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ABSTRACT

This work explores different methods to detect errors in transcrip-
tions of speech recordings. We artificially corrupt well transcribed
speech transcriptions with three types of errors: substitution, inser-
tion and deletion on TIMIT phonemic transcriptions and WSJ word
transcriptions. First, we use Bayesian model selection method by
comparing the log-likelihoods from alignment and phone recognizer,
a final score is computed to make decision. In this method, we
consider two models, Bayesian Hidden Markov Model (HMM) and
a Variational Auto-Encoder (VAE) combined with a HMM. Alter-
nately, we build a biased ASR system with language models trained
on individual transcriptions, detection decision is based on Leven-
shtein distance (LD) between transcription and oracle path from de-
coded lattice. We evaluate the methods of detecting errors in cor-
rupted TIMIT transcription, the best result (either using model se-
lection with VAE model or biased ASR) achieves 7% equal error
rate on the Detection Error Tradeoff (DET) curve; we also evaluate
the methods of detecting errors in corrupted WSJ transcriptions, and
the best result (using biased ASR) achieves 3% equal error rate.

Index Terms— Transcription error detection, model selection,
HMM-GMM, Variational Auto-Encoder, detection error tradeoff

1. INTRODUCTION

The quality of an Automatic Speech Recognition (ASR) system
greatly depends on the training data. With the increasing needs for
large amount of transcriptions of speech recordings, it is expensive
and time consuming to obtain manual transcriptions. Consider-
ing the trade-off between efficiency and accuracy, many imperfect
transcriptions are generated either manually or automatically by
machines, then used as training data. Errors in training transcrip-
tions may have great effects on final tasks. Previous research in [1]
has shown that transcription filtering technique can benefit the ASR
performance. Therefore, it is necessary to find automatic methods
to detect erroneous transcriptions of speech recordings. Moreover,
such methods may have a wide range of applications including
text-to-speech (TTS) synthesis and semi-supervised training.

An intuitive way to find errors in transcriptions would be to use
a well trained ASR system to decode the speech, and find the mis-
matches between transcription and decoding results. However, even
the state-of-the-art ASR system cannot achieve zero error rate.

Previous works in [2] [3] use the information in transcriptions by
performing Viterbi alignment. In [3], mean and standard deviation
of the log-likelihood from the Viterbi alignment best path are used
to detect transcription errors. The problem of this method is that the
final decision depends only on the alignment log-likelihoods, which

highly depends on the performance of the acoustic model, however,
the acoustic model is not always reliable. In this work, we present
two different approaches that remedy this shortcoming.

The paper is organized as follows. In Section 2, we describe
our approaches. In Section 3, we describe experiments on detecting
errors in both phone and word transcriptions. In Section 4 we present
our conclusions.

2. METHODS

We considered two different approaches to find erroneous transcrip-
tions: the first one is the well known Bayesian model selection, and
the second one is a heuristic relying upon the lattice generated from
a “biased” ASR system with a specific language model.

2.1. Bayesian model selection

Model selection is the task to select a model between two candidates
{M1,M2} given data. The process is formally described as:

M∗ =

{
M1 if B > 1

M2 if B ≤ 1
(1)

B =

∫
p(X|θ1,M1)p(θ1|M1)dθ1∫
p(X|θ2,M2)p(θ2|M2)dθ2

(2)

where B is the Bayes factor, θ1 and θ2 are models’ parameters for
M1 andM2 respectively.

For our task, M1 and M2 are the same HMM based model
but with different transition probabilities. ForM1, we use a linear
graph built from the transcription, as we perform forced alignment;
for M2, we replace the linear graph with a phone loop structure,
yielding to a phone recognizer with a uniform unigram phonotactic
language model. Example of HMMs for both models are shown in
Figure 1, denoted as G(M1) and G(M2).

Since the Bayes factor is intractable, as an approximation, we
replaced the marginal probability in Equation 2 by the Variational
Bayes (VB) lower bound (computed with the Viterbi approxima-
tion), which yields:

lnB ≈ L(M1)− L(M2) (3)

where L(M) is the VB lower bound. In our problem, when tran-
scription matches well with the speech recording, the log Bayes fac-
tor will be close to zero (Viterbi paths from M1 and M2 will be
similar) ; on the other hand, if the transcription does not match with
speech recording, the log Bayes factor will be a large negative num-
ber. An illustration on this phenomenon is shown on a real case in
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(a) G(M1)

(b) G(M2)

Fig. 1. Example of HMMs forM1 andM2 for an utterance with
transcription “ab”. Conventionally, each phone is represented with
3-states sub-HMM.

