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ABSTRACT

Recently, speaker embeddings extracted with deep neural networks
became the state-of-the-art method for speaker verification. In this
paper we aim to facilitate its implementation on a more generic
toolkit than Kaldi, which we anticipate to enable further improve-
ments on the method. We examine several tricks in training, such
as the effects of normalizing input features and pooled statistics, dif-
ferent methods for preventing overfitting as well as alternative non-
linearities that can be used instead of Rectifier Linear Units. In ad-
dition, we investigate the difference in performance between TDNN
and CNN, and between two types of attention mechanism. Exper-
imental results on Speaker in the Wild, SRE 2016 and SRE 2018
datasets demonstrate the effectiveness of the proposed implementa-
tion.

Index Terms— Deep neural network, speaker embedding, x-
vector, Tensorflow, Kaldi.

1. INTRODUCTION

For several years, i-vector representation of a variable length speech
signal alongside with Probabilistic Linear Discriminant Analysis
(PLDA) has been the state-of-the-art in text-independent speaker
verification (TI-SV) [1, 2], yielding very good results in other tasks
too, such as language identification [3], text-dependent SV [4, 5] and
even in non-speech task such as online signature verification [6]. In
recent years, novel deep learning approaches have emerged which
outperform the traditional i-vector/PLDA framework.

Deep learning methods for speaker recognition can be summa-
rized into four categories: (a) methods applied to fixed utterance-
level representations (typically i-vectors) such as non-linear map-
pings and backend classifiers [7, 8], (b) i-vectors with Baum-Welch
statistics or frame-level features (e.g. bottleneck) extracted with
Deep Neural Networks (DNNs) trained for ASR (i.e. with pho-
netic recognition units as targets) [9, 10, 11], (c) fully end-to-end
DNN approaches, where siamese DNNs learn directly to approxi-
mate the posterior probability of two or more utterances belonging
to the same speaker [12], and (d) semi end-to-end approaches, where
DNNs with either a closed-set speaker identification architecture (us-
ing a softmax over a large number of training speakers) or with a
siamese architecture are trained, and utterance-level representations
(embeddings) are extracted and fed to a trainable back-end classifier
(typically PLDA) [13, 14]. To the best of our knowledge, the perfor-
mance of the latter category is the current state-of-the-art in most (if
not all) speaker recognition benchmarks [13].

In this paper, we demonstrate how to train a speaker embed-
ding system in a general-purpose deep learning framework and attain
comparable (or even better) performance compared to the original

Kaldi version [13]. Developing new ideas and combining other pro-
posed method with the x-vector topology is easier in such toolkits,
and this is the main motivation for sharing our experience with other
researchers. Several papers have been published to show how to train
speaker embedding systems in terms of different data augmentation
methods and also the amount of required training data [15, 16], but
the aim of this paper is to show how to implement an x-vector topol-
ogy in Tensorflow toolkit, proposing several tricks to improve the
performance of speaker embeddings, and empirically evaluate the
effectiveness of each trick.

2. SYSTEM SETUP

In this paper, we focus on speaker embedding training part of the
x-vector pipeline and Kaldi toolkit is used for other parts of the
pipeline. Our features are 23-dimensional MFCC features, which
are extracted from 25 ms windows with short time mean normaliza-
tion. Unvoiced frames are eliminated using an Energy based VAD.
For creating training archives1 for Tensorflow, we use our imple-
mentation which produces pretty similar archives like Kaldi except
we save minibatches in numpy arrays which saved to tar files. For
a fair comparison, all configuration and number of training archives
are the same for both Kaldi and Tensorflow and also same Kaldi
back-end is used for both implementations.

For training the network we use Adam [17] optimizer in all
cases. The initial learning rate is set to 0.001 and linearly reduced
to 0.0001. We use 3 epochs for network training. We checked 6
epochs for some systems, but almost all of them overfitted more to
the training speakers. In [15], it was mentioned 6 epochs is better for
Kaldi and our experiments also prove it, but this is not the case for
our Tensorflow implementation.

