INTERSPEECH 2019
September 15-19, 2019, Graz, Austria

Analysis of Multilingual Sequence-to-Sequence
Speech Recognition Systems

Martin Karafidt', Murali Karthick Baskar*, Shinji Watanabe?, Takaaki Hori®, Matthew Wiesner?,
Jan “Honza” Cernocky*

'Brno University of Technology
2John Hopkins University
3Mitsubishi Electric Research Laboratories (MERL)

karafiat@fit.vutbr.cz,baskar@fit.vutbr.cz,shinjiwlieee.org
thori@merl.com, wiesner@jhu.edu,cernocky@fit.vutbr.cz

Abstract

This paper investigates the applications of various multilingual
approaches developed in conventional deep neural network -
hidden Markov model (DNN-HMM) systems to sequence-to-
sequence (seq2seq) automatic speech recognition (ASR). We
employ a joint connectionist temporal classification-attention
network as our base model. Our main contribution is sepa-
rated into two parts. First, we investigate the effectiveness of
the seq2seq model with stacked multilingual bottle-neck fea-
tures obtained from a conventional DNN-HMM system on the
Babel multilingual speech corpus. Second, we investigate the
effectiveness of transfer learning from a pre-trained multilin-
gual seq2seq model with and without the target language in-
cluded in the original multilingual training data. In this experi-
ment, we also explore various architectures and training strate-
gies of the multilingual seq2seq model by making use of knowl-
edge obtained in the DNN-HMM based transfer-learning. Al-
though both approaches significantly improved the performance
from a monolingual seq2seq baseline, interestingly, we found
the multilingual bottle-neck features to be superior to multilin-
gual models with transfer learning. This finding suggests that
we can efficiently combine the benefits of the DNN-HMM sys-
tem with the seq2seq system through multilingual bottle-neck
feature techniques.

Index Terms: multilingual ASR, sequence-to-sequence,
language-transfer, multilingual bottle-neck feature

1. Introduction

The sequence-to-sequence (seq2seq) model proposed in [1-3]
is based on deep neural network (DNN) and recurrent neural
network (RNN) architectures for performing sequential predic-
tion. Later, it was also adopted to perform automatic speech
recognition (ASR) [4-6], as an alternative to traditional hid-
den Markov model (HMM)-based ASR [7, 8]. The model al-
lows to integrate the main ASR blocks (acoustic, alignment,
and language models) into a single neural network architec-
ture. The recent success of connectionist temporal classification
(CTC) [5,6] and attention based encoder-decoder [4,9] architec-
tures generated significant interest in the speech community to
study seq2seq models. However, outperforming conventional
hybrid RNN/DNN-HMM models with seq2seq requires a huge
amount of data [10-12]. Intuitively, this is due to the range
of roles this model needs to perform: alignment and language
modeling along with acoustics to character label mapping.
Another interesting research direction is multilingual ASR.
Multilingual approaches have been mainly developed in hy-
brid RNN/DNN-HMM systems for tackling the problem of
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low-resource data. These include language adaptive training
and shared layer retraining [13]. Parameter sharing investi-
gated in our previous work [14] is one of the most beneficial
techniques. This paper investigates the applications of such
multilingual techniques developed in conventional RNN/DNN-
HMMs to seq2seq ASR.

Existing multilingual approaches for seq2seq modeling
mainly focus on CTC. A multilingual CTC proposed in [15]
follows a similar protocol to DNN-HMM based on a universal
phone set, finite state transducer (FST) decoder and language
model. The authors also use the linear hidden unit contribution
(LHUC) [16] technique to rescale the hidden unit outputs for
each language as a way to adapt to a particular language. An-
other work [17] on multilingual CTC shows the importance of
language adaptive vectors as an auxiliary input to the encoder in
multilingual CTC model. An extensive analysis of multilingual
CTC performance with limited data is done in [18] with a word
level FST decoder integrated with CTC during decoding.

On a similar front, attention models were explored within
a multilingual setup in [19, 20], where an attempt was made
to build a single attention-based seq2seq model from multiple
languages. Here, the multilingual training data is just pulled to-
gether assuming that the target languages are seen during train-
ing. Our prior study [21] extends this multilingual training and
performs a preliminary investigation of transfer learning tech-
niques to address the unseen languages during training. How-
ever, it is far from being exhaustive and does not cover the above
mentioned various multilingual techniques.

In this paper, we fully make use of an experience in mul-
tilingual training [22, 23] developed for hybrid RNN/DNN-
HMMs, and incorporate it into the seq2seq models. Especially,
in our recent work of the RNN/DNN-HMM [23], we showed
the multilingual acoustic models with transfer learning to be su-
perior to multilingual bottle-neck features in RNN/DNN-HMM
systems. We aim to design an experimental setup similar to [23]
to investigate the effectiveness of the multilingual training on a
seq2seq scheme. The main motivation and contribution of this
work are:

¢ Incorporating the existing multilingual approaches in a
seq2seq model.

