Computer Speech & Language 63 (2020) 101035

Contents lists available at ScienceDirect

Computer Speech & Language

journal homepage: www.elsevier.com/locate/csl

13 years of speaker recognition research at BUT, @CmssMark
with longitudinal analysis of NIST SRE

Pavel Matéjka*, Oldrich Plchot, Ondiej Glembek, Lukas Burget, Johan Rohdin,
Hossein Zeingli, Ladislav Mosner, Anna Silnova, Ondfej Novotny, Mireia Diez,
Jan “Honza” Cernocky

Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Brno, Czechia

ARTICLE INFO ABSTRACT

Arﬁclﬁ History: In this paper, we present a brief history and a “longitudinal study” of all important milestone
Received 6 May 2019 modelling techniques used in text independent speaker recognition since Brno University of
Revised 23 October 2019

Accepted 15 November 2019
Available online 17 December 2019

Technology (BUT) first participated in the NIST Speaker Recognition Evaluation (SRE) in
2006—GMM MAP, GMM MAP with eigen-channel adaptation, Joint Factor Analysis, i-vector
and DNN embedding (x-vector). To emphasize the historical context, the techniques are
evaluated on all NIST SRE sets since 2004 on a time-machine principle, i.e. a system is always
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NIST audiovisual content dominates nowadays’ Internet, we representatively include the Speakers
Evaluations In The Wild (SITW) and VOICES challenge datasets in the evaluation of our systems. Not only
GMM we present a comparison of the modelling techniques, but we also show the effect of sam-
Eigen-channel compensation pling frequency.
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1. Introduction

In this paper, we want to (i) present the last 13 years of text independent speaker recognition (SR) research and NIST Speaker
Recognition Evaluations (SRE)! from the perspective of the Brno University of Technology Speech@FIT group?, (ii) provide some
useful “aftermath and lesson-learned” information, and (iii) give a tribute and a thank you to our colleagues from NIST for their
series of the NIST SRE’s. The paper has two main themes: in the first part (Section 2), we provide a “Tour of speaker recognition
at BUT” from the early days until present. It is divided into five main eras, though largely overlapping and sometimes without
clear boundaries: GMM era, JFA era, i-Vector era, and two neural network eras, all presented from BUT’s stand-point> The histori-
cal development is put in context with SRE but also with other community events, mainly the seminal Johns Hopkins University
(JHU) 2008 workshop and its follow-ups. The paper does not have the ambition to be a full overview of speaker recognition his-
tory or a tutorial paper—we recommend excellent tutorials by Campbell (1997), and Kinnunen and Li (2010).
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E-mail address: matejkap@fit.vutbr.cz (P. Matéjka).
1 See National Institute of Standard and Technology (0000); Martin and Greenberg (2009, 2010); Greenberg et al. (2013); Sadjadi et al. (2017, 2019) for
reference.
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The second part of this paper addresses the commonly discussed conflict of “more science” versus “more data”. Each edition of
SRE was built atop of latest techniques, however, at the same time, more data was available for the development of the evaluation
systems. Questions such as “What would have been the performance of neural network (NN) Speaker Recognition (SR) systems
on SRE 2006 data, had we had them available back in 2006”, or comments such as “just take the simple relevance MAP adapted
GMM from the90rs and train it on nowadays huge data, it will probably work the same as your fancy neural nets” are quite fre-
quent. We have addressed these by creating a matrix of five representative techniques (namely, Relevance MAP adaptation,
Eigen-channel adaptation, Joint Factor Analysis (JFA), i-vectors with Probabilistic Linear Discriminant Analysis (PLDA) based scor-
ing and neural networks based embeddings (x-vectors) with PLDA scoring) and eight representative data-sets, and performed
the analysis. The techniques themselves do not represent the typical SRE submissions (which tend to be fusions of many systems
in order to obtain the best results) but rather, they are carefully selected representatives of the state-of-the-art at the given
period. The core of this analysis is the standard SRE task: telephone enrollment, telephone test. However, additional experiments
are conducted on wideband data (SITW and VOiCES) to analyze a new emerging channel. Our analysis confirms that the NIST
SREs brought more and more difficult evaluation data over time, and, as a reaction to these new challenges, more sophisticated
and better performing SR techniques emerged. Perhaps interestingly, even at the time of the NIST SRE 2006, a sufficient amount
of training data was available to benefit from the newer and more data-hungry techniques such as x-vectors.

The paper is organized as follows: Section 2 presents the history of SRE research at BUT. Sections 3 and 4 contain the details of
systems, data and evaluation metrics used for the longitudinal analysis. Section 5 presents its results, and we conclude in
Section 6.

2. BUT on SR research and NIST SRE time-line
2.1. End of relevance MAP adaptation era

NIST SRE 2006 was the first speaker evaluation with BUT participation (Matéjka et al., 2007a). We were joined by Niko
Brummer and Albert Strassheim (then at Spescom Data Voice) and David van Leeuwen (TNO), the submissions therefore carried
the label STBU (Spescon—TNO-BUT-University of Stellenbosch). At this period, relevance MAP adaptation (Reynolds et al.,
2000) of GMM models was the dominating technique in the SR world. We spent significant time on feature analysis, building on
our automatic speech recognition (ASR) know-how—we tested RASTA filtering (Hermansky and Morgan, 1994) and heterosce-
dastic linear discriminant analysis (HLDA) transformation (Kumar, 1997) together with feature mapping (Reynolds, 2003) (simple
adaptation done in the feature space aiming at channel-adapted models). More importantly, we implemented eigen-channel
adaptation as a simplified variant of JFA (Brummer, 2004; Kenny and Dumouchel, 2004) which made the feature mapping and
many of the feature processing tricks obsolete. The superior performance of the eigen-channel adaptation technique in the NIST
SRE 2006 attracted a lot of attention in the community and became the new state-of-the-art approach. Eigen-channel adaptation
was, in fact, introduced to NIST SRE evaluations already in 2004 by Niko Brummer thanks to his collaboration with Patrick Kenny;
it provided excellent performance, but it stayed largely unnoticed, as it was not part of a top-performing system.

