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ABSTRACT

Multichannel speech processing applications usually employ
beamformers as means of speech enhancement through spa-
tial filtering. Beamformers with learnable parameters require
training to minimize a loss function that is not necessarily
correlated with the final objective. In this paper, we present
a framework employing recent neural network based gener-
alized eigenvalue beamformer and application-specific model
that allows for optimization of beamformer w.r.t. target ap-
plication. In our case, the application is speaker verifica-
tion which utilizes a speaker embedding (x-vector) extrac-
tor that conveniently comes with desired loss. We show that
application-specific training of the beamformer brings perfor-
mance improvements over a system trained in the standard
way. We perform our analysis on the recently introduced
VOiCES corpus which contains multichannel data and allows
us to modify the evaluation trials such that enrollment record-
ings remain single-channel and test utterances are multichan-
nel.

Index Terms— Speaker verification, beamforming, x-
vector, generalized eigenvalue problem

1. INTRODUCTION

Performances of speaker recognition (SR) systems have sig-
nificantly improved in the last three years, mainly due to the
introduction of x-vectors [1] which have gradually replaced
i-vectors [2] and became a new state-of-the-art technique. X-
vectors bring a new and very convenient scheme of discrim-
inative training while the Probabilistic Linear Discriminant
Analysis [3] is still kept as a generative backend on top of
x-vectors to perform the actual speaker verification task and,
in the end, to provide scores for speaker verification trials.
Speaker verification with far-field data is still challenging, but
x-vectors nowadays dominate also this domain [4]. The rea-
son why far-field SR is complicated is mainly because dis-
tortions of the acoustic speech signal are introduced when the
propagating sound wave gets reflected on walls and obstacles.

The work was supported by Google Faculty Research Award program,
by Czech Ministry of Interior project No. VI20152020025 ”DRAPAK” and
by Czech Ministry of Education, Youth and Sports from the National Pro-
gramme of Sustainability (NPU II) project ”IT4Innovations excellence in sci-
ence - LQ1602”.

Given the different absorption properties of various materi-
als, it is attenuated and then returned to the room, resulting in
a reverberated signal. Therefore, when using distant micro-
phones and more specifically arrays of such microphones, we
obtain multiple distorted and reverberated copies of the origi-
nal speech signal that are time-shifted and often barely usable
when using each of these channels individually.

Dealing with reverberated and distorted data has moti-
vated the development of various speech enhancement meth-
ods [5] that are unaware of the target application, but can
be used universally as a pre-processing step. When deal-
ing with microphone arrays and multiple parallel channels,
various beamforming techniques [6] are typically used. Usu-
ally, these models are trained to optimize the signal to noise
ratio (SNR) of their output or the Minimum Variance Distor-
tionless Response (MVDR) criterion [7]. The goal of such
methods is to produce an enhanced output for the human lis-
tener and the mean opinion score (MOS) or PESQ (Perceptual
Evaluation of Speech Quality) are usually used as measures
of quality. Even though these beamformers are trained sepa-
rately to enhance the perceptual quality of speech, they have
been proven to provide substantial improvement when used
as a prepossessing step for the automatic speech recognition
(ASR) system [8]. In order to make the beamforming aware
of the target application, an ASR DNN model was prepended
with multichannel time convolution filters that take raw audio
signals and then map this multichannel input by means of
filter-and-sum down to a single channel that is then fed to the
ASR model [9, 10, 11]. This way, the spatial filtering was
trained together with the ASR acoustic model by optimizing
the cross-entropy objective. This approach, however, assumes
a fixed configuration of input channels and also requires large
amounts of training data. Recent research in acoustic beam-
forming that employs neural networks (NN) [12] together
with Generalized Eigenvalue (GEV) Beamformer has been
introduced in [13] to overcome the problem of having a fixed
channel configuration and it has been successfully trained
jointly with an ASR system [14].

