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Speaker Recognition With Random Digit
Strings Using Uncertainty Normalized

HMM-Based i-Vectors
Nooshin Maghsoodi , Hossein Sameti, Hossein Zeinali , and Themos Stafylakis

Abstract—In this paper, we combine Hidden Markov Models
(HMMs) with i-vector extractors to address the problem of text-
dependent speaker recognition with random digit strings. We em-
ploy digit-specific HMMs to segment the utterances into digits, to
perform frame alignment to HMM states and to extract Baum-
Welch statistics. By making use of the natural partition of input
features into digits, we train digit-specific i-vector extractors on
top of each HMM and we extract well-localized i-vectors, each
modelling merely the phonetic content corresponding to a single
digit. We then examine ways to perform channel and uncertainty
compensation, and we propose a novel method for using the uncer-
tainty in the i-vector estimates. The experiments on RSR2015 part
III show that the proposed method attains 1.52% and 1.77% Equal
Error Rate (EER) for male and female respectively, outperforming
state-of-the-art methods such as x-vectors, trained on vast amounts
of data. Furthermore, these results are attained by a single system
trained entirely on RSR2015, and by a simple score-normalized
cosine distance. Moreover, we show that the omission of channel
compensation yields only a minor degradation in performance,
meaning that the system attains state-of-the-art results even with-
out recordings from multiple handsets per speaker for training or
enrolment. Similar conclusions are drawn from our experiments
on the RedDots corpus, where the same method is evaluated on
phrases. Finally, we report results with bottleneck features and
show that further improvement is attained when fusing them with
spectral features.

Index Terms—Text dependent speaker verification, uncertainty
compensation, text-prompted, HMM.

I. INTRODUCTION

DURING the last several years, i-vectors [1] have be-
come the dominant approach to text-independent Speaker
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Verification (SV). In i-vector based systems, utterances of ar-
bitrary duration are mapped onto a low-dimensional subspace
modelling both speaker and channel variability, which is esti-
mated in an unsupervised way. The back-end classifier that is
usually employed is a Probabilistic Linear Discriminant Analy-
sis (PLDA) model which performs a linear disentanglement of
the two dominant types of variability and enables the evaluation
of likelihood ratios [2] [3]. The i-vector/PLDA approach, when
trained and evaluated on large text-independent datasets (such as
those provided by NIST [4]) has shown a remarkable consistency
over the years in attaining state-of-the-art performance. More re-
cently, neural architectures (e.g. x-vectors [5]) have managed to
outperform i-vectors in most text-independent SV benchmarks,
by employing recent advances in deep learning and aggressive
data augmentation [6].

In parallel, the great potential of voice biometrics in com-
mercial applications and forensics has increased the need for
methods yielding state-of-the-art results with utterances of
short duration. However, a straightforward application of the
i-vector/PLDA model to short utterances has been proven to be
an inadequate solution [7]. When utterances become shorter,
variations due to differences in phonetic content can no longer
be averaged out, as happens with utterances of long duration
(e.g. >1 min). There have been several efforts to propagate the
i-vector uncertainty to the PLDA model, but they were only
partially successful and the results were inconsistent across
datasets [7]–[9].

Due to the moderate performance of i-vectors in the particular
setting, text-dependent SV started attracting much attention.
Text-dependent SV reduces the phonetic variations of short
utterances by constraining their vocabulary to either (a) a fixed
phrase, (b) a set of predefined phrases, or (c) random sequences
of words coming from a specific domain, such as digits. The
first two approaches yield superior performance in general, due
to the matched order of acoustic events between training and
run-time utterances, which prevents random and hard to model
co-articulation effects from appearing. On the other hand, when
speakers utter a predefined pass-phrase, the system becomes
vulnerable to spoofing attacks (e.g. replay attacks), which have
become a major threat to speaker recognition systems [10]. Text-
prompted SV with random sequences of words from a specific
domain is less vulnerable to replay attacks (yet not immune
to attacks created by Text-To-Speech and Voice Conversion
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systems1 [11]) and it is employed as a means to perform liveness
detection.

In this paper, we primarily work with RSR2015 part III,
aiming at enhancing the i-vector paradigm in text-prompted
speaker recognition [12], [13]. One of our main motivations is to
develop a method for utilizing the i-vector uncertainty tailored
to text-dependent and text-prompted SV. We show that by intro-
ducing the concept of average uncertainty, a simple and effective
linear digit-specific transform can be derived, which can com-
pensate for the i-vector uncertainty without the computational
burden in training and evaluation introduced by other uncertainty
propagation methods [7], [14]. Building on top of our previous
framework on text-dependent SV with fixed phrases ([15], [16])
and text-prompted case [17], we use digit-specific HMMs and
i-vector extractors and we report an extensive experimenta-
tion with respect the front-end features (including bottleneck
features), channel compensation, uncertainty-aware transforms,
and backend approaches. To the best of our knowledge, the
results we report are the best published on the challenging
RSR2015 part III and constitute a strong baseline for newer
deep learning methods (e.g. [18], [19]).