2.1. Training data and augmentation

The training data we use in this paper is the list prepared for NIST
SRE 2018 close condition and consists of: 1) SREs 4-8 and SRE12,
2) Telephony part of Mixer6, 3) Fisher English, 4) All switchboard
data and 5) Voxceleb 1 and 2. For both Voxceleb the concatenated
version of each session is used.

The following data augmentation methods are used in this pa-
per. Apart from the four augmentation methods used in [13], we
also include audio compression using ogg and mp3 codecs. Finally,
training data consists of 3-fold augmentation that combines clean
data with 2 copies of augmented data, which are selected randomly.

• Reverberation: Artificially reverberated data using convolu-
tion with simulated RIRs.

1In Kaldi, the network training examples are split to several files which
called archive.
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• Babble: Several speakers are randomly selected from MU-
SAN [18] speech and the summation of them is added to the
original signal with SNR between 13-20dB.

• Music: Adding a random music file from MUSAN to the
original signal with random SNR between 5-15dB.

• Noise: MUSAN noises are added at one second intervals
throughout the recording with random SNR between 0-15dB.

• Compression: The original signal is randomly compressed
(using ogg or mp3 methods) and it is subsequently converted
back to raw format.

2.2. Evaluation data

We evaluate different networks on three datasets: Speaker in the
Wild (SITW) Core-Core condition downsampled to 8 kHz [19],
the NIST SRE 2016 and the NIST SRE 2018 for Tunisian Arabic
(CMN2) (for both development and evaluation parts). SITW dataset
contains recordings extracted from videos in English language and
both SRE 2016 and SRE 2018 are conversational telephone speech.
We removed the overlapping speakers between SITW and Voxceleb1
from the training data.

2.3. PLDA backend

We use a Gaussian PLDA model as back-end classifier. For both
SRE 2016 and SRE 2018, the PLDA model is adapted to the unla-
beled development data using the unsupervised adaptation of Kaldi
and the mean of the unlabeled data to center the x-vectors prior to
scoring. For training the PLDA model, a list containing all SREs,
Switchboard, Mixer6 and their corresponding augmented versions is
used, resulting in about 290 thousand utterances overall. This set is
also used for SITW, although this is a suboptimal choice for this set.
Moreover, no adaptation technique is used for this set apart from
centering the x-vectors using the mean of the SITW development
part.

3. TOPOLOGY AND TRICKS

Implementing DNN-based methods and replicating published results
is a challenging task. In this case, an additional burden is the fact
that the original method (x-vector speaker embedding [13]) is im-
plemented in a custom and perfectly tuned toolkit (Kaldi) with sev-
eral unclear tricks for achieving such a good performance. Here, we
try to keep the overall topology same as the original Kaldi model
and we investigate the effect of several tricks for boosting its per-
formance for TI-SV. Table 1 shows the overall topology, which is
very close to the original paper [13] and is used as our baseline. The
source code is available on GitHub2.

In the following, the investigated parts of the network and tricks
are discussed.

3.1. Normalizing input features

It has been proved that normalizing input features has a positive ef-
fect on the performance of deep neural networks. Here, our MFCC
features are mean-normalized using sliding window. Therefore, the
overall features are not normalized and there is a question whether
it is useful to normalizing the input features. For this reason, here
two different methods are investigated. In the first one, features are
simply normalized before feeding them to the network using mean
and standard deviation calculated using a subset of training data. In

2https://github.com/hsn-zeinali/x-vector-kaldi-tf

Table 1. Deep neural network topology for x-vector extraction. Here
CNNs are used for second and third frame level layers instead of
TDNNs.

Layer Layer context Kernel × Input × Output

Frame1 [t− 2, t+ 2] 5 × 23 × 512
Frame2 [t− 2, t+ 2] 5 × 512 × 512
Frame3 [t− 3, t+ 3] 7 × 512 × 512
Frame4 [t] 1 × 512 × 512
Frame5 [t] 1 × 512 × 1536

Stats pooling [1, T ] 1536 × 3072
Segment1 – 3072 × 512
Segment2 – 512 × 512
Softmax – 512 × N

the second method, a Batch-Normalization (BN) layer is added to
the input of the network. In the first method, the normalization pa-
rameters are kept fixed during training, while in the second method
the normalization parameters are learned by the network.