In this work, we focus on processing of the speech cap-
tured with irregularly shaped distant microphone arrays in
such a way that the final output is tuned for speaker verifica-
tion. In order to make the beamformer aware of our target ap-
plication, we will make use of the GEV beamformer with an
NN based spectral mask estimator [13]. We will implement
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Fig. 1. Proposed framework combining multichannel processing (beamforming) and target application (x-vector extractor for a
speaker verification task). Mask estimator is updated using the loss propagated from the target application model.

the whole structure as Tensorflow model and connect it to the
state-of-the-art x-vector extractor which is trained to discrim-
inate between a set of training speakers. In our case, we will
be unable to train both models jointly as we simply do not
have a large-enough database of multi-channel training data.
We will use an already existing x-vector model whose param-
eters will be fixed during training. The exception will be the
last layer of the x-vector model, which we allow to be trained
for a few iterations on the set of speakers in the multichannel
dataset. The beamformer will be either randomly initialized
or pre-trained and we will experiment with two strategies of
its training: i) optimizing the mean squared error (MSE) be-
tween the source and beamformed signal and ii) optimizing
the binary cross-entropy (BCE) between the values in esti-
mated spectral masks and precomputed ideal binary masks
(IBM) [13]. When using randomly initialized mask estimator
parameters, we will optimize only the cross-entropy objective
at the end of the x-vector model.

2. METHOD

The framework we present comprises two components as
shown in Figure 1. The first one is responsible for multi-
channel processing to enhance speech contained in the input
signals. Therefore, the input to the first model consists of
multiple signals. They are usually obtained with a micro-
phone array. Nowadays, home devices make use of micro-
phone arrays where the position of microphones is fixed and
known in advance and their properties can be theoretically
described. We deal with a more general scenario, where our
microphone array comprises microphones spread around in a
room at unknown locations (even though the positions have
been disclosed for our particular evaluation data [15], we take
no advantage of this knowledge in this work and perform a
blind enhancement).

The second component is a model specific for the target
application. It is fed only with a single channel input coming
from the enhancer. The second model can be for instance an
acoustic model in automatic speech recognition (ASR) or a
DNN embedding extractor trained for the purposes of various
speech tasks such as language identification (LID) or speaker
verification (SV). In this work, we aim at speaker verification
hence the downstream model is a neural network mapping
a sequence of input features to a single fixed-length vector

characterizing the identity of a person speaking in an observed
utterance.

A common requirement for both components is that they
represent some functions with learnable parameters that are to
be updated by means of gradient descent method to optimize
a particular objective function.

2.1. Beamformer – speech enhancement component

Generally, beamforming is a method that performs spatial fil-
tering aiming at emphasizing sounds coming from a direction
where the speaker of interest is located. At the same time,
sounds from other directions are suppressed. We will consider
a beamformer operating in a frequency domain. Assuming
that the multichannel input is in the short-time Fourier trans-
form (STFT) domain, then yf,t is an M -dimensional vector
where M denotes number of input channels (microphones),
f indicates the frequency bin, and t is the time index. The
beamformer then attempts to recover the original signal or a
signal at a reference microphone by performing linear combi-
nation of the channels in yf,t via an M -dimensional complex
weight vector wf (we consider time independent weight vec-
tor hence the time index is omitted). The output sf,t is then
obtained as

sf,t = wH
f yf,t. (1)

The superscript (·)H stands for Hermitian transpose. The
weight vector is usually obtained by optimization of a particu-
lar criterion such as minimization of a signal variance subject
to a distortionless constraint — minimum variance distortion-
less response (MVDR) [7].

In this work, we adopt a generalized eigenvalue beam-
former (GEV) [16] that maximizes the signal-to-noise ratio
(SNR) objective:

wGEV = argmax
w

wHΦXXw

wHΦNNw
. (2)

ΦXX denotes Power Spectral Density matrix (PSD) of speech
and ΦNN stands for PSD of additive noise. All terms in (2)
are frequency-dependent and for the sake of brevity, from now
on, we omit the f subscript. We chose the GEV beamformer
for multiple reasons:

• It revealed a great performance for ASR in the 4-th
CHiME challenge [8] and moreover, it has been suc-
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cessfully combined with an acoustic model and trained
jointly [14].

• It satisfies the requirement that the front-end model al-
lows for optimization of its learnable parameters. Hey-
mann showed in [13] an approach to estimation of PSD
matrices ΦXX and ΦNN by means of original spec-
trum masking where the masks are estimated by a neu-
ral network. Therefore, weights of the network con-
stitute learnable parameters of enhancing multichannel
front-end.

• The approach with neural network based masks esti-
mation allows performing beamforming with varying
number of microphones. This is because networks pro-
cessing individual channels share weights. This en-
hances the generality of the framework.

Neural network supported beamformer relies on estimated
masks as shown in Figure 1. A mask is estimated for each
channel and then they are combined using median or mean
operation to obtain the same mask for all the channels which
proved to be useful [17]. To avoid sparsity of gradients [14],
we employ mean pooling.