The rest of this paper is organized as follows. In Section II,
we provide a detailed review of the proposed approaches to
text-dependent SV and i-vector uncertainty modelling. In Sec-
tion III, our digit-specific subsystems are explained. In Section
IV we discuss different methods for performing uncertainty-
aware channel compensation. The description of the dataset,
experimental setup and results are given in Sections V and VI.
Finally, Section VII we provide a brief conclusion of our work
and directions for future work.

II. RELATED WORK

In this section we present and discuss some of the recent
approaches that are related to our work, with emphasis to those
involving text-dependent speaker verification and uncertainty
modelling.

A. Text-Dependent Speaker Verification

There are several interesting approaches to text-dependent
SV that have been proposed over the last few years. In [20], the
authors examine a pass-phrase based system which is evaluated
on the (proprietary) Wells Fargo text-dependent dataset. NIST
datasets were also used for UBM training to overcome the small
development set constraint. In [21], experiments are conducted
on the same dataset and the authors propose the use of a separate
Gaussian Mixture Model (GMM) mean supervector for each
digit, adapted from a common UBM. Extracted supervectors
undergo Nuisance Attribute Projection (NAP) and are passed
to a Support Vector Machine (SVM) classifier to compute the
scores. The authors show that their method outperforms the one
proposed in [20] on the same dataset.

1In this case, creating a random sequence of words from a prerecorded audio
is more difficult due to co-articulation effects of words on each other, but not
impossible.

In [22]–[24], the authors propose a Joint Factor Analysis
(JFA) approach to address the problem of SV with random digit
strings, using RSR2015 part III for training and testing. JFA is
employed as a feature extractor, built on top of a tied-mixture
model, i.e. an HMM with shared Gaussians and digit-specific
sets of weights. The tied-mixture model serves for segmenting
utterances into digits, as well as for collecting digit-specific
Baum-Welch statistics for JFA modelling. JFA features are either
local (i.e. one per digit) or global (i.e. a single per recording), and
in the former case each local feature in the test utterance is scored
against the corresponding ones in the enrolment utterances.
In [23], JFA features are passed to a joint density back-end
(alternative to PLDA), while in [22] the i-vector mechanics
are used to incorporate the uncertainty in the back-end. Finally,
in [14], the authors apply the same uncertainty-aware back-end
to individual Gaussian mixture components, resulting in 20%
error rate reduction on RSR2015 part III.

In the aforementioned approaches, a digit-independent or
adapted UBM is employed, spanning the whole acoustic space.
However, obtaining a robust estimate of a JFA speaker vector (i.e.
y-vector) using merely the tiny amount of information contained
in a single digit (as happens with the local JFA features) proved to
be very hard, making subspace methods to yield inferior results
compared to supervector-size features (i.e. z-vector). To address
this data scarcity problem, a new scheme for using i-vector in
text-prompted SV is introduced in [17], where word-specific
UBMs and i-vector extractors are employed. These UBMs
and i-vector extractors are of small size (64-component and
175-dimensional, respectively) as they cover only the phonetic
content of each individual word. Following a similar approach,
in [15], [16] it is shown that i-vectors, when extracted using
phrase-specific UBMs and i-vector extractors yield superior
performance compared to JFA front-end features.

B. Modelling i-Vector Uncertainty

The use of i-vector uncertainty in the back-end may yield
notable improvement in SV with short utterances and several
methods for making use of it have been proposed. In [7], [8]
the authors introduce a modified version of PLDA for prop-
agating the i-vector uncertainty to the PLDA model and they
derive an EM algorithm for PLDA training using utterances of
arbitrary durations. Similarly, the use of the i-vector uncertainty
in PLDA is investigated in [9], taking into account only the
uncertainty in the test utterances (i.e. assuming long training and
enrollment utterances). The authors in [25], [26] speed-up the
uncertainty propagation method by grouping i-vectors together
based on their reliability and by finding a representative posterior
covariance matrix for each group. In [27], the authors incor-
porate the uncertainty associated with front-end features into
the i-vector extraction framework. Finally, in [28], an extension
of uncertainty decoding using simplified PLDA scoring and
modified imputation is proposed. The authors also employ the
uncertainty decoding technique in Linear Discriminant Analysis
(LDA) in [29].
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III. DIGIT-SPECIFIC HMMS, I-VECTOR EXTRACTORS

AND SCORING

In this section we present our HMM-based UBM which
we use to extract Baum-Welch statistics and the method for
using these statistics to train digit-dependent i-vector extractors.
The scheme extends our previous method developed on Persian
months dataset [17]. In [17] we proposed a simple but effective
scheme based on separate i-vector extractor for each word with
a common i-vector pipeline. In this paper, the above scheme
is adapted to random digit strings and enhanced by exploring
different methods for modelling uncertainty and combining it
with channel compensation.

Note that in RSR2015 part III, the sequence of digits in
each utterance is assumed to be known and therefore can be
used during training and evaluation [12], but our methods can
be extended to settings where the digit sequences should be
estimated by an ASR system.

