extraction task [6,9]. In-
stead, we employed a factorized adaptation layer [6,10], i.e. a hidden
layer that consists of several parallel linear transforms weighted by
weights derived from the auxiliary feature representing the speech
characteristics of the target speaker. The factorized layer can greatly
modify the behavior of the network based on the auxiliary features,
which appears to be essential for target speech extraction. However,
it requires a large number of parameters, and many matrix multipli-
cations, which makes it computationally intensive, memory demand-
ing, and therefore slow to train and use in practice.

In this paper, we investigate an alternative approach for adapta-
tion to reduce the number of model parameters. Instead of the factor-
ized layer, we perform adaptation by scaling the activation of a hid-
den layer of the speech extraction neural network, with weights de-
rived from the auxiliary features. This approach is similar in concept
to subspace learning hidden unit contributions (LHUC) [11] that was
recently proposed for acoustic model adaptation. We present experi-
mental results on the publicly available MERL data set, showing that
this new architecture for SpeakerBeam greatly reduces the model
size by up to 60% compared to previous versions of SpeakerBeam
while maintaining a similar level of performance. This new imple-
mentation of SpeakerBeam also achieves competitive performance
compared to a PIT-based BSS method, with Oracle target speaker
selection from its outputs. Finally, we investigate SpeakerBeam for
target speech extraction in more challenging conditions consisting of
reverberant speech mixtures with background noise and music.

In the remainder of the paper, we describe SpeakerBeam and
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Fig. 1. Network architecture of SpeakerBeam. A(®) = {ai,s); t =
1,...,T"} is the set of amplitude spectrum features of the adaptation
utterance

the proposed scaling adaptation layer in Section 2. We discuss the
relation of SpeakerBeam with related works in Section 3. Section 4
presents experimental results, and Section 5 concludes the paper.

2. SPEAKERBEAM

Figure 1-(a) is a schematic diagram of the network architecture of
SpeakerBeam, which consists of a speech extraction network and an
auxiliary network. The speech extraction network predicts a time-
frequency mask, M), that can extract the target speaker, s, out of
the mixture as,

X =M oy, (1)

where Y = {y:;t = 1,..., T} is the set of amplitude spectrum fea-
tures of the mixture signal, 7" is the number of time frames, X s
the corresponding extracted speech, and © is an element-wise prod-
uct. The time-frequency mask of the target speaker is computed as,

M(S) — F(Y, a(s))7 )
where F'(-) is the non-linear transformations of the speech extrac-
tion neural network, and a®® is an auxiliary feature vector repre-
senting the characteristics of the target speaker. The speech extrac-
tion network consists of several bidirectional long-short-term mem-
ory (BLSTM) layers followed by a linear output layer with sigmoid
activation to predict masks in the range [0, 1]. This architecture is
similar to that of PIT-based separation networks [5], but Speaker-
Beam inserts an adaptation layer after the first BLSTM layer to adapt
the network to the target speaker. This layer inputs the auxiliary fea-
ture vector. In the following subsection, we describe the auxiliary
feature used, the factorized adaptation layer, and the proposed scal-
ing adaptation layer.

2.1. Auxiliary features

We can use i-vectors [12] or other features representing speech char-
acteristics of the target speaker as auxiliary features. In our previous
work [7], we found that better performance could be obtained when
using a sequence summary network, which extracts the speech char-
acteristics directly from the adaptation utterance as [13],

o
e 1 el
al® = o > G(al)), A3)
t'=1
7th

where ai,s) represents the amplitude spectrum of the ¢t frame of the

adaptation utterance, 7" is the number of frames of the adaptation
utterance, and G(-) consists of an auxiliary neural network. The
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averaging operation maps the sequence of features of the adaptation
utterance to a single vector.

2.2. Adaptation layer
2.2.1. Factorized adaptation layer

A common approach to realize speaker adaptation would consists of
simply concatenating the target speaker characteristics with the in-
put features of the speech extraction network. However, this realizes
only adaptation of the bias of the input layer, which we found not
powerful enough for target speech extraction [7]. Instead, we em-
ployed a factorized adaptation layer that realizes adaptation of the
weight matrices and bias of the internal layers of the network, thus
offers more control over the behavior of the network.