In addition to the eigen-channel adapted GMM system, STBU system contained another two approaches based on Support
Vector Machines (SVM). The first used GMM supervectors as input to the SVM system and it significantly benefited from Nuisance
Attribute Projection (NAP) (Solomonoff et al., 2004), a sub-space based channel compensation technique similar to eigen-channel
adaptation. The second approach fed the SVMs with Maximum Likelihood Linear Regression (MLLR) matrices extracted using ASR
system (Stolcke et al., 2005). This technique was imported from the ASR field, where MLLR transformations were typically used
for speaker adaptation. The SVM-MLLR system worked the worst, but it fused well with the other systems. Niko Brummer also
contributed with proper normalization (t-norm) (Auckenthaler et al., 2000) and system fusion techniques (e.g. Logistic Regres-
sion) using his then recently introduced FoCal toolkit*, which remains an invariable part of our systems till this day.

Two papers in 2007 Special issue of IEEE T-ASLP give full account of our work for SRE 2006: Briimmer et al. (2007) provides
full system description including SVM sub-systems and (Burget et al., 2007) concentrate on the analysis of feature extraction and
channel compensation in the GMM system.

2.2. JFAera

JFA as a technique for subspace modeling of speaker and channel variabilities in the space of GMM parameters was introduced
by Patrick Kenny already in 2003 (Kenny et al., 2003). However, it was only after the success of eigen-channel adaptation that the
community became interested in JFA. This interest was boosted by the superior results obtained with the full JFA model as first
presented on NIST SRE data by Kenny et al. (2008), and later confirmed in NIST SRE 2008 evaluation by several sites (Kajarekar
et al,, 2009; Sturim et al., 2009; Burget et al., 2009a).

SRE 2008 witnessed the top of JFA era—BUT submission included two full JFA systems combined with one SVM-MLLR, simi-
larly as in the previous evaluations. Significant amount of work done for SRE 2008 did not make it to the final submission, but
generated interesting research ideas: use of phonotactics in SR (where an attempt was made to piggy-back on our excellent
results in LR) and the first attempts to use prosody and cepstral contours, later elaborated in the PhD thesis of Kockmann (2012)

4 https://sites.google.com/site/nikobrummer/focal
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and his publications. Interspeech 2009 paper (Burget et al., 2009a) contained description and analysis of the whole BUT submis-
sion, and Burget et al. (2009b) presented at the same venue thoroughly analyzed the individual variants and simplifications of
JFA. It pointed out the importance of score normalization (ZT-norm) for full JFA and the advantage one could gain by training
additional eigen-channels on (although limited) microphone data to improve robustness to channel variations.

Johns Hopkins University 2008 summer workshop was a key moment in the JFA era®. The work included conditioning of JFA,
fast techniques for JFA scoring (later summarized in Ondrej Glembek’s thesis Glembek, (2012) and served as a basis for fast i-vec-
tor scoring) and early work on discriminative variants of JFA. At the workshop, Najim Dehak also started elaborating on the idea
of using JFA for extracting speaker factors as low-dimensional fix-length vectors encoding the speaker identity in an utterance,
which eventually led to the introduction of i-vectors (Dehak et al., 2011) (see next section). In addition to the technical achieve-
ments, this workshop laid grounds to intensive community work in SR that persists until nowadays.

2.3. I-vector era

As mentioned above, the 2008 workshop devoted significant efforts to the study of JFA and different ways of producing verifi-
cation scores with the model. Large amount of follow-up work concentrated on using JFA to extract fixed-length utterance repre-
sentations as features for another classifier. Najim Dehak experimented with the channel factors (where any speaker-related
information should be suppressed) and found them to be still good features to characterize speakers. This led him to the defini-
tion of total variability vectors as the sole low-dimensional representations of utterances. The paper usually cited is the journal
one (Dehak et al., 2011) but although it was submitted in 2009, it took almost two years to get published. The first publication on
total variability vectors (still not called i-vectors) is Dehak et al. (2009), and, as usual, the word on the superior performance of
these vectors was spreading fast in the community. The term i-vector was coined around 2009/2010, where the “i” stood for
“identity” or “intermediate”.

NIST SRE took place early in 2010 and we formed the ABC consortium of Agnitio South Africa (Niko Brummer), BUT and CRIM
Canada (Patrick Kenny) Brummer et al. (2010). That year, NIST set new parameters for the decision cost function (DCF) so that we
had to inflate the number of non-target trials in our development set, but the main focus was on i-vectors. Probabilistic linear dis-
criminant analysis (PLDA) (Ioffe, 2006; Prince, 2007) was shown to be an excellent scoring tool for the i-vector framework and
Patrick Kenny has compared Gaussian PLDA with heavy-tailed (HT) PLDA, concluding that HT-PLDA worked even without score
normalization, better than Gaussian PLDA with score normalization; the advantage was however unclear with non-matching
channels Matéjka et al. (2011b). The era of traditional JFA used directly for scoring was over.

Summer 2010 saw Brno as the world’s center of SR: we hosted the SRE 2010 workshop, immediately followed by Odyssey
workshop, with notable Patrick Kenny's invited talk on HT-PLDA Kenny (2010). Both events confirmed i-vectors as the ruling SR
paradigm. Immediately following was the 5-week BOSARIS workshop® coordinated by Lukas Burget, Patrick Kenny, and Niko
Brummer. The workshop generated a significant amount of work and numerous papers that were influencing our SR activities in
the following years, especially Ondrej Glembek’s work on the efficient implementation of i-vector extraction (Glembek et al.,
2011b). Both i-vector extraction and PLDA were generative models, therefore, the first attempts were made to train them
discriminatively (Burget et al., 2011; Glembek et al., 2011a; Cumani et al., 2011). The workshop also produced Niko Brummer’s
BOSARIS toolkit for calibrating, fusing and evaluating SR scores’ that was and still is widely used in the community.

[-vectors dominated our work in SR for several following years. Several important PhD theses document this period and we
recommend them as reference reading for anyone wishing to acquire broader context than from conference papers: Glembek
(2012) summarized scoring techniques for both JFA based models and i-vectors, with an accent on efficient implementation,
Plchot (2014) departed from discriminative training of PLDA and was among the first to take into account the uncertainty in i-
vector estimates to obtain more reliable PLDA scoring and Kockmann (2012) re-defined the continuous i-vector model to sub-
space multinomial model (he was using categorical prosody feature) that has reached other domains including topic
detection (Kesiraju et al., 2016) and language modeling (Benes et al., 2018).