A. Digit-Specific HMMs

It is generally agreed that HMMs are a more natural so-
lution to text-dependent SV than GMMs [30]. The partition
of the Gaussians into HMM states permits us to capture the
speaker characteristics over segments corresponding to phrases
and words, rather than over merely spectral areas, as happens
with a UBM. The HMM corresponding to digit d is parametrized
by a collection of Sd state-specific GMM emission distributions
(w(sd,cs),µ(sd,cs),Σ(sd,cs)) and a transition probability matrix
Ad. We index HMM states by sd and Gaussian components of
the GMM corresponding to HMM state sd by cs.

We initialize a collection of D = 10 digit dependent HMMs,
each having Sd = 8 states and Cd,s = 8 Gaussian components
in each state s. We use the subscripts to indicate their dependence
on the digitd and state s, respectively, although in practice we use
a fixed number of Sd and Cd,s. The overall number of Gaussian
components of the digit-specific HMM is Cd =

∑Sd

s=1 Cd,s =
64. HMM training and segmentation into digits is performed
using Viterbi training (i.e. a single alignment of frames to
HMM states is considered), by concatenating the corresponding
digit-dependent HMMs and utilizing the “left-to-right, no skips”
structure. Therefore, the concatenated HMM corresponding to
an utterance with d digits has d× Sd states and d× Cd overall
Gaussian components, and it is constructed by concatenating the
corresponding digit-dependent HMMs.

Once the HMMs are trained, we jointly perform (a) segmenta-
tion of utterance into digits, and (b) segmentation of each frame
sequence assigned to a digit to digit-specific HMM states sd.
We apply Viterbi-based forced alignment to assign frames to
HMM states and hence we estimate hard assignment of frames
to HMM states. Then, given the estimated alignments{αd

t }Tt=1 to
digit-specific HMM states sd, frame posteriors corresponding to
GMM components of the specific state are computed as follows,

γ
(sd,cs)
t = δsd,αt

w(sd,cs)N (ot|µ(sd,cs),Σ(sd,cs))
∑

sd

∑
cs
w(sd,cs)N (ot|µ(sd,cs),Σ(sd,cs))

(1)

where δ·,· is the Kronecker delta function, and N (·|·, ·) is the
probability density function (PDF) of the multivariate normal
distribution. Note that in cs the dependence on d is kept implicit.

The frame posteriors, together with the corresponding Gaus-
sian components are used to extract zero and first order
centralized statistics, Nd = [N (d,1), . . . , N (d,Cd)]T and F̃d =
[f̃ (d,1),T , . . . , f̃ (d,Cd),T ]T , which are computed by the following
equations

N (d,c) =

L∑

t=1

γ
(d,c)
t (2)

f̃ (d,c) =

L∑

t=1

γ
(d,c)
t

(
ot − µ(d,c)

)
. (3)

In the above equations, L is the number of frames of the utter-
ance, c is the index of mixture component of the d digit-specific
mixture model,ot is the frame at time t and γ(d,c)

t is the posterior
probability that the t frame has been emitted by the c component.
Note that once the frame-posteriors γ

(d,c)
t are calculated the

HMM structure is no longer required for extracting Baum-Welch
statistics. Therefore, c = 1, 2, · · · , Cd is used for indexing com-
ponents of the flattened HMM, i.e. a GMM corresponding to
the concatenated state-specific GMMs, having overall Cd = 64
Gaussian components and rescaled weights so that they sum
up to 1. The flattened HMM plays the role of the UBM in
text-independent speaker recognition.

B. Digit Dependent i-Vector Extractor

Due to the use of digit-specific HMMs as UBMs for collecting
Baum-Welch statistics, all the following structures should also
be digit-specific. This includes i-vector extractors, transforms
applied to i-vectors as well as trainable back-ends (e.g. PLDA).

The supervector Md of an utterance associated with a digit d
is assumed to be generated from the following equation

Md = md +Tdyd , (4)

where Td is a low rank matrix representing the subspace span-
ning the dominant variability in the supervector space, and md

is the supervector corresponding to the digit-specific flattened
HMM. Moreover, yd is a latent variable with standard normal
distribution as a prior. Given the Baum-Welch statistics of an
utterance, the posterior distribution of yd is normal with mean
and covariance matrix estimated as follows

cov(yd) = (I+Tt
dΣ
−1
d NdTd)

−1
, (5)

E[yd] = cov(yd)T
t
dΣ
−1
d F̃d, (6)

where Nd and F̃d are zero and centralized first order statistics
(using the means of the corresponding digit-specific HMM),
and Σd is a block diagonal covariance matrix obtained from the
corresponding digit-specific HMM.

C. Digit-Specific Scoring

After extracting digit-specific i-vectors and applying a set
of transforms (to be discussed in Sect. IV), scoring is also
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implemented in a digit-specific fashion, i.e.