¢ Comparing various multilingual approaches: especially
multilingual bottle-neck features vs. transfer learning.

2. Sequence-to-Sequence Model

In this work, we use the attention based approach [2] as it
provides an effective methodology to perform sequence-to-
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sequence training. Considering the limitations of attention in
performing monotonic alignment [24, 25], we choose to use
CTC loss function to aid the attention mechanism in both train-
ing and decoding.

Let X = (x1,xX2,---) be a speech feature sequence and
C = (¢l =1,...,L) be an L-length grapheme sequence. A
multitask learning framework Lna [26,27] is used in this work
to unify attention loss pu(C|X) and CTC loss pee(C|X) with
a linear interpolation weight A, as follows:

Ly = Alog pac(C|X) + (1 = ) log pu(C1X). ()

The unified model benefits from both effective sequence level
training and the monotonic alignment property enforced by the
CTC loss.

pau (C|X) in Eq. (1) represents the posterior probability of
character label sequence C' w.r.t input sequence X based on the
attention approach, which is decomposed with the probabilistic
chain rule, as:

pa (C|X) = Hp (crle . X), @)

Cl 1

where ¢ denotes the ground truth history. Detailed explanation
of the attention mechanism is given later.

Similarly, pec (C|X) in Eq. (1) represents the CTC pos-
terior probability, which is factorized based on the conditional
independence assumption as follows:

> p

Zez(C)

Pec (C1X) = (Z1X) =

S TTotedx)

Zez(C)t=1

3

where Z = (z|t = 1,...,T) is a CTC state sequence com-
posed of the original grapheme set and the additional blank
symbol. ¢ and T' denote frame index and input length after
subsampling in the encoder, respectively. Z(C') is a set of all
possible sequences given the character sequence C'.

The following sections explain the encoder, attention de-
coder, and CTC used in our approach.

2.1. Encoder

In our approach, both CTC and attention use the same encoder
function:
h; = Encoder(X), 4)

where h; is an encoder output state at subsampled frame t.
As Encoder(-), we use a bidirectional long short-term memory
(BLSTM) RNN .

2.2. Attention Decoder
Location-aware attention mechanism [28] is used in this work.
The output of location-aware attention is:

a;s = LocAttention ({alfl,t’}zzl ,qi—1, hy; @”") N G))
Here, a;: acts as attention weight, q;—; denotes the decoder
hidden state introduced later, and h; is the encoder hidden state
obtained in Eq. (4). The location-attention function has train-
able parameters O™ composed of 1) the convolution filters for
the attention weight a;_1 ; in the previous time step [ — 1, and
2) the linear transformation matrices to project the hidden states
and convoluted attention weights to compute the new attention
weight aj.
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Finally, the context vector r; is obtained as a weighted sum
of the encoder output states h; over all frames, with the atten-
tion weight a;+ obtained from Eq. (5):

r = E altht.
t=1

The decoder function is based on unidirectional LSTM and
character embedding layers. This function outputs the next de-
coder hidden state q; from its previous label ¢;—1, decoder hid-
den state q;—; and attention output r; obained from Eq. (6):

(6)

= Decoder(r;, qi—1,¢1-1).

@)

Finally, the decoder hidden state q; is used to compute the pos-
terior distribution of a label ¢; by using the linear transforma-
tion layer Linear(+) with trainable parameters ©°"* and standard
softmax(-) operation as follows:

,ci—1, X) = softmax(Linear(q;; ©™))  (8)

This equation is incrementally applied to form p; in Eq. (2).

p(cley ...

2.3. Connectionist temporal classification (CTC)

Unlike the attention approach, CTC does not use any specific
decoder network, but directly computes the posterior distribu-
tion p(2¢|X) in Eq. (3) from the encoder output state h; in
Eq. (4) as follows:
Pz X) =

softmax (Linear(hy; ©°°)), O]

where the linear transformation layer Linear(-) has additional
trainable parameters O,

Our prior study in [23] revealed the importance of the linear
transformation parameters in RNN-HMMs before the softmax
operation compared with the LSTM parameters in the multilin-
gual transfer learning scenario. In seq2seq, these correspond to
©°" and ©° introduced in Egs. (8) and (9), and we focus on
the effectiveness of transfer learning with ©°" and ©°°. Ad-
ditionally, we also investigate the effectiveness of the attention
parameters ©*" introduced in Eq. (5).