During 2009-11, we cooperated with SRI STAR Laboratory in the IARPA-funded BEST program: in addition to work on high-
level features for SR, we have defined and made available the PRISM evaluation set (Ferrer et al., 2011) that has been serving to
evaluate variabilities in language, channel, speech style and vocal effort, including new types not available at the time such as
severe noise, and reverberation. We participated in SRE 2012 but we do not describe it here, as it was different to all other evalua-
tions (see Section 4.2). The DARPA-sponsored RATS project was fully occupying us, including its own evaluations. As we had to
work with very noisy and degraded channels, we spent efforts on noise-robust features (Plchot et al., 2013), robust VAD (Ng
etal, 2012) and we experimented with SVM-based fusion using side information (Plchot et al., 2013).

The multi-week workshops gained popularity in the community; JHU 2008 and BOSARIS 2010 were followed by another
BOSARIS in 20128, and another JHU workshop in 2013° combining SR and language recognition (LR), as both are sharing a
number of techniques. JHU 2013 brought up the Domain Adaptation Challenge 2013 (nick-named as the “Doug’s

5 work-group “Robust Speaker Recognition Over Varying Channels led by Lukas Burget, https://www.clsp.jhu.edu/workshops/08-workshop/robust-speaker-
recognition-over-varying-channels/ links also to the final report.

5 Brno Speaker Recognition Summer Workshop, https://speech.fit.vutbr.cz/workshops/bosaris2010

7 https://sites.google.com/site/bosaristoolkit/

8 https://speech.fit.vutbr.cz/cs/short-news/second-bosaris-workshop-2012-started-14-people-arrived

9 https://www.clsp.jhu.edu/workshops/13-workshop/speaker-and-language-recognition/
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challenge”) (Garcia-Romero and McCree, 2014; Villalba and Lleida, 2014), where different ways of adapting the PLDA model were
mainly studied (Glembek et al., 2014). Another two workshops took place in Torino, Italy (TOSREW, 2015'°) and Stellenbosch,
South Africa (ASRWIS, 2017'"), which were already investigating into NN techniques in SR.

2.4. Neural network era

2.4.1. Hybrid i-vector/neural network era

Our first successful attempts to use NNs for SR used the i-vector/PLDA pipeline, by integrating pre-trained NNs in different
ways to improve the SR performance. In the first approach, pioneered by SRI Lei et al. (2014), a DNN pre-trained for senone clas-
sification (i.e. ASR acoustic model) was used to align speech frames to Gaussian components in the i-vector extractor model (i.e.
the Gaussian components are forced to correspond to phonetic classes). This approach led to more robust i-vector estimation
and improved SR performance. The second approach introduced NN-based bottleneck features (BNF) (Grézl et al., 2007) instead
of (or together with) MFCC features. Again, the bottleneck features were optimized to discriminate phonemes in contrast to
architectures directly trained for speaker discrimination described in the next section. We performed numerous experiments
with both approaches (Novotny et al., 2016; Lozano et al., 2016). To address the language-dependency issue of BNFs, we used
multilingual training of BNFs introduced by Karel Vesely in 2012 for the IARPA Babel program (Vesely et al., 2012) and built on
excellent results of these features in LR (Fér et al., 2015). The conclusion of (Matéjka et al., 2016) was that concatenated BNFs and
MFCCs indeed worked the best, and there was no need for an additional DNN-based alignment.

The year 2016 was a true evaluation year: the first Speakers in the Wild challenge (organized by SRI) took place in winter'?
and brought signals from difficult environments, with reverberation, noise and low quality recording devices. We obtained excel-
lent results with a system based on both the spectral features as well as on the BNFs (Novotny et al., a). SITW, for the first time,
showed the importance of diarization (we used our Bayesian HMM approach with eigen-voice priors (Diez et al., 2018)). An
important part of system development was data augmentation, a step that has become inevitable in all our following work.

Late summer and fall were dominated by SRE 2016; we formed the “ABC” consortium consisting of Agnitio, BUT and CRIM.
2016 was the last year with only i-vector systems in the final submission (Plchot et al., 2019). A bitter surprise came with the
inferior performance of BNFs, for which the language variability (different languages in development and evaluation sets) was
the most obvious reason. Discriminative PLDA was included in the final system; while it did not provide superior performance
itself, it fused well with the other techniques. Score normalization was (again) an issue: an analysis in Matéjka et al. (2017) has
shown that adaptive s-norm—with the careful cross-language and cross-channel selection of speaker cohorts—worked the best.

2.4.2. Era of neural network embedding and end-to-end systems

Our NN efforts continued with the development of fully end-to-end architecture where building blocks of a standard i-vector/
PLDA system were gradually replaced by corresponding NNs (Rohdin et al., 2018). We showed that it is possible to benefit from
end-to-end training if we constrain the system not to deviate too much from a standard i-vector+PLDA one: it consists of a DNN
module for extraction of sufficient statistics (f2s), a DNN module for extraction of i-vectors (s2i) and finally, a discriminative
PLDA (DPLDA) model (Burget et al., 2011; Cumani et al., 2013) for producing scores. These three modules are first developed and
trained individually so that they mimic the corresponding part of the i-vector+PLDA baseline. After that, they are combined and
the system is further trained in an end-to-end manner on both long and short utterances. In contrast to the previous section, the
whole architecture is now trained for the final task of speaker discrimination.

At the same time, we followed the efforts of using DNN embeddings in SR and were happy that our colleagues at JHU suc-
ceeded in making the system work: first on short utterances with the abundance of training data (Snyder et al., 2016) (where the
embeddings were extracted from a DNN trained with speaker verification objective, i.e., binary task of pair-wise speaker compar-
ison) and finally on standard SR tasks (Snyder et al., 2018) (where the training follows a speaker identification criterion). Like
many others, we appreciated the Kaldi recipe, that we analyzed, for example, for performance in noise, with various NN architec-
tures and with data augmentation (Novotny et al., 2018b).

Our participation in SRE 2018 (Alam et al., 2018) fell fully into the NN era. We worked again in the “ABC” consortium with
Nuance (Niko Brummer), CRIM, Omilia and UAM Madrid. X-vectors were clearly dominating and the pre-processing of data (aug-
mentation and chunking into segments) were found to be crucial for good system performance. Hossein Zeinali produced a useful
TensorFlow implementation of the x-vector extractor training'® complementing the Kaldi recipe. Encouraging results were
obtained with revived HT-PLDA (Kenny, 2010).

Our current work aims at several directions, with some of the results yet to be published: in far-field SR, we use classical and
neural microphone array pre-processing, data augmentation and system (usually PLDA) re-training (Mosner et al., 2018), we
experiment with adversarial adaptation applied to x-vectors (Rohdin et al., 2019) and attention modeling added to x-vector
extraction NN, and (in good tradition of the BUT group) into interactions and cross-domain issues with LR, diarization, ASR, VAD,
and others.