Se,t =
1

|Dt|
∑

d∈Dt

Sim(ȳe
d,y

t
d|Pd) (7)

where superscripts e and t indicate enrollment and test respec-
tively, Dt is the set of digits appearing in the test utterance of
the trial (|Dt| = 5 in RSR2015 part III), and Sim(·, ·|·) is a
similarity measure on the i-vector space (e.g. cosine similarity,
PLDA-based log-likelihood ratio, a.o.), which is a function
of parameters Pd (e.g. transforms for channel compensation,
PLDA parameters) and can also include score normalization.
Finally, we use ȳe

d to denote the averaged enrollment i-vectors
of the digit d, since there might be more than one i-vectors of
the same digit in the enrollment side (e.g. three in RSR2015 part
III).

This scoring rule is identical to the “local” approach, proposed
in [24]. The rationale is to break-down the utterances into
segments of limited phonetic content (e.g. words, digits) in order
to suppress the phonetic variability between enrollment and test
segments. A caveat is that certain segments of the enrollment
utterances are not used in each trial, as the test utterance may
not contain all the words appearing in the enrollment. In the
case of RSR2015 part III, about 50% of the enrolment number
of frames is used in each trial, since Dt = 5.

D. Differences Between the Proposed Method and
Tied-Mixture Models

Apart from certain similarities between our method and the
one in [22]–[24], the two methods are substantially different.
Aside from differences in (a) subspace modelling (i-vectors vs.
JFA features), (b) linear transforms applied to i- or y-vectors,
and (c) back-ends (cosine distance vs joint-density models)
there are differences in the way frames are assigned to Gaus-
sian components. We propose digit-specific HMMs of Cd = 64
Gaussian components each, without sharing them between digits
or states, while in the tied-mixture approach, all C = 512 Gaus-
sian components are shared between digits, with the weights
being the only digit-specific set of parameters. As a results,
digit-specific i-vectors (or y-vectors [24]) using tied-mixture
models are extracted over highly sparse Baum-Welch statistics,
and are therefore characterized by high posterior uncertainty.
Moreover, in the tied-mixture model approach the HMM struc-
ture is merely employed for segmenting utterances into digits,
while we propose digit-specific HMMs to segment each digit
intoSd = 8 subword units. As a result, the Gaussian components
are localized in the joint temporal and spectral domain, while
in the tied-mixture approach they are merely localized in the
spectral domain, via a standard UBM.

IV. I-VECTOR UNCERTAINTY AND CHANNEL COMPENSATION

Due to the unsupervised way the i-vector extractors are
trained, the i-vector space contains both speaker and session
variability. Since only speaker information is useful to verify
a speaker, a strategy for removing undesirable session effects
is required. In parallel, in short duration SV the problem of
increased uncertainty should also be addressed. To this end, we

proposed three methods for channel and uncertainty compensa-
tion, which are explained in this section. Fig. 1 illustrates the
block diagram of the whole system, where all the examined
compensation methods are depicted. In this figure, based on the
selected method for uncertainty and channel compensation, one
of the parallel switches is activated.

A. Between and Within-Class Covariance and Uncertainty

It is well known that the total variability covariance matrix
Stot can be decomposed into between-class and within-class
covariance matrices, Sb and Sw as follows

Stot = Sb + Sw , (8)

Sb =
1

S

S∑

s=1

(ys − y)(ys − y)T , (9)

Sw =
1

S

S∑

s=1

1

ns

ns∑

i=1

(ys
i − ys)(y

s
i − ys)

T . (10)

However, by defining Stot in the above way we are essentially
treating i-vectors as point estimates. In order to take into account
the uncertainty in the i-vector estimates, we should redefine the
total variability as follows

Su
tot =

1

n

n∑

i=1

E
[
(yi − y)(yi − y)T

]

=
1

n

n∑

i=1

(E[yi]− y)(E[yi]− y)T + cov(yi)

= Stot + Su, (11)

whereSu = 1
n

∑n
i=1 cov(yi) is the average uncertainty of the i-

vectors andn =
∑S

s=1 ns is the overall number of i-vectors. The
uncertainty in estimatingy is negligible as it is equal to 1

nSu. It is
interesting to note that Su

tot is used in the i-vector extractor and
in JFA during the minimum divergence estimation, where the
latent variables are transformed in such a way so thatSu

tot = I. In
other words, the covariance of the aggregated posteriorSu

tot is set
equal to the covariance of the prior distribution by transforming
y accordingly [1]. The principal components of Su correspond
to the directions with the highest uncertainty.

On the other hand, when dealing with short utterances, Su

becomes comparable to Stot and it would be interesting to make
use of it when performing channel compensation. We should
moreover note that by decomposing Su

tot into expected within
and between-class covariance

Su
tot = Su

b + Su
w, (12)

we may considerSu as being part of the within-class covariance,
i.e.

Su
w ≈ Sw + Su, (13)

and

Su
b ≈ Sb. (14)
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Fig. 1. Block diagram of the proposed system during enrollment phase.

This is due to the fact that the uncertainty contained in Su
b is n̄

smaller compared to Su
w, where n̄ = n

S the average number of
i-vectors per speaker, since

E[(ys − y)(ys − y)T ] = (ys − y)(ys − y)T +
1

ns
Su
s ,

(15)
where Su

s is the average uncertainty of i-vectors of speaker s.