Figure 1-(b) is a schematic diagram of a factorized layer, which
consists of a weighted-sum of N parallel linear transforms or factors
as,

N
hout _ Z a’gls)Ln(l,l'm)7 (4)
n=1

where h®" and h™ are the output and input of the adaptation layer,
L,(-)and agf) are linear transformations and factor weights associ-
ated with the n™ factor. The factor weight 'y corresponds to the
n*™ component of the output of the auxiliary network, a(®). The fac-
tor weights can control the internal behavior of the network so that
it can focus on extracting the target speaker. Typically, based on our
preliminary experiments, we use N = 30 factors. The size of the
linear transforms is related to the size of the hidden layers U of the
speech extraction network (i.e. size of hi"), e.g. 512 x 512 in the
experiments of Section 4. The factorized adaptation layer adds thus
N x U x U parameters, which significantly increases the model size.
Such large models are not practical and slow to train because of their
large memory requirements and computational complexity.

2.2.2. Proposed scaling adaptation layer

To reduce the model size, we propose using a scaling adaptation
layer. Figure 1-(c) is a schematic diagram of a scaling adaptation
layer. The output of the layer is obtained as an element-wise product
of the auxiliary feature vector, al®), and the input of the layer,

hot = a(s) ® hin. (5)

Similar to the factorized adaptation layer, the internal behav-
ior of the network can be changed based on the auxiliary features.
The scaling activation layer is equivalent to inserting a diagonal ma-
trix, whose diagonal corresponds to the coefficients of the auxiliary
feature vector. Therefore, the scaling adaptation layer also adapts
the internal weight matrix of the network but does not perform bias
adaptation. Note that with the scaling adaptation layer, the size of
the auxiliary feature /V should match the size of h™", U, which means
that we may have a larger output layer for the auxiliary network (e.g.
N = 512) than in the case of the factorized adaptation layer (e.g.
N = 30). However, this increased number of parameters of the
auxiliary network is negligible compared to the size of the linear
transforms used in the factorized adaptation case.

The scaling adaptation layer is similar to a gate function or to
subspace-LHUC [11]. In subspace LHUC, a similar scaling of the
activation was proposed for acoustic model adaptation. The weights
were derived from i-vectors and constraint to be in a range [0, 2]
using a sigmoid function. Here, we control the weights directly from
the adaptation utterance through the auxiliary network and do not
constrain the weights a®toa specific range.



2.3. SpeakerBeam training

Following the literature on deep-learning based speech separation,
we employ the phase sensitive mean squared error (MSE) between
masked signals and target speech as training criterion [5],

S
L=>"|IM® Y| - |X®| max(cos(dy — 0x),0)[]>, (6)
s=1

where S is the number of speakers in the mixtures, M () =
F(Y, a<s)) is the output of SpeakerBeam, X () js the sequence
of amplitude spectrum features of the target speech, fy and fx are
the phase of the observed and target speech respectively.

The parameters of the speech extraction and the auxiliary
networks are trained jointly from random initialization. To train
SpeakerBeam, we require the triplets of speech mixtures, corre-
sponding clean speech signals, and adaptation utterances of the
target speakers. By training the network with mixtures from many
different target speakers, it can learn to adapt its behavior for the
extraction of target speakers unseen during training.

3. RELATED WORKS

Target speech extraction has received increased interest recently
[14-16]. In [14], the authors derived a speech extraction method
based on the deep attractor framework [17]. Like SpeakerBeam,
they extracted a target speaker embedding vector from an adaptation
utterance but concatenated it with embedding vectors of the mixture
to form an attractor vector for the target speech. This approach
appeared effective even for adaptation utterances of less than 1 sec.
However, it remains to be tested with noise and reverberation.

In [14], the authors proposed using a d-vectors extractor [18]
trained on a large data set instead of the summary network. For
speech extraction, they simply concatenated the d-vector of the tar-
get speaker to the mixture processed by some convolutional layers,
and input them to a BLSTM. In [14], the target speaker seems to be
dominant over the interferences, which may explain why the simple
concatenation approach worked well in their settings.

Finally, [16] proposed to select the target speaker out of the out-
put of a deep attractor network. This approach requires an additional
module for speaker selection that may introduce errors. Moreover,
it cannot exploit the auxiliary information about the target speaker
during the extraction process as SpeakerBeam does.