10 https://areeweb.polito.it/SRG/tosrew2015/

1 https://agnitiosa.github.io/ASRWIS/

12 http://www.speech.sri.com/projects/sitw/

13 https://github.com/hsn-zeinali/x-vector-kaldi-tf
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3. Speaker modeling techniques for text-independent speaker recognition

In this section, we briefly describe the main modelling techniques used in the NIST SRE which are used in the longitudinal
study in Section 5. Some of the techniques use primarily unlabeled data (GMM, i-vector), however, the main driver for improve-
ment and evolution of SR algorithms is the availability and more efficient use of ever bigger amounts of labeled training data.
Without huge quantities of labeled data, it would not be possible to incorporate powerful, but data hungry techniques (PLDA, x-
vector). In addition to the main techniques, we briefly describe two auxiliary techniques, namely score normalization and data
augmentation. In the experiments, we use these techniques only for the main techniques that need them (see Sections 3.8
and 3.9). The model parameters and settings used in the experiments are given in Table 6.

3.1. Gaussian mixture models

Gaussian mixture models (GMMs) have been an integral part in speaker recognition for more than two decades. Their main
assumption is that the features of an utterance are generated from a Gaussian mixture model whose means depend on the speak-
er’s identity as well as on channel effects. The concatenated vectors of parameters (typically means) are usually referred to as a
supervector. In order to do speaker recognition, we need to estimate the supervector of means from the features and also, ideally,
remove the effect of channels from it. In most speaker recognition scenarios, there is not enough enrollment (or test) data avail-
able to reliably estimate the supervector of means using maximum likelihood (ML). Instead, we assume a prior on the supervec-
tor and use its maximum a posteriori estimate. To mitigate the effect of channels, the supervector, M, is further decomposed into
a global mean, m, a speaker-specific part, s, and a channel (utterance) specific part, ¢, i.e.,

M=m-+s+c. (1)

This approach has been common to all dominant techniques in the NIST SRE from 1996 to 2016. The difference lies in the choice of
speaker and channel components. The most common choices are summarized in Table 1 and described briefly in the following sec-
tions. All the approaches involve a universal background model (UBM) which is a GMM estimated on features from many utterances
of many speakers. The supervector of the UBM means serves as m in Eq. (1). Further on, let X' be a (block) diagonal matrix with the
covariance matrices of the individual Gaussians on the diagonal. In our experiments, we use GMMs with 2048 Gaussians.

3.2. Relevance-MAP

Relevance MAP was originally proposed for speaker adaptation in automatic speech recognition in Gauvain and Lee (1994)
and adopted for speaker recognition in Reynolds et al. (2000). This approach assumes that the speaker specific component of the
mean supervector, M, is given by s:%Eiz, where 7 is the so-called relevance factor and z is a latent speaker variable of the same
dimensionality as the supervector with standard normal prior. This is equivalent to saying the speaker-specific component of the
mean supervector s has prior p(s)=A\ (07%2). We refer to the method as GMM. Scoring is done by obtaining a point MAP estimate
of M for the enrollment utterance and then calculating the likelihood of the test data given this model versus the likelihood of the
test data given the UBM (feature LLR). Note that with this model, we do only short time mean and variance normalization on the
feature level to deal with channel effects. In our experiments, we use t=19 (Burget et al., 2007).

3.3. GMM eigen-channel compensation

The GMM eigen-channel model (GMM-EC) (Kenny et al., 2003; Burget et al., 2007) extends the GMM approach by adding a
channel component ¢=Ux (see Table 1), where X is a channel variable with standard normal prior. The matrix U is estimated by
PCA on supervectors from which the speaker specific mean supervector has been subtracted. Scoring can be done in many ways.
In this paper, we use linear scoring (Glembek et al., 2009). We set the number of columns in U (i.e., the number of eigen-channels)
to 50 (Burget et al., 2007).

Table 1

Speaker and channel component of the supervector of means assumed by different GMM-
based models. The matrices V, U and T have many fewer columns than rows. The matrix D
is diagonal. The factors, y, z, x and w, follow standard normal distribution. Training and scor-
ing refer to the most common approaches which are also used in this paper. EM refers to
Expectation Maximization and MD to Minimum divergence. Note that PLDA also models a
speaker and a channel component but in the i-vector space.

Method Speaker, s Channel,c  Training  Scoring
GMM 130 - - Feature LLR
GMM-EC 2z Ux PCA Linear

JFA Vy+Dz Ux EM+MD Linear

i-vector Tw EM+MD PLDA
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Table 2

x-vector topology proposed in Snyder et al. (2019). K in the
first layer is used to indicate using different features with dif-
ferent dimensions and N is the number of speakers.

Layer Layer context (Input) x output
frame1 [t=2,t-1,t,t+1,t+2] (5 x K) x 512
frame2 [t] 512 x 512
frame3 [t=2,t,t+2] (3 x 512) x 512
frame4 [t] 512 x 512
frame5 [t=3,t,t+3] (3 x 512) x 512
frame6 [t] 512 x 512
frame7 [t—4,t, t+4] (3 x 512 x 512
frame8 [t] 512 x 512
frame9 [t] 512 x 1500
stats pooling [0, T) 1500 x 3000
segment1 0 3000 x 512
segment2 0 512 x 512
softmax 0 512 x N

3.4. Joint factor analysis

The Joint factor analysis (JFA) model extends the GMM-EC model by replacing its (rather ad hoc) speaker component with s=
Vy+Dz where y and z are standard normal distributed latent speaker variables, the matrices V and D are learned from data. For
learning V, D and U, we use the EM algorithm (Dempster et al., 1977) and minimum divergence. As for GMM-EC, we use linear
scoring. We set the number of columns in V (the number of eigen-voices) to 300, and U (the number of eigen-channels) to
100 (Burget et al., 2009b). The matrix D is diagonal.

3.5. i-vectors

The i-vector (Dehak et al., 2010) model simplifies the previous models by replacing the speaker and channel component with
one component that is assumed to model both speaker and channel variability. The model is

M=m+Tw, )

where the matrix T is a model parameter (often referred to as an i-vector extractor) and w is a latent variable with standard nor-
mal distribution. The latent variable, w, is specific to the utterance but, contrary to the channel component of the previous mod-
els, the i-vector extractor is trained in such a way that Tw captures both the speaker and the channel contribution to the
supervector of means. The MAP estimate of w is known as the i-vector. For scoring, the i-vectors are computed for both the enroll-
ment and the test utterance and then a backend model is used for removing channel effects and comparing the two i-vectors.
Typically, PLDA (see Section 3.7) is used as a backend model. In our experiments, we set the number of columns in T (i.e., the i-
vector dimensionality) to 600 (Matéjka et al., 2011b).