B. Digit Dependent Uncertainty and Channel Compensation

We examine here our three different proposed approaches, as
well as regularized LDA for applying session and uncertainty
compensation. In all cases, the transformed vectors are obtains
as yi ←WTyi.

1) Uncertain LDA: LDA is a standard technique to compen-
sate for inter-session variability by finding a set of speaker-
discriminant non-orthogonal directions and projecting the i-
vectors onto the subspace they define [1]. LDA minimizes
the within-class variability while maximizing the between-class
variability. Using the expectations of these matrices, the objec-
tive function of LDA becomes

J(W) =
WTSu

bW

WTSu
wW

≈ WTSbW

WT (Sw + Su)W
. (16)

whereW is the projection matrix. By solving the above equation
using generalized eigenvalue decomposition, uncertainty-aware
channel compensation can be applied to i-vectors [29].

2) Digit Dependent Uncertain WCCN: Within-Class Co-
variance Normalization (WCCN) is a popular technique for
channel compensation that uses the Cholesky decomposition
of the inverse within class covariance matrix (10) to project the
input features. In speaker recognition, it is used typically before
applying length normalization or cosine distance scoring [1].
The uncertain version of WCCN is as follows

(Su
w)
−1 = WWT , (17)

where W is the projection matrix.
3) Digit Dependent Uncertainty Normalization: Finally, we

propose a novel technique which we call Uncertainty Normal-
ization. In this case, we are using only the average uncertainty
and we ignore the clustering structure of i-vectors into speakers.
It is an unsupervised method and therefore it does not require
multiple recordings per speaker. The rationale is to project the
i-vectors onto a space that down-scales directions exhibiting
high uncertainty, since their estimates are less reliable. Similarly

to uncertain WCCN, it is defined as follows

(Su)−1 = WWT , (18)

where W is the projection matrix.
4) Regularized LDA: LDA has the constraint of reducing

the dimensionality to at most S − 1 where S is the number
of classes. Yet, in RSR2015 the number of training speakers is
smaller than the i-vector dimension. To overcome this limitation
and avoid dimensionality reduction we add a simple regulariza-
tion term to Sb. The regularized version of LDA yields better
results than standard LDA in text-independent task too [31]. In
our experiments, we combine Regularized LDA with Uncertain
WCCN and Uncertainty Normalization.

V. EXPERIMENTAL SETUP

A. Datasets

We used the RSR2015 part III dataset for almost all our
experiments. In this dataset, there are 157 males and 143 fe-
males speakers, divided into three disjoint speaker subsets:
background, development and evaluation, of about 100 speakers
each. Each speaker model is enrolled with 3 10-digit utterances,
recorded with the same handset, while each speaker contributes 3
different speaker models. Test utterances contain a quasi-random
string of 5 digits, one out of 52 unique strings. Six commercial
mobile devices were used for the recordings that took place
under a typical office environment. All utterances are in English,
while speakers are balanced in such a way so that they form a
representative sample of the Singaporean population [12], [24].

Apart from the RSR2015 part III, two clean parts of 16 kHz
LibriSpeech dataset are used for training a DNN model and
performing experiments with Bottleneck (BN) features (namely
Train-Clean-100 and Train-Clean-360 [32]). The dataset con-
tains English speech which is automatically aligned and seg-
mented.

B. Baseline and State-of-the-Art

As a baseline method, we refer to the experiments performed
by CRIM ([24]) where both subspace and supervector domain
methods are investigated. For fair comparison, we used the same
setup as in [22]–[24] and our baseline results are copied from
the reference paper. The number of trials can be found in Table I.

To the best of our knowledge, the current state-of-the-art in
RSR2015 part III is the model presented in [33]. The proposed
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TABLE I
NUMBERS OF TRIALS IN RSR2015 PART III BASED ON THE SETUP USED

IN [22]–[24]

system makes use of a DNN trained either on Fisher data
or on RSR2015. Two main approaches are examined, namely
DNN posteriors with MFCC features and tandem features, i.e.
bottleneck features concatenated with MFCCs.

C. Features

We use 60-dimensional PLP or MFCC, extracted using HTK
with a similar configuration: 25 ms Hamming windowed frames
with 15 ms overlap. For each utterance, the features are normal-
ized using Cepstral Mean and Variance Normalization (CMVN).
A separate silence model is used for performing supervised
Voice Activity Detection (VAD). Silent frames are removed after
applying Viterbi alignment.

In addition to the cepstral features, a set of experiments
is performed to examine the effectiveness of bottleneck (BN)
and tandem features in the text-prompted task. To this end,
a neural network is trained following the stacked architecture
described and evaluated in [34], [35]. Based on the reported
results in [35], this architecture exhibits very good performance
in text-dependent SV. The output layer (softmax) has about 9000
senones, its input has 30 frames context around the current
frame and it is trained using cross-entropy loss. Finally, the
80-dimensional BN features are concatenated to the cepstral
features and used as input features to the i-vector pipeline.