The GEV beamformer coined its name by the fact that
optimization of (2) leads to a generalized eigenvalue problem

ΦXXw = λΦNNw (3)

with λ denoting eigenvalue and w eigenvector. Therefore,
beamformer weights are given by the eigenvector correspond-
ing to the largest eigenvalue. The fact that the whole beam-
former must be incorporated in the final model results in a re-
quirement of implementing the gradient propagation through
a generalized eigenvalue decomposition.

2.2. X-vector extractor – application-specific component

An x-vector extractor [1] is a DNN architecture for extraction
of fixed size speaker representations from utterances of vari-
able durations. It consists of one block that operates on the
framewise features, followed by a statistics pooling layer that
calculates the mean and standard deviation over its input, fol-
lowed by a standard DNN that takes the fixed size statistics
from the pooling layer as input and predicts the identity of
the speaker of the utterance. As in the original work [1], we
use time-delay neural network layers (TDNN) for the frame-
level processing which makes it possible to use a large context
without increasing the number of parameters too much.

2.3. Component connection and gradient propagation

Both models need to be joint in such a way that the back-
propagation continues to the first model. In our scenario, we
assume that the application-specific model is trained and can
back-propagate error to the beamforming component. Only

parameters of the mask estimator are updated while keep-
ing x-vector extractor weights fixed. The beamformer outputs
frames of a complex spectrum. The x-vector extractor we use
requires Mel-frequency Cepstral (MFCC) coefficients as its
input. The issue with the downstream model is that its frame
rate may differ from that of a beamformer which is our case
as well. Even though, according to [14], change of mask es-
timator frame rate to match frame rate of an acoustic model
has no significant impact on speech recognition results, we
opted for more general approach to be able to support vari-
ous downstream models. Therefore, inverse STFT is applied
to the beamformer output to obtain time domain signal and
transform it back to STFT domain with a different frame size
and shift. These operations are differentiable. All these oper-
ations are referred to as frame rate modifier in Figure 1.

As displayed in Figure 1, the eigenvalue decomposition
stands in between the mask estimator and output of the beam-
former. In order to update weights of the mask estimator using
error propagated from x-vector extractor, it is required to be
able to take the derivative of eigenvalue decomposition w.r.t
its input. This is not a straight forward task [18]. Neural
network frameworks usually support solvers for eigenvalue
problem (where the input matrix is Hermitian) but not for the
generalized one.

We approach the generalized eigenvalue problem solution
by turning it into the eigenvalue problem via Cholesky de-
composition of a noise PSD: ΦNN = LLH , where L is a
lower triangular matrix. The problem defined in (3) is then
reformulated as follows:

ΦXXw = λLLHw

[L−1ΦXX(LH)−1]LHw = λLHw

Ay = λy

(4)

The last line represents an eigenvalue problem with Hermi-
tian matrix A and thus may be solved using available rou-
tines that support gradient propagation. However, there is a
need for gradient propagation through Cholesky decomposi-
tion we introduced. In Tensorflow1, that we use for training,
it is possible. As follows from (4), beamforming weights are
obtained by linear transformation of eigenvector correspond-
ing to the highest eigenvalue: w := (LH)−1y. At this point,
the whole generalized eigenvalue problem is differentiable
and error from the x-vector extractor can be used to update
beamformer parameters.

3. EXPERIMENTAL SETUP

3.1. Data and preparation of multichannel subsets

In both training and testing of the beamformer model, we
made use of recently published Voices Obscured in Complex
Environmental Settings (VOiCES) corpus [15]. It consists of
speech selected from LibriSpeech retransmitted (with rotat-
ing source loudspeaker) in multiple rooms and corrupted by

1https://www.tensorflow.org
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additive replayed noise. In each room, 12 microphones were
recording simultaneously.

In order to prepare training, development, and evaluation
data, we made use of the definition of development and eval-
uation sets for the VOiCES challenge [19]. Our training cor-
pus for the mask estimator training is based on a complete
set of recordings from room 1 and room 22. From this set,
we filtered out the development recordings (as defined by
the VOiCES challenge) because they constitute a subset of
it. We also removed files where we found an inconsistency
in lengths of source LibiSpeech and retransmitted recordings
which would cause problems in mask estimator pre-training.
In the following step, recordings were grouped to quartets
based on speaker identity, chapter, segment, room, and dis-
tractor type ensuring that all four microphones recorded the
same session. Microphones in microphone arrays were cho-
sen randomly to enhance the diversity of the set. The resulting
training dataset consists of 57,800 examples (arrays compris-
ing four microphones) spanning voices of 200 speakers. Av-
erage length of utterances is approximately 15 seconds.