3.6. Neural network embedding: x-vector topology

Current state-of-the-art systems for text-independent speaker verification are based on NN embeddings. Similarly to i-vec-
tors, these embeddings are low dimensional fix-length representations of utterances, which are however obtained using NNs dis-
criminatively trained to extract only speaker-specific information. Different NN architectures and training objectives were
proposed for this purpose (Snyder et al., 2017). In our experiments, we use the first truly successful and currently the most popu-
lar architecture for extracting the so-called x-vector (Snyder et al., 2018).

The NN for x-vector extraction is composed of several Time-Delay NN (TDNN) layers'# which operate in a frame-by-frame man-
ner. The TDNN layers are followed by a global pooling layer. This layer estimates the mean and the standard deviations of the outputs
of the last TDNN layer over time in order to obtain the fixed-length utterance representation. Additional layers are used to reduce the
dimensionality of such representations to obtain the final embedding/x-vector. For training, one more softmax layer is added, which
serves as the classifier of training speaker identities. The exact architecture used in our experiments is summarized in Table 2. For
more details on robustly training the x-vector architecture see the original work (Snyder et al,, 2018). For training the x-vector, we
used original Kaldi recipe!® where the system is trained on original speech segments together with their augmentations.

14 TDNN layer performs a one-dimensional convolution over time with dilation of more than one frame as used in Waibel et al. (1989) and Peddinti et al. (2015)
for speech recognition.
15 https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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3.7. Backend—PLDA

To facilitate comparison between i-vectors or x-vectors and obtain a speaker verification score, Probabilistic Linear Discrimi-
nant Analysis (PLDA) (loffe, 2006; Prince, 2007; Kenny, 2010) is often utilized. There are many variants of PLDA, the most com-
mon of which—and the one used in this work—assumes that the distribution of i-vectors or x-vectors, ¢, is modeled as

d=0+Vy+e, 3)

where, ¢ is an observed vector (i-vector or x-vector), ¢ is a global mean of the observed data, y is a latent speaker variable with
standard normal prior and e is a latent channel variable with prior p(e) =\ (0, W). Note that this model is conceptually very simi-
lar to JFA. Typically, and in this work, the parameters of the model V, W are estimated by the EM algorithm (loffe, 2006; Prince,
2007).

Usually, i-vectors are subjected to several pre-processing steps before being modeled by PLDA. In this paper, we use Linear
Discriminant Analysis—reducing the i-vector dimension to 250—followed by length-normalization (Garcia-Romero and Espy-
Wilson, 2011). It is worth noting that generalizing the Gaussian assumption to more heavy-tailed distributions (Kenny, 2010)
can reduce the need for such preprocessing steps. However, the Gaussian assumption leads to a closed-form solution for the LLR
used as a verification score.

3.8. Score normalization

The goal of score normalization is to reduce within-trial variability leading to improved performance, better calibration, and a
more reliable threshold setting (Matéjka et al., 2017). In our experiments, the effect of score normalization was large for JFA but
negligible for the other systems. Therefore we report the results with score normalization (ZT-norm) only for systems based on
JFA.

3.9. Data augmentation

As mentioned in Section 3.6, the Kaldi recipe applies data augmentation in x-vector training. Each utterance is augmented
with approximately two new versions that are corrupted by either noise, reverberation, music or babble. Augmenting the train-
ing data has been shown to greatly improve the training of x-vector extractors while having a minor effect on the training of i-
vector extractors (Snyder et al., 2018; Novotny et al., 2018b). Since the older methods are either structurally similar to i-vectors
(GMM-EC, JFA) or much less data-hungry (GMM), we assume data augmentation would also not be beneficial for these methods.
Therefore, we do not use data augmentation for them.

4. Data and evaluation metric
4.1. Training data

Training data for NIST SRE experiments are formed by the data released by NIST before the year of that evaluation campaign
plus data from Switchboard. We performed also a comparison of systems trained on Voxceleb only.

4.1.1. Switchboard

NIST SRE data between the years 1999 and 2003 were derived from Switchboard data collections targeted for the speaker rec-
ognition where each speaker had to make several calls. All speakers are English speaking. We used several collections from
Switchboard:

e Switchboard 2 Phase [ (Graff et al., 1998), Il (Graff et al., 1999) and III (Graff et al., 2002) released in 1998, 1999 and 2002 with
657, 679 and 640 participants, respectively. It contains only land-line calls.

e Switchboard Cellular Part I (Graff et al., 2001) and II (Graff et al., 2004) released in 2001 and 2004 with 254 and 419 partici-
pants, respectively. It focuses mainly on cellular phone technology under varied environmental conditions.

4.1.2. NIST speaker recognition evaluations
Training data from NIST SRE are formed by all training data from a particular evaluation year. Overall data statistics from indi-
vidual SREs are listed in Table 3 and more information about each NIST dataset can be found in Section 4.2.

4.1.3. VoxCeleb

VoxCeleb is a recently introduced (2017) audio-visual dataset consisting of short clips of speech, extracted from celebrity
interview videos uploaded to YouTube. The dataset consists of two parts, VoxCeleb1 and VoxCeleb2 (Nagrani et al., 2017). Each
part has its own train/test split and there is no overlap of speakers between the two parts. There is however a small overlap with



8 P. Matéjka et al. /] Computer Speech & Language 63 (2020) 101035

Table 3
Training data statistics. Note that for x-vector training, the data is
augmented with approximately two corrupted versions of each

utterance.

Dataset #speakers  #files/speaker  net speech [h]
SWB 2594 10.9 1139
SRE04 310 26.4 197
SRE06 2228 15.0 946
SREO8 1328 20.2 724
SRE10 506 154 286
SRE16 221 53.5 121
SWB + SRE04 2904 125 1336
SWB+SRE04-06 5217 179 2823
SWB+SRE04-08 6413 18.7 3547
SWB+SRE04-10 6919 20.6 3996
SWB+SRE04—-16 7140 221 4138
VOXCELEB 7146 23.2 2420

SITW dataset which was mitigated by removing the affected speakers from Voxceleb. In total, there are 166 thousand audio files
(distributed in 1.2 million speech segments) spanning 7146 speakers.