D. Model Dimensions and Gender Dependence

Digit-specific HMMs with 8 states and 8 components per state
are used as UBM, while the i-vector dimensionality is set to 300.
Gender independent UBMs and i-vector extractors are trained
using only the background set of RSR2015. The background set
is also used for training gender dependent LDA transforms as
well as for score normalization. LDA and score normalization
are applied in a digit-dependent manner. The MSR open source
toolbox was used as a base for developing our code [36].

E. Scoring Method

In our proposed system we use score-normalized cosine dis-
tance. As Eq. (7) shows, for each digit-dependent test i-vector
we extract, its cosine similarity with the average of the corre-
sponding digit-dependent i-vectors from the enrolment speaker
utterances is computed and the total score of the utterance is
evaluated as the average score [17]. It is worth mentioning that
the proposed verification system uses a simple scoring method
while other uncertainty-aware approaches typically require more
complicated and computationally demanding methods, such as
PLDA with uncertainty propagation [7].

F. Score and Length Normalization

Score normalization is essential when cosine distance scor-
ing is employed [1]. After experimenting with several score
normalization methods, we found that S-Norm yields the best
performance. Therefore, for all the reported experiments and
unless explicitly stated, S-Norm is applied in a gender and digit
dependent manner, using the training set for collecting the cohort
set of speakers.

Although implicit in cosine distance scoring, length normal-
ization helps towards obtaining more Gaussian-like distribu-
tions [37]. It is therefore useful to apply it before LDA (and
after uncertainty normalization), as the latter assumes Gaussian
distributed class-means and class-conditional observations.

VI. RESULTS

The evaluation metrics we report to assess the performance
of the proposed methods are the Equal Error Rate (EER) and the
Detection Cost Functions (DCFs) defined for NIST-SRE08 and
NIST-SRE10, namely old Normalized DCF (NDCFmin

old ) and
new Normalized DCF (NDCFmin

new).

A. Baseline, State-of-the-Art and Our Methods

Table II shows the comparison between the proposed methods
and several flavors of the baseline system. We select the best sin-
gle system on this dataset from [24] and fusion results of single
systems with different combinations. y-vector and z-vector are
JFA-features with and without speaker subspace, respectively.

We also report results using speaker embeddings (x-
vectors [5]), which define the state-of-the-art in text-independent
speaker recognition. The model attains state-of-the-art results on
the Speakers In-The-Wild benchmark (namely 2.32% EER on
Eval Core [38]). The x-vector architecture is trained using a large
dataset with more than 7K speakers (VoxCeleb 1 and 2 [39], [40])
compared to the 97 speakers used to train the i-vector extractors.
All results reported are derived using identical evaluation set-up,
ensuring a fair comparison.

In addition, Fig. 2 shows the DET curves of some selected
systems from Table II for female speakers. In the third and
fourth sections of this table we report results for the systems
with PLP and MFCC features. We observe that for both genders,
MFCCs outperform PLPs in almost all experiments. Based on
these results, the system with MFCC features is considered as
the best single system. Moreover, score-level fusion results of
the two systems are given the fifth section of Table II.

B. Uncertainty Normalization, Channel Compensation and
Score Normalization

As Table II shows, the proposed uncertainty normalization
methods attain the best results. Hence, it is worth further analyz-
ing its performance, e.g. by deactivating channel compensation
(i.e. Regularized LDA) and score normalization.

In Table III, we report results using several such combinations,
as well as an experiment with PLDA. First of all, we observe that
the contribution of Regularized LDA is rather minor compared
to uncertainty normalization. This result is rather surprising;
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TABLE II
ARISON OF THE PROPOSED METHODS WITH BASELINE AND STATE-OF-THE-ART RESULTS

TABLE III
INATIONS OF UNCERTAINTY NORMALIZATION, REGULARIZED LDA, S-NORM AND PLDA

Fig. 2. DET curves for the proposed methods for female speakers. The trends
for male speakers are similar.

it shows that state-of-the-art performance can be attained even
without explicit channel modelling, i.e. without the need of
collecting multiple training recording coming from different
channels, sessions or handsets, per speaker. We mention again
that in RSR2015 part III the enrolment utterances for a given

speaker are coming from a single handset, which is different to
the ones used in the test utterances [12].

Finally, we examine the effectiveness of Gaussian PLDA
as a backend. To this end, we train D = 10 digit-dependent
PLDA models using the RSR2015 part III training set. After
experimentation, we found that the combination of uncertainty
normalization, regularized LDA and number of speaker factors
equal to 50 yields the best performance, while S-Norm does
not yield any further gains. However, even the best PLDA
configuration is clearly inferior to that attained by cosine dis-
tance. We believe that the failure of PLDA is due to the small
number of training speakers in RSR2015, which prevents us
from estimating robustly the speaker subspace.