Figure 2 (a). As we see, the log Bayes factor is obviously negative
when there are errors in transcription. In practice, we square the
per-frame log-likelihood of the models to accentuate the difference
between the correct and in correct transcriptions. The effect of such
post-processing to obtain the final model selection score S is shown
in Figure 2 (b). As we observe, correct and corrupted transcriptions
can be well separated by final score Ss. Therefore the final score
S can be used for making reliable detection decision. The whole
process can be summarized as follows:

• Compute the Viterbi path π̂1 using G(M1)

• Compute the Viterbi path π̂2 using G(M2)

• Compute the final score for each utterance:
S =

∑N
n=1 S

2
n =

∑N
n=1(ln p(xn|π̂1) − ln p(xn|π̂2))2,

where Sn is frame wise model selection score. Note that the
final score is not normalized by utterance length, this is to
make the short erroneous segments more distinct.

All these steps can be computed with any generative acoustic mod-
els, which makes this method easy to used in many application.

The decision about erroneous transcription detection in this
method greatly depends on the chosen model. In this work we
considered two alternatives: the Bayesian version of the traditional
HMM-GMM [4] and the more recent VAE-HMM-GMM [5, 6]. To
keep the notation uncluttered we denote these models respectively
HMM and VAE-HMM hereafter.

2.2. Biased ASR system

Biased language models trained on imperfect transcriptions have
been used in lightly supervised training of ASR systems [7]. A
“biased” language model refers to building an individual language
model for each utterance, with most phones(or words, depends on
transcription type) only from its own transcription. It strongly biases
the decoding results towards transcription. By decoding a test speech
recording with such an biased ASR system, disagreements between
acoustic model and its biased language model yield to errors in de-
coding result, hence we can identify the mismatches between the
transcription and speech recording.

In our approach, we decode the utterance using the correspond-
ing biased language model (and an pre-trained acoustic model) to
generate a lattice instead of only the best path. From the lattice, we

Fig. 2. Example of model selection score on true transcriptions and
artificially corrupted transcriptions: (a) a single utterance, transcrip-
tion has substitution errors between 25 to 28 frames and 120 to 126
frames; (b) 100 utterances, transcriptions have mixed three types of
errors.

compute the lattice oracle unit error rate (unit can be either phone
or word) using the algorithm in [1], which finds a path in the lat-
tice that is the closest to the transcript in the Levenshtein distance,
and this minimum distance is referred as the lattice oracle unit er-
ror. The error rate of the utterance is expected to be low if most of
the transcription is contained in the lattice, which indicates that the
transcription for the utterance is mostly correct.

3. EXPERIMENTS

3.1. Data preparation

Experiments to detect errors in phonetic transcription are done on
TIMIT [8] corpus. TIMIT corpus contains continuous read speech
in American English and phonetic transcriptions. Our training data
contains 3696 utterances, approximately 3 hours, and test data con-
tains 192 utterance, approximately 15 minutes. The TIMIT tran-
scriptions are carefully examined to match with the speech, therefore
we need to introduce artificial transcription errors in the test data as
following: (1) Substitution. We use a phoneme confusion list de-
scribed in [9], so that substitutions only occur between phonemes
with high correlations; (2) Insertion. We count the frequency of
all phonemes in training data, and choose the top 10 most frequent
phonemes as insertion candidates; (3) Deletion. We randomly delete
phonemes. We create four test sets with same speech recordings, but
different errors in transcription, sentence error rate (SER) and phone

Test set name Error type SER (%) PER (%)
test set true N/A 0 0

test set 1 substitution 30 6
test set 2 insertion 30 6
test set 3 deletion 30 6
test set 4 mixed 30 6

Table 1. TIMIT test sets. “Test set true” is original TIMIT test set
with true transcriptions; “mixed” is test set transcription with mixed
three types of errors, each error has ∼ 2% PER.
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error rate (PER) of each set are shown in Table 1.
Experiments to detect of errors in word transcription are done

on WSJ [10] corpus. WSJ corpus contains continuous read speech
in English with word transcriptions. Our training set contains 37416
utterances, approximately 80 hours speech from WSJ’s si-84 data
subset, and test set contains 333 utterances, approximately 40 min-
utes speech from WSJ’s evaluation 92 set. For this task we only
create a test set with mixed errors in transcriptions, each error has∼
2% word error rate (WER), SER is 35%. Errors are introduced as
following: (1) Substitution. We first compute the word frequency of
true test transcriptions, then replace the top 30 most frequent words
with candidates in the lexicon that have closest Levenshtein distance
in pronunciation; (2) Insertion. We count the frequency of all words
in training data, and choose the top 10 most frequent words as inser-
tion candidates; (3) Deletion. We randomly delete words.