3. Experiments
3.1. Data

The experiments are conducted using the BABEL speech cor-
pus collected during the IARPA Babel program. Table 1
presents the details of the languages used for training and eval-
uation in this work. We split the language into 10 train (“seen”

and 2 target (“unseen”) languages to deal with challenging un-
seen language ASR. However, we also decided to evaluate on
training languages to see the effect of multilingual training on
both train and target languages. Therefore, TokPisin and Geor-
gian from the train language set are treated as “seen” languages
and Assamese and Swabhili from the target language set as “un-
seen” languages and used for evaluation.

3.2. Sequence to sequence model setup

The baseline systems are built on 80-dimensional Mel-filter
bank (fbank) features extracted using a sliding window of size
25 ms with 10ms stride. KALDI toolkit [29] is used to perform
the feature processing. The “fbank™ features are then fed to a
seq2seq model with the following configuration:

The Bi-RNN [30] models mentioned above uses an bidi-
rectional LSTM [31] cell followed by a projection layer
(BLSTMP). The encoder consists of 6 BLSTMP layers with



Table 1: Details of the BABEL data used for experiments.

Train Eval
Usage Language #of
# spkrs. # hours # spkrs. # hours characters
Cantonese 952 126.73 120 17.71 3302
Bengali 720 55.18 121 9.79 66
Pashto 959 70.26 121 9.95 49
Turkish 963 68.98 121 9.76 66
Vietnamese 954 78.62 120 10.9 131
Train
Haitian 724 60.11 120 10.63 60
Tamil 724 62.11 121 11.61 49
Kurdish 502 37.69 120 10.21 64
Tokpisin 482 3532 120 9.88 55
Georgian 490 45.35 120 12.30 35
Assamese 720 54.35 120 9.58 66
Target
Swahili 491 40.0 120 10.58 56

320 memory cells. The output frame rate is reduced by stacking
and sub-sampling by factor two in second and third BLSTMP
layer (4x in total). The location attention is used and the decoder
has a single LSTM layer with 300 cells. In our experiments be-
low, we only use a character-level seq2seq model based on CTC
and attention. Thus, in the following experiments, we will use
character error rate (%CER) as a suitable measure to analyze
the model performance. All models are trained in ESPnet, end-
to-end speech processing toolkit [32].

3.3. Multilingual features

Multilingual features are trained separately from seq2seq model
according to a setup from our previous RNN/DNN-HMM
work [23]. It allows us to easily combine the traditional
RNN/DNN-HMM techniques such as GMM based alignments
for DNN target estimation, phoneme units and frame-level ran-
domization with the seq2seq model. Such multilingual features
incorporate additional knowledge from non-target languages
into features which should better guide the model.

3.3.1. Stacked Bottle-Neck feature extraction

The original idea of stacked bottle-neck feature extraction is
described in [33]. The scheme consists of two DNN stages.
The input features in the first stage DNN are 24 log Mel fil-
terbank coefficients concatenated with fundamental frequency
features. Conversation-side based mean subtraction is applied
and 11 consecutive frames are stacked. Hamming window fol-
lowed by discrete cosine transform (DCT) retaining 0" to 5"
coefficients are applied on the time trajectory of each parameter
resulting in 37 x6=222 coefficients at the first-stage DNN input.
In this work, the first-stage DNN has 4 hidden layers with 1500
units in each except the bottle-neck (BN) one. The BN layer
has 80 neurons. The neurons in the BN layer have linear activa-
tions as found optimal in [34]. 21 consecutive frames from the
first-stage DNN are stacked, down-sampled (each 5th frame is
taken) and fed into the second-stage DNN with an architecture
similar to the first-stage DNN, except for BN layer with only
30 neurons. Both neural networks were trained jointly as sug-
gested in [34] in CNTK toolkit [35] with a block-softmax final
layer [36]. Context-independent phoneme states are used as the
training targets for the feature-extraction DNN, otherwise the
size of the final layer would be prohibitive.

Finally, the BN outputs from the second stage DNN are
used as our features for further experiments and will be called
as “Mult11-SBN”.
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Figure 1: Performance of Monolingual models trained with
multilingual features on different amount of data.

Table 2: Comparison of Monolingual models trained on top of
multilingual features and fbank features.

Features Swahili | Assamese | Tok Pisin | Georgian
%CER | %CER %CER %CER

FBANK 28.6 453 322 34.8

Mult11-SBN | 26.4 40.4 26.8 33.2

3.3.2. Results

Figure 1 presents the performance of the seq2seq model de-
pending on the amount of training data. Four (two “seen” and
two “unseen”, as introduced in Section 3.1) languages are ana-
lyzed. When the amount of training data is lowered, the perfor-
mance with “fbank” features is very poor. On the other hand,
the multilingual features provide:

* Huge improvement (at most 30% absolute) on small
amounts of training data from the “fbank” baseline.

