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Abstract

Embeddings extracted by deep neural networks have be-
come the state-of-the-art utterance representation in speaker
recognition systems. It has recently been shown that incorporat-
ing frame-level phonetic information in the embedding extrac-
tor can improve the speaker recognition performance. On the
other hand, in the final embedding, phonetic information is just
an additional source of session variability which may be harm-
ful to the text-independent speaker recognition task. This sug-
gests that at the embedding level phonetic information should
be suppressed rather than encouraged. To verify this hypothe-
sis, we perform several experiments that encourage or/and sup-
press phonetic information at various stages in the network. Our
experiments confirm that multitask learning is beneficial if it
is applied at the frame-level stage of the network, whereas ad-
versarial training is beneficial if it is used at the segment-level
stage of the network. Additionally, the combination of these
two approaches improves the performance further, resulting in
an equal error rate of 3.17% on the VoxCeleb dataset.
Index Terms: phonetic information, text-independent speaker
verification, adversarial training

1. Introduction
Speaker recognition aims to verify a subject’s identity via his
or her speech. Considering the speech content, speaker recog-
nition can be classified into two categories, text-dependent and
text-independent. The former demands that in the positive veri-
fication trial, the enrollment and test phrases are identical, while
the latter doesn’t pose such requirement.

In the last two years, the state-of-the-art in the field of
the text independent speaker verification has shifted from the
generative i-vector[1] paradigm that is a subspace factor analy-
sis model operating in the high dimensional space of Gaussian
mean super-vectors towards neural networks (NN) that take the
frame-level features of an utterance as input and directly pro-
duce an utterance level representation — usually referred to as
an embedding [2, 3, 4, 5, 6, 7, 8]. These embeddings are ob-
tained by the means of pooling mechanism, for example taking
the mean, over the frame-wise outputs of one or more layers
in the NN [2], or by the use of a recurrent NN [3]. An effec-
tive approach is to train the NN for classifying a set of training
speakers, i.e., using multiclass training [3, 5]. In order to do
speaker verification, the embeddings are extracted and used in
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a standard backend, e.g., probabilistic linear discriminant anal-
ysis (PLDA), instead of i-vectors. Such systems have recently
been proven superior to i-vectors for both short and long utter-
ance duration in text-independent speaker verification [5, 7].

It’s intuitive that phonetic information should be helpful for
the text-dependent speaker recognition. It is shown in [9] that
multitask learning with phonetic information can benefit the d-
vector[2] systems that are based on framewise DNN. For the
text-independent speaker recognition, many researchers also in-
vestigated integrating the phonetic information into the speaker
modeling process. Authors in [10, 11] proposed to use posteri-
ors obtained via a phonetically-aware DNN to compute Baum-
Welch statistics for i-vector extraction, which boosts the perfor-
mance of i-vector systems. More recent work in [12] shows that
for the segment-level trained x-vector system[7], which is now
the state-of-the-art SV framework, it’s still quite effective to add
phonetic information via frame-level multitask training before
the statistics pooling layer.

However, intuitively, for the text-independent speaker
recognition tasks, it’s doubted that the spoken content should
matter for the speaker embeddings, since we don’t assume any-
thing about it when processing the enrollment and test speech
segments. We hypothesize that, frame-level phonetic informa-
tion is helpful for generic feature learning before pooling, while
the final speaker embeddings don’t need to encode information
related to the phonetic content in order to serve as good features
for the text-independent SV backend.

To verify such hypothesis, we analyze several DNN archi-
tectures based on x-vectors [7] which, apart from segment-level
discrimination between speakers, include multitask [12] or ad-
versarial training [13, 14] at the frame or segment level to ex-
plicitly encourage or suppress phonetic information. We show
that frame-level multitask learning placed before the pooling
layer adds fine-grained phonetic information which still bene-
fits the quality of resulting embeddings and SV performance,
whereas the segment-level adversarial training performed after
pooling suppresses the overall aggregated phonetic information
and also improves the system performance. Experiments are
carried out on the Voxceleb1 [15] evaluation set, and we achieve
an equal error rate (EER) of 3.17% by combining the frame-
level multitask and segment-level adversarial strategies.