We use 39 dimensional Mel-frequency cepstral coefficients
(MFCCs) + ∆ + ∆∆ coefficients as acoustic features.

3.2. Phoneme transcription error detection

3.2.1. Baseline

We use Kaldi [11] to perform phone recognition task. The acoustic
model of baseline system is a HMM/DNN hybrid triphone system.
The DNN is pre-trained in unsupervised fashion to initialize its pa-
rameters, then followed by a supervised fine-tuning. The DNN has
five hidden layers with 1024 units per layer. The language model is
a trigram phone language model. First we evaluate the performance
of baseline system on “test set true”, result is shown in Table 2. As
we see, the PER is 19.1%, which is close to state-of-the-art accord-
ing to [12]. Then we use the baseline system to obtain PER for each
utterance in four corrupted test sets, if PER is above some threshold,
we decide that this transcription is incorrect. Thresholds on PER are
evenly spaced from 0 to 1 with an increment of 0.001 to draw the
DET curve. This method is referred as “Baseline” in Section 3.2.4.

3.2.2. Model selection systems

We use two acoustic models to compute Viterbi alignment likeli-
hoods and phoneme recognizer best path likelihoods: HMM and
VAE-HMM.

For both models, the HMM is trained on 48 phonemes, with 1
silence phoneme and 47 non-silence phonemes. Silence phoneme is
modeled by a 5 states left-to-right HMM, each state is modeled by
a GMM with 10 components; each non-silence phoneme is modeled
by a 3 states left-to-right HMM, each state is modeled by a GMM
with 4 components.

Additionally for the VAE-HMM, the encoder and decoder have
two linear layers with 512 units followed by Exponential Linear Unit
(ELU) activation.

For training both models, the posterior distribution of the
HMM’s parameters θ are estimated using Variational Bayes (VB)
training [4] (more precisely we used a stochastic variant described in
[13] with batch size corresponding roughly to 400 utterances). The
VAE-HMM is trained by combining the Stochastic VB algorithm
together with the re-parameterized objective function of the stan-
dard VAE. See [14] for details about training VAE with probabilistic
graphical model as prior over the latent space.

Again, we first evaluate the performance of both models on “test
set true”. Results are shown as in Table 2.Note that for both HMM
and VAE-HMM monophone models, we simply use an uniform pho-
netic language model, yielding a purely acoustic phone recognizer.
Therefore, the reported phone error rate is much higher compared to

the baseline. Nonetheless, we will find that these models are com-
petitive for the task of detecting errors in transcriptions.

The phone transcription error detection is processed as follow-
ing: (1) compute the final score S for each utterance as described
in Section 2.1; (2) when a final score is above some threshold, we
decide that this is an incorrect transcription; (3) chose thresholds
evenly spaced from 0 to an empirical value (which is larger than
maximum of S, 100 in our experiment) with an increment of 0.01,
draw the DET curve. These methods are referred as “Model selec-
tion: HMM” and “Model selection: VAE-HMM” in Section 3.2.4.

Besides, for comparison, we follow the previous work ([3]) and
use the HMM and VAE-HMM monophone system to compute frame
wise Viterbi alignment log-likelihoods for each utterance, variance
of each log-likelihood is computed, if it is above some threshold, we
decide that this transcription is incorrect. Thresholds on variances
are evenly spaced from 0 to an empirical value (which is larger than
maximum of variance, 300 in our experiment) with an increment of
0.01, and then used to draw the DET curve. These methods are re-
ferred as “Alignment llhs:HMM” and “Alignment llhs:VAE-HMM”
in Section 3.2.4.