4.2. Evaluation data

The experiments are evaluated on the most relevant'® core conditions of the NIST SRE datasets from 2004 to 2018. Further-
more, to provide the reader with a more complete analysis of results, the challenging Speakers In The Wild
(SITW) Mitchell McLaren (2016) and the recent VOICES datasets (Nandwana et al., 2019) are also considered as benchmarks. The
main characteristics of these datasets are described below.

NIST SRE datasets evolved through the years: in SRE04 (1side-1side) enrollment utterances consist of 5-minute conversa-
tional excerpts collected over telephone channels. Utterances contain mainly English speech, but can also contain Arabic, Manda-
rin, Russian and Spanish. The test utterances have a similar length as the enrollment but could be collected using non-telephone
channels, and are rarely non-English.

The SRE06 (1conv4w-1conv4w) is very similar to SRE04, although test utterances are now limited to only telephone channels
(as the enrollment). On the other hand, the variability in languages is extended to the test.

In SREO8 (short2-short3—det6 telephone-telephone) the enrollment and test utterances consist of telephone conversational
excerpts of around 5 minutes which can sometimes contain “other languages” than English.

For SRE10 (condition 5—telephone-telephone), all data is limited to English speech. The characteristics of enrollment and test
utterances are similar to those from SRE08.

For SRE16, we consider the Cantonese evaluation data'”. It consists of family telephone conversations in which speakers were
encouraged to use different telephones for each session.

SRE18 was similar to SRE16 but with telephone speech solely in Tunisian Arabic. SRE18 contains also a preview of the wide-
band audio from video data (VAST collection), which follows a different protocol for evaluation when multiple speakers can be
present in the test segment. Our systems for VAST data were developed separately and included speaker diarization. In our analy-
sis, we focus only on the telephone part of the SRE18—the Call My Net 2 collection (cmn2).

The SITW core-core eval dataset (Mitchell McLaren, 2016) is recorded in 16kHz (these data were downsampled for the 8kHz
experiments). It contains English speech recorded in non-controlled situations, which results in different levels of degradation,
noise types and different microphones for each of the sessions. The enrollment and test utterances are continuous excerpts con-
taining speech of a single speaker, and the test utterances have a variable length between 6 and 180 s.

Finally, VOICES eval set (Nandwana et al., 2019) is also recorded in 16 kHz, and contains clean read English speech retransmit-
ted in rooms of different sizes, which have different room acoustic profiles. The recordings were made with different background
noises played concurrently.

Table 4 provides statistics of these datasets regarding the number of files, speakers, amount of speech and trials.

4.3. Evaluation metrics

We report all results in terms of Equal Error Rate (EER), which is a common measure characterizing the performance of the
biometric system. It is a well-known operating point, where the false alarm rate and miss rate are equal. It can be shown that this

16 Given the high amount of overlap between NIST SRE 2005 and NIST SRE 2006, only the latter dataset was considered. The NIST SRE 2012 dataset was also not
used in this study, as in 2012 the evaluation was significantly different from other years: prior knowledge of some target speakers was allowed for computing the
trial detection scores and a different evaluation metric was used.

17 This is a subset of the real evaluation set
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Table 4
Evaluation data statistics. Note that the “speech” column indicates the net speech.
Dataset & Condition #files #spk  speech [s] #trials
enroll/test enroll/test  tgt nontgt
SRE04 1side-1side 616/1174 310 143/140 2.38k 23.8k
SRE06 1conv4w-1conv4w all ~ 808/2668 598 134/135 3.62k  47.5k
SREO8 short2-short3 det6 1788/2569 1033 137/138 2.68k  33.2k
SRE10 condition 5, extended 4267|767 438 133/141 717k 409k
SRE16 yue 601/4858 100 60/35 193k 946k
SRE18 cmn2 1316/12135 290 61/35 60.7k  2.0M
SITW core-core 1204/1204 299 31/31 3.66k 718k
VOICES eval 328/11069 300 12/13 364k  3.6M

point acts as a scalar summary of the whole system (or the DET curve—Detection Error Trade-off curve (Martin et al., 1997)) and it
is insensitive to calibration. The value of EER gives a rough idea, how close the DET curve is to the origin and therefore, its value
can serve as an approximate comparison between the systems. Even though the properties of this measure seem to be attractive,
it is not very useful in practical applications which usually operate either in a region of low false alarm rate (e.g., authentication
systems) or low miss rate (e.g., law enforcement).

To compare systems at an interesting operating point, NIST has defined the Decision Cost Function (DCF). With some parame-
ter adjustments or modifications in its definition, it has served as the primary criterion in every NIST SREs. It is designed to con-
sider the overall cost of making the two types of detection errors (miss and false alarm).

However, since the DCF parameters are set differently for individual evaluations and we only want to compare general dis-
criminability of the systems and techniques across different NIST test sets, we will use EER in all our experiments.

5. Longitudinal analysis

In this section, we will evaluate all methods on individual NIST benchmarks as well as on SITW and VOICES challenges. We
will concentrate on individual NIST SREs by making a little trip to history and training each method as if it was the time of each
particular evaluation. We will also look at the effect of different sizes of training data on the performance of each method. Using
the out-of-domain VOXCELEB dataset, we will perform an analysis of the difficulty of particular NIST SREs and finally, we will
offer a sneak-peek into relatively more challenging wideband data obtained mostly from YouTube videos and other networks
(SITW) or wideband data corrupted by reverberation and noise (VOiCES).

5.1. Redoing NIST SREs with all major techniques

In Fig. 1, we can compare the performance of different techniques (GMM, GMM-EC, ivec, xvec) as if they were run at the time
of individual NIST SREs. Important details about the size of each model and its input feature configuration can be found in Table 6.

1lcvmm
1|lnemm-Ec r
25 L
IILERN [
1|001vEC
1laxvec

7|00 Submission Single
20

[ B Submission Fusion

Rl | ||I I :

sre04 sre06 sre08 srel0 srel6 srel8

Fig. 1. Equal error rates of all techniques as if they were run for particular NIST SRE. The last two columns starting in SREO6 represent our best single system and a
fusion of our submissions to the particular evaluation. Note the out-of-trend JFA EER for SRE06 condition (marked with a * symbol): for sake of consistency with
all other experiments, we used the whole training set for ZT-norm. If, however, we exclude the SWB set from ZT-norm, the EER drops significantly to the in-trend
region.