C. Comparison With x-Vector

The embedding extractor is implemented using the standard
Kaldi recipe, and it is trained on VoxCeleb 1 and 2 (contain-
ing more that 7K speakers) [39]. The PLDA model used for
evaluating LLRs is also trained on VoxCeleb, while we also
report results where the RSR2015 training set is employed for
PLDA training or adaptation. For enrolling the speakers, three
utterances are concatenated and a single x-vector is extracted
and for evaluation utterances, each sequence is represented
by an x-vector. The results in the third row of Table II show



1822 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2019

TABLE IV
RESULTS WHEN USING BOTTLENECK FEATURES WITH UNCERTAINTY NORMALIZATION

TABLE V
COMPARISON BETWEEN DIFFERENT NUMBER OF HMM STATES

that the best performance is attained by training PLDA on
VoxCeleb without any adaptation. However, our proposed
method performs notably better than this. To improve the per-
formance of x-vectors, recently proposed methods for applying
domain adaptation to the x-vector extractor (e.g. using Gener-
ative Adversarial Networks [41], [42]) are worth exploring, in
order to reduce the mismatch in channel and accent between
VoxCeleb and RSR2015.

D. Using Bottleneck Features

Neural approaches using DNNs trained for ASR have re-
sulted in significant improvements in SV, especially in text-
independent SV, where the text is unknown and DNNs help
towards assigning frames to ASR recognition units (e.g.
senones) [43]. Some recent works apply DNNs to text-dependent
SV and report notable improvements [15] [35]. Hence, it is
worth examining the performance of bottleneck and tandem
features extracted from a DNN in text-prompted case. Since the
best performance among uncertainty and channel compensation
methods is attained by uncertainty normalization followed by
regularized LDA, we report the results using only this method.
Table IV shows the results obtained by 80-dimensional bottle-
neck feature vector, by their concatenation with MFCC feature
vector (i.e. tandem features) and by their fusion with other
cepstral features. The results show that although the perfor-
mance of bottleneck features without any fusion is poor, fusing
tandem features with other cepstral features yields significant
improvements. The reason for this degradation could be the
randomness in digit sequence compared to the fixed sequences
of other text-dependent tasks, as well as the fact that we did
not use in-domain RSR2015 data to fine-tune the network. It is
also apparent from the results that tandem features yield more
notable improvement for female speakers.

In Table V we examine the performance of our best single-
feature model (i.e. with MFCC) by varying the number of

states per HMM Sd. As we observe, the performance is rather
insensitive to Sd, being slightly higher for Sd = 16. However,
we choose to use Sd = 8 for the rest of the experiments, since
their differences are minor and the algorithm becomes less
computationally and memory demanding.

E. The Effect of Length Normalization

It is generally agreed that applying length normalization
before LDA improves its performance. In order to reexamine
its positive effect we perform an experiment to compare the
performance of length normalization followed by LDA and LDA
without length normalization. The system with MFCC features
and uncertainty normalization is used as the single system in
this experiment. Table VI shows that although cosine similarity
scoring applies length normalization implicitly, applying length
normalization before LDA and after uncertainty compensation
is beneficial. As discussed above, length normalization makes
vectors more normally distributed, which is in line with the
Gaussian assumptions of LDA.

F. Results on Phrases Using the RedDots Corpus

Although we developed our method primarily for words as
recognition units, we can evaluate it on short phrases in a similar
way. For experimentation on phrases, RSR2015 part I used to
be a standard option, however it is now considered as a too easy
corpus [7]. RedDots is more challenging in terms of channel
variability, mostly due to (a) the longer time intervals between
successive recordings of the same speaker, and (b) the higher
levels of background noise [44].

The main caveat of RedDots is the lack of a training set, due
to the small number of participants (49 males and 13 females,
with only 35 males and 6 females having target trials). This
shortcoming prevents us from evaluating our method on the
whole set of RedDots phrases, since training utterances of the
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TABLE VI
ARISON BETWEEN LDA WITH AND WITHOUT LENGTH NORMALIZATION

TABLE VII
THE EFFECTIVENESS OF UNCERTAINTY NORMALIZATION ON MALE PART OF

REDDOTS DATA (IMPOSTOR-CORRECT TRIALS)

evaluation phrases are compulsory in order to train our models.
Nevertheless, two of the RedDots phrases (namely the 33rd and
the 34th) are also contained in RSR2015 Part I, enabling us
to train our models on the corresponding training utterances of
RSR2015.

In Table VII we report the performance on male-only trials,
as the number of female speakers is too small for drawing any
conclusion. The results are averaged over the 33rd and 34th
RedDots phrases. Our focus is on the Impostor-Correct results,
i.e. with non-targets trials containing the correct phrase, since
we believe ASR-based methods are more adequate to estimate
whether or not the uttered phrases match the prompted ones. The
results show that uncertainty normalization is more effective
than regularized LDA, attaining drastic relative improvement
in low false acceptance operating points (63% in NDCFmin

old

and 45% in NDCFmin
new) and 30% relative improvement in terms

of EER. These improvements are attained without any channel
compensation, i.e. without requiring repetitions of the same
phrase from each training speaker. Finally, by combining un-
certainty normalization with regularized LDA a further small
improvement is attained.