* Consistent improvement on both train (seen) and target
(unseen) languages even when we only use train (seen)
languages for feature extractor training.

* Significant improvement, 1.6%-5.0% absolute (see Ta-
ble 2), even on the full training set.

3.4. Multilingual models

Next, we focus on the training of multilingual seq2seq models.
For this experiment, we prepared two character dictionaries, one
is created by augmenting all characters in both “seen” and “un-
seen” languages (AllDic), while the other is created by only
using the “seen’ languages (TrainDic) in Table 1. The model is
trained in the same way as monolingual one but with all training
data in the “seen” languages.

3.4.1. Multilingual seq2seq fine-tuing

Our multilingual seq2seq with TrainDic can potentially output
the text of any language from “seen” by automatically handling
language identification [19]. However, this language identifi-
cation is not always perfect, and the model could also output
a sequence of a different language character set. Adding lan-
guage identification information as an additional feature, simi-
larly to [37], may avoid the issue, but it also complicates the sys-
tem. Instead, we performed experiments with fine-tuning of the
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Figure 2: Fine-tuning of multilingual seq2seq on Swabhili.
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system into the TokPisin and Georgian languages in the “seen”
language set by running a few epochs only (early stopping) on
the desired language data. This strengthens the network to out-
put their language characters, therefore it makes the system less
prone to the above language- and character-set-mismatch errors.

The first two rows of table 3 present significant performance
degradation from the monolingual to multilingual seq2seq mod-
els caused by wrong decision of output character set in about
20% of test utterances. However, no out-of-language characters
are observed after “fine-tuning” and 1.5% and 4.7% improve-
ment over monolingual baseline is reached.

A multilingual seq2seq can be fine-tuned to an “unseen”
language with AllDic. Figure 2 shows the results on Swahili,
which is not part of the multilingual training. Similarly to ex-
periments with multilingual features in Figure 1, the fine-tuned
multilingual seq2seq systems are effective especially on small
amounts of data, but also defeat baseline models on the full
~40h language set.

Table 3: Multilingual fine tuning of seq2seq model.

TokPisin | Georgian
Model %CER | %CER
Monolingual 322 34.8
Multilingual 37.2 51.1
Multilingual fine-tuned 27.5 33.3
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Table 4: Multilingual Language Transfer

Language | Swahili | Assamese | Tok Pisin | Georgian
Transfer %CER %CER %CER %CER
Monoling. | 28.6 45.3 322 34.8
Out 274 41.2 27.7 33.6
+Att 27.5 41.2 28.3 342
CTC+Out 27.6 41.2 27.9 33.7
+Att 28.0 42.1 27.6 34.1

3.4.2. Language-Transfer learning

Language-Transfer learning is necessary if the “unseen” lan-
guage character set is different from the “seen” language set
ones. The whole process can be described in three steps: 1) ran-
domly initialize the pre-softmax layer parameters for the “un-
seen” language, 2) only train these new parameters and freeze
the remaining ones 3) fine-tune the whole seq2seq. Various ex-
periments are conducted by focusing on pre-softmax layer pa-
rameters in CTC (©°° in Eq. (9)) and decoder output (@™ in
Eq. (8)). Additionally, we also investigate the effectiveness of
the attention parameters ©*" introduced in Eq. (5). Table 4 com-
pares all combinations and clearly shows that retraining of the
decoder pre-softmax only (©°") gives the best results.

Finally, we compare the result with the multilingual fea-
tures for the seq2seq model, as discussed in Section 3.3, and
the previous result with the language transfer learning of mul-
tilingual seq2seq model in Figure 3. Interestingly, on contrary
to our previous observations on DNN-HMM systems [23], we
found multilingual features superior to language transfer learn-
ing in seq2seq model case.

With this result, we could conclude that the use of the multi-
lingual feature is a quite effective way when we make use of the
benefit of DNN-HMMs for the seq2seq model. This is the most
important finding among our extensive analysis on the multilin-
gual experiments.

4. Conclusions

We have presented various multilingual approaches in seq2seq
systems including multilingual features and multilingual mod-
els by leveraging our multilingual DNN-HMM expertise. Un-
like DNN-HMM systems [23], we obtain the opposite conclu-
sion: multilingual features are more effective in seq2seq sys-
tems. It is probably due to efficient fusion of two complemen-
tary approaches: explicit GMM-HMM alignment incorporated
in BN features and seq2seq models in the final system. With
this finding, we will further explore efficient combinations of
the DNN-HMM and seq2seq systems as our future work.
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