10 P. Matéjka et al. / Computer Speech & Language 63 (2020) 101035

Table 5
BUT systems submitted to particular NIST SREs (single best system and primary fusion).
Type Year Ref. System Description

2004 -

2006 Matéjka et al. (2007a) MFCC-HLDA+GMM-+Eigen-channel compensation
single 2008  Burgetetal.(2009a) MFCC, Gender Dependent JFA + ZT-norm
2010 Matéjka et al. (2011b) MFCC FullCov ivec, PLDA

2016 Plchot et al. (2019) MFCC FullCov ivec, DPLDA
2018 Alam et al. (2018) x-vectors + PLDA
2004 -

2006 Matéjka et al. (2007a) 11 systems (GMM-EC, GMM-SVM, MLLR-SVM,...)
fusion 2008 Burget et al. (2009a) 3 systems (2xJFA+MLLR-SVM)
2010 Matéjka et al. (2011b) 8 systems (JFA +ivec + MLLR-SVM,...)

2016 Plchot et al. (2019) fusions of 7XxBUT+3XAGN+8xCRIM
2018 Alam et al. (2018) 3 x-vectors systems
Table 6

Configuration of systems representing individual major SR techniques.
MFCC_E_D_A denotes MFCC+Energy+Delta+DoubleDelta, ShortCMVN refers
to short time mean and variance normalization over 301 frames, F-b-F refers
to frame-by-frame scoring.

Name Features Model Scoring

GMM 19MFCC_E_.D_.A  GMM(2048) F-b-F
ShortCMVN

GMM-EC 19MFCC_E_LD_A  GMM(2048) linear scoring
ShortCMVN Eigen-channel comp(50)

JFA 19MFCC_E_.D_A  GMM{(2048) ZT-norm
ShortCMVN U(100), V(300), Z linear scoring

IVEC 19 MFCC_E_D_A GMM(2048) - IVEC(600) PLDA
ShortCMVN L2norm - LDA(250)

XVEC 20 MFCC DNN PLDA
ShortCMN (topology in Table 2)

Since SREO6, we also include a single best system and a primary fusion of our (BUT + consortium) submission to the particular
NIST SRE. In Table 5, we can also observe how our single-best system changed and what combination worked as the best fusion
in each evaluation since SRE06. Table 5 also contains references to corresponding system descriptions of our NIST submissions.
As expected, overall results in Fig. 1 show that a newer technology provides better results.

Starting with SRE04, where we used only Switchboard dataset for training, we can observe relatively poor performance of x-
vectors, especially compared to i-vectors but also compared to JFA and GMM-EC. There is probably simply not enough training
data for the model of this size and design. Another possible reason is the fact that Switchboard contains only English calls, while
the SRE04 test set comes from 5 languages. This might, apart from the lack of training data, cause the discriminatively trained x-
vector not to generalize well for these unseen conditions.

In NIST SRE 2006, we already start to observe expected trends of newer techniques outperforming older ones, or in the case of
JFA matching the performance of GMM-EC (with a ZT-norm cohort without Switchboard). We can also observe that the result of
the single best system submitted to SREO6 is worse than the same technology (GMM-EC) trained for the purposes of this paper.
The reason for this is that in 2006 we trained the system only on data from NIST SRE 2004 and 2005, while now we train also
with Switchboard. We can also see that x-vectors alone are already better than our primary fusion back in 2006.

NIST SRE 2008 came with a harder test set and more training data available to the community. This helped the x-vector sys-
tem to outperform i-vectors more significantly. Our single-best system in SRE08 was based on JFA and its performance is roughly
the same as our i-vector based system (IVEC). The reason for a slightly better performance of JFA in our 2008 submission may be
the fact that it is a gender-dependent system with gender-dependent ZT-norm. Again, today'’s state-of-the-art x-vectors are bet-
ter than our final fusion in 2008. Interestingly enough (at least for the telephone data analyzed here), i-vectors and JFA are in the
same ballpark without significant differences in performance—a trend which remained until SRE10.

NIST SRE 2010 is still a very important benchmark as it is the last one (with the exception of rather special NIST SRE 2012) that
evaluates purely on English data. Over time, the best published results on telephone data (condition 5) got below 1% EER. Such
good results were achieved partly due to over-tuning, both of the model settings and of training data selection. This is in line
with our experiments where without any special tuning and data selection, we obtained similar results as those achieved during
the actual evaluation. Again, the trend of the results is as expected, but now even more pronounced—with JFA and IVEC being
both equally much better than GMM-EC and XVEC bringing additional significant gain. Our single best system from SRE2010 (i-
vector) has a slightly different performance than the i-vector system used here. There are, however, two important differences:
in the submission, we used a full covariance UBM and we did not use the length normalization.
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NIST SRE 2016 is a very challenging evaluation: participants were dealing with completely new transmission channel as the
data were, for the first time, recorded outside the US. Apart from the new channel, and more importantly, the difficulty lies in
two new languages of the evaluation data. Participants were exposed to only limited unlabeled data from the target domain and
its correct use in score normalization and domain adaptation was crucial to obtain good results. [-vector and x-vector systems
have reached a similar performance, but starting here, the x-vector systems began to dominate and the best published results
achieved with more training data and more tuning towards SRE16 are well below the levels reported here. The best single system
and fusion in our SRE16 submission were using unlabeled data for adaptation, while systems developed for the purposes of this
comparison were neither exposed to this data nor they employed any domain adaptation, therefore their results are slightly
worse. However, the effect of the adaptation on the Cantonese subset that we use here would not be as high as on the complete
SRE16 test set where we would face the bi-modality of scores caused by the two languages (Cantonese and Tagalog). Reporting
on Cantonese only, therefore, removes this obstacle and makes the trial set more compatible with other test sets. Characteristics
of the full SRE16 are of course very interesting when exploring score normalization and domain adaptation which is not the focus
of this work.

Finally, the telephone portion of NIST SRE 2018 provides an ideal picture by showing improvements from every technique. It
was the first time we used x-vectors for NIST SRE and they completely outperformed i-vectors (even during system develop-
ment). The better results in our submission can be explained by the utilization of domain adaptation using the provided develop-
ment data.

5.2. Impact of training data size on performance

In the previous section, we analyzed the performance of various techniques as if they were known during the previous NIST
SREs. There is, however, an important difference between those systems: the amount of available labeled training data. In Fig. 2,
we analyze how individual systems change with different amounts of training data. We chose the favorite extended condition 5
from NIST SRE 2010 and trained the systems on multiple datasets released before SRE10 as well as on Voxceleb.