2. Related work
Phonetic content and speaker identity are the two most impor-
tant information encoded in the speech signal, speech recog-
nition aims to recognize the phonetic content (more precisely
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the words), while speaker recognition aims to recognize the
speaker identity. In speech recognition systems, speaker adap-
tation techniques are usually adopted to utilize speaker-specific
information[16, 17]. Similarly, the usage of phonetic informa-
tion for speaker recognition tasks have also been investigated.
By substituting the GMM with a phonetic-aware DNN, the per-
formance of the i-vector system is improved significantly in
[10, 11]. For the neural network based speaker embedding
learning, phonetic information is often considered in a multitask
learning framework. The speaker discriminative and phoneme
discriminative networks are trained jointly, with some common
layers shared[9]. In this paper, we will adopt the TDNN based
multitask architecture in [12].

2.1. Speaker embeddings learning with frame-level pho-
netic information

The architecture in [12] is based on the x-vector system[7], the
whole system is depicted in Figure 1.
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Figure 1: Structure of the frame-level multitask (without the
gradient reversal layer) and adversarial learning for x-vector

As shown in Figure 1, the neural network consists of three
modules, the speaker classifier Ms which is trained at the seg-
ment level, the phoneme classifier Mp at the frame level, and
the shared time-delay neural network (TDNN) based feature ex-
tractor Mf at the frame level. For an input segment of N frames
X = x1, . . . ,xN , the total loss is composed of the speaker loss
Ls and phoneme loss Lp as Ltotal = Ls + Lp, where

Ls = CE(Ms(Mf (X)),ys) (1)

Lp =
1

N

N∑
i=1

CE(Mp(Mf (xi)),y
p
i ) (2)

where CE(P,Q) denotes the cross entropy loss computed be-
tween the two distributions P and Q. ys denotes the segment-
level speaker labels and yp denotes the frame-level phoneme
label. To do the opposite of multitask learning, we added a gra-
dient reversal layer (GRL) to the branch of phoneme classifier,
aiming to suppress the effect of phonetic information. It’s very
similar to the speaker invariant training (SIT) proposed in [13],
which instead adds the GRL to the speaker branch.

3. Segment-level multitask and adversarial
learning with phonetic information

The multitask and adversarial learning framework introduced in
Section 2 is quite intuitive. The fine-grained phonetic informa-
tion of each frame is explicitly encouraged or suppressed. To
investigate utilization of phonetic information at the segment
level, making the speaker classifier, Mf , and phoneme clas-
sifier, Mp, operating at the same granularity, we designed the
architecture shown in Figure 2.
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Figure 2: Structure of the segment-level multitask (without the
gradient reversal layer) and adversarial learning for x-vector.

Here, the phoneme classifier should predict the phonetic
content in the whole segment. For this, we need to define what
the phonetic content of a segment is, or in other words, what
are the reference values the speaker classifier should predict. In
this work, we simply define the phonetic content of a segment
as normalized categorical occurrences of the phonemes. That is,
the target values yp = y1, . . . , yC for the segment X with N
frames will be computed as yc = Nc

N
, where C denotes the total

number of phonemes presented in the segment, Nc denotes the
frame count of c-th phoneme present in the segment X. Train-
ing objective is cross-entropy, as for the frame-wise training.

Lp = CE(Mp(Mf (xi)),y
p) (3)

Note that contrary to the frame-wise training, there is only one
instance per segment to evaluate and the reference vector yp

is not a one-hot vector but may have non-zero values for all
phonemes.