4. EXPERIMENTS

We performed experiments on two data sets, the MERL 2 mixture
data set and a corpus of Japanese noisy and reverberant speech mix-
tures. Table 1 summarizes the characteristics of the two corpora.

4.1. Experimental settings
4.1.1. MERL 2 mixture data

We use the MERL 2 mixture data set [2] since it has been widely
used for single-channel speech separation. The corpus consists of
simulated mixtures of 2 speakers taken from the WSJO data set [19].
It contains no noise or reverberation. The signal-to-interference ratio
(SIR) of the mixtures ranges from -5 to +5 dB. As adaptation utter-
ance, we randomly selected a clean utterance of the target speaker
different from that in the mixture.
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Table 1. Characteristics of the corpora used for evaluation.

MERL Japanese mixtures
train  cv test train cv test
Duration 30h 10h 5h 157h  27h 23h
No of Speakers 101 101 18 574 10 10
Sampling Freq. 8kHz 16 kHz
SDR - - 0.15 - - -2.04
STOI - - 0.601 - - 0.473

4.1.2. Japanese noisy and reverberant mixtures

We created a different corpus to test SpeakerBeam in noisy and
reverberant conditions. The corpus consists of simulated mixtures
of 2 speakers selected from the corpus of spontaneous Japanese
(CSJ) corpus [20], and mixed at SIR randomly chosen between
0 and 20dB. The utterances were convolved with room impulse
responses measured in an office room. Babble noise recorded in
the same room was also added as well as music played by a sin-
gle loudspeaker at signal-to-noise ratio (SNR) between 0 and 20
dB. The cross-validation (cv) and test sets consist of 10 different
speakers each, which are different from those in the training set.
As adaptation utterance, we randomly selected utterances of the
target speakers that differ from the utterances in the mixtures. The
adaptation utterances were reverberant and contained background
babble noise, but no music or interference speakers. This corpus
is much more challenging as seen by the signal to distortion ratio
(SDR) [21,22], and short term objective intelligibility (STOI) [23]
baseline shown in Table 1. Note that these conditions are more
severe than those investigated by most recent works on speech
separation/extraction.

4.1.3. Network configuration

The input features of the speech extraction and auxiliary networks
consisted of amplitude spectra of the speech mixture and adapta-
tion utterance, respectively. The spectra were computed using STFT
with 64 ms window length and 16 ms window shift. Consequently,
the input of the network for the MERL data experiments was 257
dimensions and 513 for the Japanese mixtures because of the differ-
ent sampling frequencies. Except for the input feature size, all other
hyper-parameters were the same for all experiments.

We used the network architecture shown in Figure 1 for all in-
vestigations. The speech extraction network consisted of 3 BLSTM
layers with 512 units for the forward and backward passes. Our
BLSTM implementation included 512 x 1024 projection layers at
the output of each BLSTM to map the concatenated outputs of the
forward and backward LSTMS back to a 512-dimension vector. The
projection layers were followed by a tanh activation function. The
adaptation layer was inserted after the first BLSTM layer (after the
projection, but before the tanh activation function). For the auxiliary
network, we used 2 fully connected layers with 200 units and ReLu
activation functions. The output layer of the auxiliary network con-
sisted of a Linear layer followed by a time averaging operation and
no additional activation function.

We compared SpeakerBeam with a PIT-based separation net-
work with a similar network configuration, which also consisted of
3 BLSTM layers followed by two parallel linear output layers with
sigmoid activation to output masks for each speaker in the mixture.
Compared to PIT-based network, SpeakerBeam has an internal adap-
tation layer that increases its number of parameters. However, since
the adaptation layer only performs a linear transformation (there is
no additional non-linear activation function), simply adding a linear



Table 2. SDR and STOI results for MERL 2 mixture data set.

Size A SDR A STOI
diff same avg
PIT 134M 107 64 8.6 0.101
SpeakerBeam FA 10 160M 113 74 94 0.106
SpeakerBeam FA20 186 M 114 7.6 9.6 0.107
SpeakerBeam FA30 212M 115 79 97 0.110
SpeakerBeam SA 134M 114 78 9.6 0.110

layer with similar size inside the PIT network should not cause any
significant performance difference.

For training all networks, we used the Adam optimizer [24] with
an initial learning rate of 0.0001 and ran the training for 200 epochs
for the MERL data set, and 25 epochs for the Japanese noisy mixture
set. We did not use dropout.