G. Discussion

The comparison of our results with the tied-mixture model
approach (Table II) shows that our single system outperforms the
baseline by a large margin. In fact, its performance is superior
not only to all single baseline systems, but also to the fusion
of all systems in [24]. Furthermore, the use of i-vectors rather
than supervector size features (z-vectors) makes our methods
significantly faster. Additionally, memory requirements for each
speaker are considerably lower than those of the baseline. More-
over, our system attains higher performance compared to the
current state-of-the-art (which is based on DNNs [33]), even
when a single system is used and without training on any external
dataset (Fisher dataset is used to train the tandem feature system
in [33]).

In terms of uncertainty and channel compensation methods,
uncertainty normalization followed by length normalization
and LDA is the more effective combination (Table IV). The
results in Table II show a consistency with respect to features
(MFCC and PLP) and gender, while the experiments on RedDots
reaffirm the effectiveness of the proposed sequence of trans-
forms, yielding drastic improvements especially in the low false
alarm area (Table VII). In terms of front-end features, MFCC
perform consistently better than PLP in both genders, while
bottleneck features seem to be marginally effective, and only
when fused with MFCC. Bottleneck features perform very well
in text-independent speaker recognition, especially when used
as a means to assign frames into UBM components [45] [46].
However, there is a severe mismatch between the way frames
are assigned in text-independent speaker recognition and our
proposed HMM-based method. For example, the large context
window used in the former does necessarily provide fine-grained
temporal localization, required in order to segment each digit
into Sd = 8 states. More recent end-to-end methods may be
more effective ways of using DNNs for text-dependent speaker
recognition than bottleneck features (e.g. [47], [48]), with the
caveat that they require large amounts of in-domain data, which
are not available in RSR2015 part III.

H. Scaling-Up to Larger Vocabulary

In cases where a larger vocabulary can be employed the
proposed method may suffer from data fragmentation. The
number of overall training examples should scale linearly with
the number of words, as no parameter sharing is assumed
between the word-specific models. In such cases, introducing
parameter sharing between the models (especially between the
several word-specific HMMs and i-vector extractors) should
be considered. Although such a setting is beyond the scope of
this work, one may start with a typical large-size UBM/i-vector
system (e.g. with 2048 Gaussian components) trained on text-
independent datasets or on the available in-domain dataset. Then
for each word in the vocabulary, theCd most dominant Gaussian
components should be selected and their means should possibly
be re-estimated e.g. via mean-only MAP adaptation, with the
remaining components being removed. Word-specific i-vector
extractors on top of the word-specific UBM can then be derived
by (a) keeping only those rows corresponding to the Cd most
dominant Gaussian components, and (b) refining the matrix
by applying e.g. minimum divergence training (i.e. without
re-estimating the subspace). One may also consider starting from
a higher dimensional i-vector extractor (e.g. 600) and selecting
the most dominant dimensions for each word-specific extractor.
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VII. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a system for text-prompted
speaker verification using random digit strings. The core of
the system comprises a set of digit-specific HMMs, which we
employ in order to perform segmentation of utterances into
digits, alignment of frames to HMM states and extraction of
Baum-Welch statistics. On top of these HMMs, digit-specific
i-vector extractors are trained, enabling us to compare digit-
specific i-vectors that appear in both enrolment and test utter-
ances using simple cosine distance scoring with score normal-
ization. Furthermore, we investigated three different methods
for compensating channel and uncertainty and we concluded
that the novel uncertainty normalization technique followed by
LDA yields consistently superior performance. The proposed
system outperforms the baseline by a large margin and yields
superior performance compared to the current state-of-the-art,
which is based on DNNs.

We also examined the use of bottleneck features and dif-
ferent types of cepstral features. The experiments showed that
although the performance of cepstral features is superior to that
of bottleneck features, fusion with other cepstral features leads
to further notable improvement. Our final set of experiments
were conducted on whole phrases. To this end, the challenging
RedDots corpus is used [44]. The results we reported reaffirm
the effectiveness of uncertainty normalization, yielding an im-
pressive 63% relative improvement in terms of NDCFmin

old .
For future work, we are interested in fitting certain elements

of the proposed approach to end-to-end neural architectures. Re-
cently emerged approaches in text-independent speaker recog-
nition combine end-to-end deep learning methods with implicit
modeling of acoustic units via multi-head attention and learnable
dictionaries or with mimicking the i-vector/PLDA framework
[18], [49], [50]. We expect that the proposed method will con-
tribute to this research direction, by demonstrating the potential
of digit-specific HMMs and i-vector extractors.

Finally, we should note that the channel and uncertainty
compensation approaches examined here may also be applicable
to speaker embeddings. Modeling the uncertainty in x-vectors
is less straightforward compared to i-vectors. However, recent
advances in Bayesian deep learning demonstrate that model
averaging via dropouts is a means for quantifying the uncer-
tainty of extracted representations [51]. As a result, uncertainty
normalization may also be relevant to neural representations,
such as x-vectors.
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