Development and evaluation sets are the same as those
used in the VOiCES challenge in terms of recordings. Nev-
ertheless, examples in our lists of examples comprise quar-
tets of microphones3 constituting arrays. As a result, we ob-
tained 3,912 examples containing voices of speakers present
in the training set. The original development trials always
consist of a clean enrollment utterance and noisy/reverberant
test utterance. For every single-channel enrollment record-
ing, 8 test recordings with the same content just recorded
with different microphone (over the different channel) exist
to form 8 trials. Therefore, the development microphone ar-
rays were created by randomly splitting the 8 channels into
two 4-microphone subsets. Hence the multichannel trial set
is four times smaller than the original one. Out of 1,001,472
resulting trials, 996,448 are impostor and 5,024 are target.

The VOiCES evaluation set was recorded in distinct
acoustic conditions (room 3 and room 4) and contains 100
unique speakers. The process of creation of microphone
quartets and trial set resembles the procedure for the de-
velopment set. The difference is that in the evaluation trial
definition, there are always 11 test utterances (differing in
channels) per one enrollment utterance. In order to create
4-microphone arrays out of 11 microphones, we randomly
selected 2 quartets and remaining 3 recordings were com-
bined with one randomly picked (already used) audio file.
Overall, the evaluation set comprises 3,018 test quartets of
signals. The difference between the original development
and evaluation trials is that part of the enrollment segments
is clean and part is noisy/reverberant. We stick with this and

2Data from room 3 and room 4 was not released by the time of our exper-
imentation. The only available data from these rooms was provided for the
VOiCES challenge in the form of evaluation set.

3We did not experiment with a different number of microphones in train-
ing and testing even though it would be possible.

Table 1. Performance of the x-vector extractor that serves as
an application-specific model. Prior target probability Ptar

for the minimun detection cost Cdet is set to 0.01.
EER [%] Cdet

VOiCES dev 2.03 0.261
VOiCES eval 5.51 0.459

do not perform any enhancement of corrupted signals. Out of
983,868 trials, 973,929 are impostor and 9,939 are target.

Both the list of files and the definition of trials are avail-
able upon request.

For the alternative way of training which will be detailed
in Section 4.1, we needed to prepare a simulated training
dataset. The source LibriSpeech recordings were corrupted to
obtain a dataset that equals the multichannel VOiCES train-
ing set in size. It means that utterances in the simulated and
retransmitted training sets are the same. The difference is in a
channel (real vs. simulated). To account for conditions in the
VOiCES corpus, room simulation (employing image source
method [20]) and noise addition were performed. Reverbera-
tion time RT60 of imaginary rooms was randomly drawn from
interval [0.3, 0.9] s. To each of them, we randomly placed
sources of speech and noise and also four omnidirectional mi-
crophones. Noises were selected from the Freesound library4

and contain shop, crowd, library, office, real fan and street
sounds that are added with SNRs ranging from 3 to 20 dB.

3.2. X-vector extractor architecture and re-training

As the application-specific model, we use the x-vector extrac-
tor corresponding to model 14 in Table 2 in [4] trained with
the Kaldi toolkit [21]. This model is based on the SRE16/v2
recipe with several modifications. Instead of the architecture
in the recipe, we use the deeper architecture proposed in [22].
This architecture has nine TDNN/DNN layers in the frame-
wise block, resulting in a total context of 11 frames on each
side of a center frame. The block after pooling has two DNN
layers. See Table 2 for details. The x-vector DNN was trained
on 1.2 million speech segments from 7,146 speakers from the
VoxCeleb 1 and 2 development data sets plus additional 5 mil-
lion segments obtained with data augmentation. All training
segments were 200 frames long and the model was trained for
9 epochs. Its performance on single channel VOiES develop-
ment and evaluation sets is displayed in Table 1.

The x-vector extractor network is trained to classify
speakers in the training set (Voxceleb in our case). Even-
tually, we require a classifier error to be propagated all the
way to the mask estimator. However, the VOiCES multichan-
nel dataset, used for the speech enhancer training, consists of
a different set of speakers. In order to keep good performance
of the extractor and enable it to classify 200 VOiCES speak-
ers, we replaced the final linear layer and retrained it while

4http://www.freesound.org
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Table 2. x-vector topology proposed in [22]. 30-dimensional
MFCC features are inputs to the network, T is the number of
training segment frames, and N is the number of speakers.