4.2. Results

The results of all experiments were obtained by averaging the ex-
traction performance of both speakers in the mixture.

4.2.1. MERL data set

Table 2 shows the SDR and STOI improvements for PIT-based
separation and SpeakerBeam with a factorized adaptation layer
(SpeakerBeam-FA) with 10, 20 and 30 factors, and the proposed
scaling adaptation layer (SpeakerBeam-SA). We show SDR im-
provement for mixtures of different (diff) and same (same) genders,
as well as the averaged improvement (avg). Note that PIT performs
separation and not target speech extraction. For a fair comparison,
PIT-based separation should be combined with an additional module
to identify the target speaker among the network outputs [16]. In
these experiments, we used Oracle target speaker identification for
PIT. Consequently, PIT results should be considered as an upper
bound for PIT-based target speech extraction.

We observe that all investigated configurations of SpeakerBeam
outperformed PIT for this task. Optimal performance was achieved
with SpeakerBeam-FA with 30 factors. The performance gradually
degraded when using fewer classes. The proposed SpeakerBeam-SA
performed similarly to SpeakerBeam-FA with 30 factors although
the network size is significantly smaller as indicated in Table 2.

4.2.2. Japanese noisy and reverberant mixtures

We trained a similar network on the corpus of Japanese noisy and
reverberant mixtures. Table 3 shows the SDR and STOI improve-
ments on that task. Although the improvement is smaller than for
the MERL data, we can confirm that SpeakerBeam also works in
presence of noise and reverberation. Moreover, it performs slightly
better than PIT with oracle speaker selection in terms of average
SDR and STOI.

As seen in Table 2 and 3, speech extraction performance is much
better when processing mixtures of different genders. This perfor-
mance gap is also apparent for PIT, indicating that it is challenging to
separate speakers of same-genders. In addition, SpeakerBeam some-
times confuses the target speaker when it is of the same gender as
the interference speaker. Such errors appeared more frequent when
dealing with challenging noisy and reverberant conditions and may
be responsible for the poorer performance for same gender mixtures
in Table 3 compared with PIT that uses Oracle target speaker selec-
tion. Improving speaker discriminative performance in such condi-
tions remains an important future research direction.
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Table 3. SDR and STOI results for simulated Japanese mixtures.

A SDR A STOI
diff same avg
PIT 82 54 68 0.078
SpeakerBeam SA 9.1 4.9 7.0 0.092

(a) Mixture

0 000 2 3000 4000 0 1000 2000 3000 4000 5000 6000

(b) Headset Spk 1 (e) Headset Spk 2

0 1000 2000 3000 4000 5000 6000 00 2000 3000 4000 5000 6000

(f) Extracted 2

(c) SpeakerBeam Spk 1

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

(d) SpeakerBeam Spk 1 (MC)  (g) SpeakerBeam Spk 2 (MC)

Fig. 2. Spectrograms of mixture, headset and SpeakerBeam outputs
for single and multi-channel (MC) processing for real recordings.

4.2.3. Real recordings

We tested the model trained on Japanese noisy and reverberant mix-
tures on real recordings in a different office room with noise, rever-
beration, and music playing on the background. Figure 2 shows the
spectrograms of (a) a speech mixture of a male and female speaker,
(b),(e) headset microphone signals of both speakers, and extracted
speech of the two speakers with (c),(f) single channel and (d),(g)
multi-channel (MC) processing. For multi-channel processing, we
combined SpeakerBeam with a GEV beamformer as described in
[6]. The spectrograms clearly show that SpeakerBeam succeeded in
extracting the target speakers. In addition, interested readers can re-
fer to our demo videos [25] to evaluate the effect of SpeakerBeam
on real recordings.

5. CONCLUSION

In this paper, we investigated a new architecture for SpeakerBeam
based target speech extraction. We used a scaling adaptation layer
instead of a factorized layer, therefore greatly reducing the network
size while maintaining a similar level of performance. We tested
the new architecture on MERL simulated mixture corpus, and on
more challenging noisy and reverberant recordings. The latter ex-
periments confirmed the potential of SpeakerBeam to tackle real-life
conditions. Future work will include investigations on approaches
to improve speech extraction performance of mixtures with similar
voices.
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