4. Experiments
4.1. Experimental set-up

4.1.1. Dataset

Voxceleb1[15] training and Voxceleb2[18] development set are
combined to generate the training set for speaker embedding
extractor, the data augmentation procedure described in [7] is
adopted to increase the amount and diversity of the training
data. The final training set contains 2081192 utterances from
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7146 speakers, while the standard test set defined in [15] is used
for evaluation, which contains 4874 utterances from 40 speak-
ers, the trial list contains 37720 pairs. The training utterances
are cut into short segments ranging from 2s - 4s. As [15], we
report results in Equal error rate (EER) and minimum detec-
tion cost for Ptar = 0.01 ( minDCF0.01 ). The systems evalu-
ated here have, however, much better performance than the ones
in [15]. As a result, minDCF0.01 cannot be reliably estimated
with the relatively few non-target trials available in the test set
(please see Figure 5 and its caption). We therefore report results
also on minDCF0.1.

4.1.2. The phoneme recognizer

The frame-level phoneme labels are generated using the official
Kaldi [19] Tedlium speech recognition recipe (s5 r3). This
recipe uses a TDNN based acoustic model with i-vector adapta-
tion and a RNN based language model. Phoneme posteriors are
obtained from the lattices via the forward-backward algorithm
and then converted to hard labels. There are 39 phonemes, each
coming in four different versions depending on their position in
the word, plus a silence (SIL) and noise class (NSN) that has 5
versions each, resulting in 166 phoneme classes.

4.1.3. System description

The baseline system is a standard TDNN based x-vector, which
contains 5 time delay layers and two dense layers. Embeddings
are extracted after the first dense layer with a dimension of 512.
All the proposed architectures described in Section 2 and 3 are
modified from the baseline system. All architectures are imple-
mented in Pytorch[20].

30-dimensional MFCC features are used for the neural net-
work training, an energy-based voice activity detector is used to
filter out the silence in the original speech signal.

The extracted embeddings are first processed by linear dis-
criminant analysis (LDA), reducing the dimension from 512 to
128, then a standard PLDA [21] is used to generate the scores.

4.2. Results

4.2.1. Integrating the frame-level phonetic information

As described in Section 2, it’s intuitive to jointly train the x-
vector speaker embedding extractor and a phoneme recognizer
by sharing the frame-level layers before the pooling layer. Sim-
ilar to the findings in [12], integrating frame-level phonetic in-
formation could enhance the system’s performance, decreasing
the EER from 3.73% to 3.38%. However, naively performing
the adversarial training at the frame-level with a gradient rever-
sal layer causes significant performance degradation, obtaining
an EER of 5.24%.

Table 1: Systems combining frame-level phonetic information,
FRM-MT and FRM-ADV denote two systems described in Sec-
tion 2, trained using multitask or adversarial objectives, with or
without the gradient reversal layer, respectively

System EER(%) minDCF0.01 minDCF0.1

x-vector baseline 3.73 0.389 0.192
FRM-MT 3.38 0.357 0.180

FRM-ADV 5.24 0.502 0.269

To illustrate the effects of the multitask and adversar-
ial learning, the frame-level phoneme accuracy is plotted for
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Figure 3: Prediction accuracy on phonemes using the frame-
level multitask or adversarial learning

both systems in Figure 3. It could be observed that while
the phoneme accuracy for the FRM-MT system gradually in-
creases and converges to 48.5%, the corresponding accuracy
for the FRM-ADV system quickly converges to around 12% in
the first several iterations and barely changes in the following
training process. Such phenomenon shows that the adversarial
learning forbids the network to become good at discriminating
phonemes. However, the gap in accuracy between the FRM-MT
FRM-ADV system is not as huge as expected, which might be
caused by (1) The data for training the phoneme recognizer and
the speaker embedding extractor has mismatch, the generated
labels are not always correct. (2) Position-dependent phonemes
are used in this work, the label of the same phoneme changes
with its position in the word, which makes it even harder to
discriminate phonemes perfectly. The results show that in the
early stages of the neural network, before the statistics pooling
layer, adding fine-grained frame-level phonetic information is
beneficial for deep speaker embedding learning.