Layer Layer context (Input) × output

frame1 [t− 2, t− 1, t, t+ 1, t+ 2] (5 × 30) × 512
frame2 [t] 512 × 512
frame3 [t− 2, t, t+ 2] (3 × 512) × 512
frame4 [t] 512 × 512
frame5 [t− 3, t, t+ 3] (3 × 512) × 512
frame6 [t] 512 × 512
frame7 [t− 4, t, t+ 4] (3 × 512) × 512
frame8 [t] 512 × 512
frame9 [t] 512 × 1500

stats pooling [0, T ) 1500 × 3000
segment1 0 3000 × 512
segment2 0 512 × 512
softmax 0 512 × N

keeping the rest of the parameters frozen. Since x-vectors are
extracted from one of the preceding layers, this modification
has no effect on them.

3.3. Mask estimator architecture

In this work, our aim is to introduce a proof-of-concept
model, therefore we did not perform extensive architecture
exploration. The network topology resembles the one em-
ployed in [13] with minor modifications. The input to the
network is the magnitude spectrum. The input time-domain
signal with a sampling frequency of 16 kHz is transformed to
STFT domain using frames of 1024 samples and 256 samples
frame-shift. The output is decoupled into two parts as shown
in Figure 1 – one output serves to mask out speech and an-
other one to mask out noise. Both have a dimension of 513
to match the input spectrum. The architecture comprises the
following layers:

LSTM layer 256 units, tanh activation function, p = 0.5
dropout

linear layer 513 units, sigmoid activation function, p = 0.5
dropout

linear layer 513 units, sigmoid activation function, p = 0.5
dropout

linear output layer 2 × 513 units, sigmoid activation func-
tion

3.4. Speaker verification backend

We used an identical backend to the one in the Kaldi x-vector
recipe. This backend involves a preprocessing step which first
reduces the x-vector dimension by LDA from 512 to 250, and
then applies a length-normalization. For training the backend,
we concatenated all segments from each session of the Vox-

Celeb 1 and 2 development data. Including augmentations,
this resulted in 830K files.

4. EVALUATION

In order to assess our proposed framework, we employ the
BeamfomIt toolkit [23] as a baseline multichannel beam-
former. It does not fit the framework in a sense that it has no
learnable parameters but it is well established in the speech
community. Speaker verification performance obtained with
this fixed beamformer is displayed in the first row of Table 3.
The results are expressed in terms of equal error rate (EER
[%]) and minimum detection cost (Cdet) as defined for the
VOiCES challenge in [19] (prior target probability Ptar is set
to 0.01).

4.1. Separate mask estimator training

In order to see the effect of application-aware training, we
first train the mask estimator separately and plug it into the
processing chain. This can also be viewed as another baseline
that is more difficult to overcome. The results of independent
training will then also be used as seed models and trained fur-
ther with speaker verification related objective. We explored
two approaches to mask estimator learning as follows.

Masks optimization
The first approach to training is inspired by [13]. The network
is trained to estimate so-called ideal binary masks (IBM). The
objective is a minimization of binary cross-entropy (BCE) be-
tween values in estimated masks and IBMs that are either 0
or 1. IBMs reflect the dominance of speech or noise in each
time-frequency bin. Therefore, the knowledge of speech and
additive noise components in the input recording is required
for training. This is not available for the VOiCES corpus be-
cause the data are retransmitted which also introduces a con-
volutive distortion and one cannot easily obtain noisy compo-
nent subtracting the source clean recording from the replayed
recording. Therefore, the simulated training dataset was used
in this experiment. In order to satisfy the requirement of hav-
ing an exact knowledge of speech and additive noise com-
ponents, as follows from (2), we convolve the original Lib-
rispech recordings with the first 50 ms of the generated room
impulse responses (RIR) and obtain a clean component of the
audio. By performing convolution of the source with the rest
of RIR and addition of reverberant noise, the noise component
is obtained. Both components are used to compute IBMs and
their sum provides a noisy and reverberant signal as recorded
by an imaginary microphone.