System HMM
monophone

VAE-HMM
monophone Baseline

PER(%) 37.77 37.61 19.10

Table 2. PER on TIMIT “test set true”

3.2.3. Biased ASR system

We use Kaldi to build the biased ASR system. The acoustic model is
a triphone HMM model. The HMM topology is the same as used in
model selection systems. The biased phone language model is built
as follows: (1) for each utterance, we estimate a 4-gram unmod-
ified Kneser-Ney interpolated language model from the transcript
of this utterance; (2) this language model is then interpolated with
an unigram language model estimated using counts of the top 10
most frequent phonemes in the whole training data set. Note that
the unigram language model allows the decoding process to predict
phoneme sequences that are not the same as the transcription, there-
fore the decoded lattice is more likely to include paths that are close
to speech recording.

Similarly as used for baseline system, PER for each utterance is
used as decision criterion, utterances with PER above some thresh-
old are considered as incorrectly transcribed. Thresholds are evenly
spaced from 0 to 1 with an increment of 0.001 to draw the DET
curve. This method is referred as “Biased ASR” in Section 3.2.4.

3.2.4. Results

We draw DET curves and compute the Equal Error Rate (EER),
namely the point where false alarm probability is equal to miss prob-
ability. The lower the EER is, the better the method is.

The EER of all methods on “test set 1”, “test set 2” and “test set
3” are summarized in Table 3. Specially, for “test set 4”, DET curves
are shown in Figure 3.

We observed that on “test set 1”, all methods have relatively
poor performance. This is reasonable since the error type is sub-
stitution between easily confused phonemes. For any type of tran-
scription errors, the “Biased ASR” always achieves the best perfor-
mance, closely followed “Model selection: VAE-HMM”. For test set
with mixed type of errors, both “Biased ASR” and “Model selection:
VAE-HMM” achieve the lowest EER (around 7%).
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Test set name
Method

Baseline
Alignment llhs:

HMM
Alignment llhs:

VAE-HMM
Model selection:

HMM
Model selection:

VAE-HMM
Biased
ASR

test set 1 29.8 46.2 50.0 31.0 28.3 25.8
test set 2 23.8 27.2 23.4 6.0 3.0 2.0
test set 3 16.9 39.0 34.0 6.2 4.1 3.9

Table 3. EER (%) of different methods for phone transcription error detection.

Fig. 3. DET curve of phone transcription errors detection on TIMIT
“test set 4”.

3.3. Word transcription error detection

We use Kaldi to train the baseline word recognition system. The
acoustic model is a HMM/DNN hybrid triphone system, the DNN
has 4 layers with 1536 units in each layer. The language model is
a trigram word language model. The WER of baseline system on
correctly transcribed WSJ evaluation 92 set is 6.36%.

Both HMM and VAE-HMM models are trained on 42 phonemes,
with 3 silence phonemes and 39 non-silence phonemes. HMM
topologies, VAE-HMM neural network parameters, and training
process are the same as described in Section 3.2.2. Since we do
not use extra word language model, only PER can be evaluated on
correctly transcribed WSJ evaluation 92 set. PER of HMM mono-
phone system is 43.48%, PER of VAE-HMM monophone system is
39.46%.

The biased ASR is built following the same process as in Section
3.2.3, except that the 4-gram word language model is interpolated
with an unigram word language model estimated using counts of the
top 100 most frequent words in the whole training data set.

Results of word transcription error detection are shown in Fig-
ure 4. We compare the following methods: (1) use baseline system
to decode test speech (referred as “Baseline”); (2) model selection
using HMM and VAE-HMM models (referred as “Model selection:
HMM” and “Model selection: VAE-HMM”); (3) biased ASR (re-
ferred as “Biased ASR” ). In this case, the biased ASR achives best
EER (around 3%). This result is to be expected as our model selec-

Fig. 4. DET curve of word transcription errors detection on cor-
rupted WSJ evaluation 92 set.

tion methods of the HMM and VAE-HMM is purely implemented
on acoustic analysis and do not make use of word language model.

4. CONCLUSION

We introduced a Bayesian model selection approach to detect erro-
neous transcriptions of speech recordings. Despite relying solely on
the acoustic information, this method achieves∼ 7% EER on phone
and word transcription error detection. This method outperforms
baselines relying on the output of a strong ASR system or the log-
likelihood of the Viterbi alignment. Also as expected, we observed
that language model is beneficial for word errors detection as used in
the biased ASR. Future work will be extended in following aspects:
refine the model selection method by incorporating language model
to expect improvement over heuristically derived biased ASR ap-
proach; improve the granularity of the detection by finding accurate
time boundaries of the errors; correct the detected errors.
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