It is evident that using only a large amount of out-of-domain Voxceleb data yields bad results because we introduce a channel
mismatch and we do not employ any domain adaptation. The exception is partly the x-vector system which also has issues with
domain mismatch, but it can already utilize the large Voxceleb dataset much better than other techniques. It should, however, be
remembered that the x-vector recipe uses data augmentation. Although previous works have shown that this does not benefit i-
vectors in standard evaluation set-ups (Snyder et al., 2018; Novotny et al., 2018b), we should not exclude the possibility that
data augmentation could benefit i-vectors in situations with large domain mismatch. However, such an analysis is outside the
scope of this paper. When training the x-vector with in-domain telephone data, it is simply not properly trained until at least
SWB + SRE04 data are provided. Then it improves significantly with additional training data and obtains the best results. On the
other extreme, when observing the GMM system, it is worth noticing how quickly it saturates and yields similar performance
everywhere, not being able to extract additional discriminative power from more training data.

A consistent trend and a very similar performance can be observed for JFA, GMM-EC and IVEC systems. These techniques
gradually improve with more data until the point of training on SWB + SRE04—-06 data, where they start to saturate. Adding
SREOS into the training mix barely improves the results. In the group of these three techniques, it is interesting to notice a better
resiliency of IVEC system against the domain mismatch when trained only on Voxceleb.

25 1 I1Voxceleb

i loswB

_ TISRE04
J0SWB+SRE04
l0SWB+SRE04-06
M l0SWB+SRE04-08

20 +

0 LB NI E - =
GMM GMM-EC JFA IVEC XVEC

Fig. 2. Impact of amount of training data on the performance of individual techniques. All systems are evaluated on telephone condition from NIST SRE 2010
(condition 5).
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Fig. 3. Difficulty of different NIST SREs analyzed via training of all systems on completely out-of-domain Voxceleb dataset. Systems are evaluated without any
domain adaptation and without exposure to any NIST data.

5.3. Increasing difficulty of NIST SREs

Having a large dataset, which is completely independent of all NIST SREs, invites for an analysis of their difficulty. We trained
all systems only on the Voxceleb data and evaluated them on all NIST benchmarks. In Fig. 3, we can compare individual NIST
SREs and mostly we observe a trend of increasing EER for most of the systems, which suggests also increasing difficulty. Indeed
one of the biggest factors that influenced the difficulty since SRE16 is the duration of enrollment and test segments as it can be
seen in Table 4. Another factor causing the increased difficulty of SRE16 and SRE18 is the nature of the test data that are non-
English and collected outside of the United States. Again, we have to keep in mind that the Voxceleb dataset is completely out-
of-domain, which will cause our EERs to be consistently higher, but the overall trends should remain the same.

From observations made in the previous section, we can safely ignore the results of GMM with relevance MAP. It is also diffi-
cult to make conclusions about GMM-EC as the EERs raise above 20% already for SRE08 and then for SRE10 and SRE18. The trend
of increasing difficulty is however clearly visible with JFA and IVEC. Focusing our analysis to the XVEC system, we can observe a
flatter trend until SRE10 suggesting that for the x-vector model, these evaluations pose a similar challenge.

At this point, it is important to mention that we provide the difficulty analysis only on the telephone data and selected condi-
tions (or subsets) of particular NIST evaluations. We also want to point out that SRE16 would be more difficult if we considered
the full test set (both Cantonese and Tagalog) as Tagalog trials on their own are harder and by evaluating both languages together,
the system needs to deal with two clusters of scores which not only makes the calibration more difficult, but it also adversely
affects the EER before and also after any calibration. In SRE18, this would not have been the case as the CMN2 and VAST form
two distinctive conditions with different operating points and a value of the SRE18 primary metric would be an average of two
separate actual costs. Considering only Cantonese trials for SRE16 and Tunisian Arabic trials for SRE18 makes our analysis easier
as we avoid many factors that were specific for these two particular evaluations.

5.4. Looking forwad—wideband data

The last NIST SRE (i.e., SRE18) offered a peek into the domain of wideband audio extracted from amateur online videos by
including trials derived from part of the VAST collection (Video Annotation for Speech Technologies) into the evaluation. Such
a data is growing fast thanks to the massive amount of multimedia material uploaded to the internet via social networks and
other channels. Hand in hand with the growth of this domain increases the interest to index this data, search in it and extract
information.

Having participated in the community organized Speakers in the Wild (SITW) (Novotny et al., a; Mitchell McLaren, 2016) and
Voices Obscured in Complex Environmental Settings (VOiCES) (Nandwana et al., 2019; Matéjka et al., 2019) challenges, we are in
a position to offer an analysis also in this domain.

Looking at Fig. 4, we can observe rather dramatic progress. The first five bars show improvements obtained from improving
the SR method moving from the GMM towards x-vector while still training on now out-of-domain NIST SRE data. From this point,
we stay with i-vectors and x-vectors. First, we observe the effect of even larger and now in-domain Voxceleb training dataset on
i-vectors and compare working in narrow-band (by simply downsampling all of the data) with moving to wideband where the
latter provides an additional performance improvement. Finally, we observe the same with x-vectors, where already the narrow-
band system is significantly better than previous wideband i-vector and wideband x-vector obtaining additional improvement.
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Fig. 4. Evaluation of different systems on SITW and VOICES challenges.

The trend of decreasing EER is the same for both SITW and VOIiCES datasets where the latter is more challenging being designed
to reflect mostly noisy and reverberant data.

6. Conclusion

In this paper, we have provided a comprehensive analysis and historical overview of main speaker recognition methods all of
which were considered state-of-the-art at certain periods of time; in the case of x-vectors, we worked with the current state-of-
the-art SR technique. The presented analysis of all techniques on multiple NIST SREs, SITW and VOIiCES allows us not only to
directly compare historical methods but also to observe many interesting trends that were revealed during a large experimental
effort.

Multiple times, we have seen a difference in performance of GMM with relevance MAP, GMM with eigen-channel compensa-
tion, JFA, i-vectors, and x-vectors with PLDA on various benchmarks. We have analyzed how the amount of speaker-labeled train-
ing data impacts the performance of these techniques and then we have analyzed the NIST SRE’s themselves in terms of difficulty
where we found that indeed the difficulty has been generally an increasing trend. We have also glimpsed at non-NIST evaluations
to see the trends in a new domain of wideband data that are increasingly available as uploads to social networks or other online
sources.
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