4.2.2. Integrating the segment-level phonetic information

As proposed in Section 3, the multitask and adversarial learning
could also be performed at the segment level, i.e, after the pool-
ing layer. The results are shown in Table 2. As expected, The
SEG-ADV outperforms the baseline in all metrics. More no-
ticeably, The SEG-MT system performs better than the baseline
in the Detection costs. This may seem to contradict the hypoth-
esis that phoneme information at the segment level should be
harmful to the final embedding. A likely explanation for this
is that encouraging phoneme level at the segment-level stage of
the network, implicitly encourages phoneme information at the
earlier frame-level stages because phoneme information cannot
exist at the segment level if it did not exist at the frame level.
The advantage of having phoneme information at the frame-
level might then be stronger than the disadvantage of having it
at the segment level. This needs to be analysed more in future
work.

From Figure 4, it could be observed that the phoneme loss
for the SEG-MT system gradually decreases, which is not the
case for the SEG-ADV system. The segment-level adversar-
ial could remove some global phoneme information as we ex-
pected. However, the difference between losses of the SEG-
ADV and SEG-MT system is not that large, similar to the pos-
sible reasons for the frame-level systems, phoneme labels may
not always be correct. Another reason for this phenomenon is
the simple normalized categorical counts may not be capable
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Table 2: Systems combining segment-level phonetic informa-
tion, SEG-MT and SEG-ADV denote two systems described in
Section 3, trained using multitask or adversarial objectives,
with or without the gradient reversal layer, respectively

System EER(%) minDCF0.01 minDCF0.1

x-vector baseline 3.73 0.389 0.192
SEG-MT 3.71 0.327 0.175

SEG-ADV 3.35 0.332 0.159
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Figure 4: Phoneme loss using the segment-level multitask or
adversarial learning.

enough for capturing the real distribution of phonemes. Further
experiments will be left in our future work.

4.2.3. Combining multitask and adversarial learning

Since the previous experimental results show that explicitly en-
couraging the phonetic information at the frame-level and sup-
press it at the segment level both improve the performance,
it’s natural to combine them. The performance comparison is
given in Table 3. The results show that combining the frame-
level multitask and segment-level adversarial learning further
improves the performance.

Table 3: Systems combining frame-level multitask and segment-
level adversarial learning, COMBINE denotes the architecture
which performs both strategies

System EER(%) minDCF0.01 minDCF0.1

x-vector baseline 3.73 0.389 0.192
FRM-MT 3.38 0.357 0.180
SEG-ADV 3.35 0.332 0.159
COMBINE 3.17 0.336 0.163

The minDCF curves comparing all systems mentioned
above are shown in Figure 5. Overall, the SEG-ADV is best
in the lower values of P(tar), whereas COMBINE is better for
the higher values.

5. Conclusions and future works
In this work we have experimented with multi-task and adver-
sarial training in order to enhance or suppress the phonetic in-
formation that can be present in the DNN structure for embed-
ding extraction and analyzed the effects on the task of text-
independent speaker verification. We have confirmed that it is

Figure 5: minDCF as a function of effective prior. FA DR30
refers to the point to the left of which there are fewer than 30
false-alarms. The vertical magenta dashed lines represent the
two operating points of minDCF0.01 and minDCF0.1. Notice
that minDCF0.01 is on the left side of FA DR30 for all systems
which results in this operating point unreliable (for more details
see appendix B of [22]).

helpful for SV to enhance the fine-grained phonetic informa-
tion in the frame-level part of the DNN via multi-task learn-
ing as have been proposed in previous studies. We have then
shown that, for most operating points, it is more beneficial to
suppress phonetic information at the segment level using adver-
sarial training. Moreover, since these two methods can be ap-
plied independently of each other, they can be combined. In our
experiments, this either improved or retained the performance
for most operating points.

We compare our methods with a baseline x-vector system
with an EER of 3.73% on the Voxceleb test set, and by applying
segment-level adversarial training we improve the performance
to 3.35%. Finally we obtain the best result of 3.17% EER by
combining segment-level adversarial training and frame-level
multi-task training.

In the future work we think it would be interesting to exper-
iment with phonetic units of different granularity like position-
independent mono-phones, tri-phones and other senones.
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