Beamformer output optimization
Since we have solved propagation through generalized eigen-
value decomposition, we are able to train the mask estima-
tor to directly optimize the ability of the beamformer to re-
cover the clean signal at its output. In this way of training,
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we append the first group of components from Figure 1 to
the mask estimator and use mean squared errror (MSE) be-
tween the magnitude STFT output of the beamformer and
clean source speech (from LibriSpeech) as a loss function.
This approach is more convenient since it does not depend on
an exact knowledge of additive noise (which is usually avail-
able only for simulated data). Therefore, we used the mul-
tichannel VOiCES training dataset for training. We briefly
experimented with using simulated data for MSE loss opti-
mization, but currently we achieve significantly worse results
compared to training with the multichannel VOiCES set.

We term the two approaches separate in Table 3. As
observed, beamformers using mask estimators obtained by
performing application-unaware training outperform baseline
BeamformIt in either of the metrics on development as well
as evaluation sets. BCE optimizing estimator produces better
results in all metrics compared to the baseline with significant
gain in terms of Cdet. It yields better performance compared
to the MSE optimizing approach. It might be because it fits
the definition of the GEV beamformer which requires noise
and speech PSD matrices computed using masks. In the latter
approach, the network needs to learn to estimate proper noise
and speech masks to perform beamforing which is presum-
ably more difficult task.

4.2. Application-aware mask estimator training

Finally, we performed training of the beamformer’s mask es-
timator in our framework optimizing the application-specific
objective – cross-entropy (CE) of the x-vector extractor. The
training may start from a random initialization of mask es-
timator’s parameters. The speech enhancement component
thus needs to learn a reasonable combination of channels in
a beamformer framework solely based on the classification
error. This experiment is referred to as app-aware, scratch.
We also made use of models pre-trained with approaches de-
scribed in 4.1 instead of starting from scratch. Those were
further optimized using a CE objective and we refer to them
as app-aware, pretr in Table 3.

When training the beamformer from a random initializa-
tion, it has to deal with a difficult task of figuring out that
beamformer requires noise and speech PSD matrices (as well
as the separate, MSE model). However, compared to training
the mask estimator with the MSE objective, speaker verifi-
cation loss helps it to reach better performance. Despite its
superiority over MSE objective based model, it still does not
reach the performance of beamformer independently trained
with the BCE objective.

In the case when the separate, MSE model is used as a
seed model for the CE training, an unstable behavior is ob-
served. It may correspond with the fact that MSE trained
front-end did not learn to do proper beamforming and rather
learned to emphasize voices in the training set (that are also
in the development set). This initialization is a good starting

Table 3. Results of application-aware and application-
unaware beamforming in terms of equal error rate (EER [%])
and minimum detection cost Cdet. BF obj. stands for the ob-
jective function used for a beamformer mask estimation net-
work training: CE – cross-entropy (multi-class), BCE – bi-
nary cross-entropy, MSE – mean squared error. Plus sign sep-
arates the objective used for pre-training and the application-
aware training.

Method BF obj. Dev. set Eval. set
EER Cdet EER Cdet

BeamformIt – 1.73 0.407 5.11 0.494
App-aware,
scratch CE 1.77 0.202 4.39 0.456

Separate MSE 1.91 0.207 4.77 0.497
App-aware,
pretr.

MSE +
CE 1.13 0.146 4.78 0.496

Separate BCE 1.53 0.214 4.26 0.446
App-aware,
pretr.

BCE +
CE 1.37 0.162 4.02 0.417

point to decrease metrics of our interest on the development
set rapidly during training. However, the model was unable
to generalize well. In the initial phase of training, error rates
on the evaluation set had increased and then they started to
decrease, but the performance of the seed model was not sur-
passed. This suggests that the MSE pre-training is not ideal.

On the other hand, BCE optimized mask estimator is a
promising seed model. The separate training forced it to sup-
port real beamforming but IBMs, that model tries to predict,
are handcrafted which suggests room for improvement. It was
achieved via training in the proposed framework.

5. CONCLUSIONS

In this work, we have succeeded in improving the speaker ver-
ification system in the domain of data captured with distant
microphone arrays via application-aware training of the un-
derlying beamformer. We have shown that application-aware
beamformer re-training outperforms application independent
training with just the BCE objective. We have also shown
that using a randomly initialized beamformer and perform-
ing only application-aware training still produces good results
and outperforms the baseline system built on top of the Beam-
formIt toolkit. Even though not completely successfully, we
have introduced training of the beamforming mask estimator
via MSE between the original and beamformed signal which
allows for simpler training and invites for more future work
with the aim towards robustness and generalization on unseen
speakers. We can also consider multi-task training by adding
the MSE loss to the cross-entropy objective in the very end of
the model as well as joint training of the beamformer and the
x-vector extractor.
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