3.2. Normalizing pooled statistics

In the original x-vector topology [13], all layers are followed by a
BN layer except the statistic pooling layer. So, the question here
is what happened if a BN layer is also added after statistic pooling
layer?

3.3. Order of non-linearity and BN

Batch-Normalization (BN) is a useful method and helps training
deeper networks with fewer epochs and higher learning rate. In [20],
the BN layer is placed before the non-linearity while in the x-vector
topology it is placed after the non-linearity [13]. Here, we examine
the order of the BN layer and non-linearity to show the difference in
performance.

3.4. Avoiding overfitting using dropouts and L2-regularization

After evaluating the first x-vector implementation in Tensorflow, we
observed overfitting to the training speakers compared to the Kaldi
version. Assuming segment-level classification accuracy as the mea-
sure for overfitting, our implementation attains about 10 % better
segment accuracy compared to Kaldi for the same training data (i.e.
about 95 % compared to 85 % respectively) and also the SV per-
formance of the Tensorflow version is inferior to that of the Kaldi
version for some cases. We therefore examine several methods to
prevent the network from overfitting.

The first regularization method we examine is dropouts [21],
where we test several dropout probabilities. A second method for
preventing from overfitting is L2-regularization (also known as L2
weight decay), which penalizes large values in weights, i.e.

L
′
= L+ β

1

2
‖W‖22

where the best value for β should be found empirically. Here,
our aim is to answer several questions: for which layers L2-
regularization should be used and how much it should participate in
the optimization loss (i.e. the value of β).

3.5. Feature augmentation using Gaussian noise

As mentioned in the introduction, several papers investigate the ef-
fects of different data augmentations [15, 16]. Here we are going
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to show the effect of adding Gaussian noise to the features during
the training. This augmentation is performed in order to minimize
overfitting to the training speakers and has a long history in the liter-
ature [22, 23].

3.6. Different type of non-linearity

After adding L2-regularization, we faced sparse x-vector represen-
tation due to Rectifier Linear Unit (ReLU) saturation. The problem
happened for some dimensions, where the ReLU inputs were always
negative and so ReLU layer produces only zero output. After adding
L2-regularization, the optimizer decides to change the correspond-
ing weights to zero. As a result, the extracted x-vectors were sparse.

Several alternative non-linearities have been proposed for ReLU,
from which we test Leaky-ReLU (LReLU) and Parametric-ReLU
(PReLU) [24, 25]. In LReLU, instead of having zero slope for the
negative side of the non-linearity, a small constant slope is used,
while in PReLU the slope for the negative region is a trainable pa-
rameter and can vary independently for each dimension (making it
more vulnerable to overfitting).

3.7. Comparison between TDNN and CNN

In the original x-vector paper [13], Time Delay Neural Network
(TDNN) layer is used in the second and third layers of the network.
Here, we investigate the differences between TDNN and Convolu-
tional Neural Network (CNN) in performance and also in training
and evaluation efficiency. TDNN is a special case of 1-dimensional
CNN where instead of using all frames in the context window (con-
volution window), some specific frames are used (here the first, mid-
dle and last frames of the window).

3.8. Using two types of attention

Attention mechanism for speaker verification has been investigated
in recent papers. In [26], several methods were proposed for using
attention in an LSTM-based text-dependent speaker verification. A
slightly different strategy for adding attention to the x-vector topol-
ogy was proposed in [27] while single and multi-head attentions
were investigated for TI-SV. Here, we only consider single-head at-
tention in two modes. The first one is the same as [27] while for the
second one we doubled the size of last hidden layer before pooling
and equally split its dimension into two parts like [26] and use the
first part for calculating attention weights (i.e. keys) and the sec-
ond part for calculating mean and standard deviation statistics (i.e.
values) using suggested formulas in [28].

4. EXPERIMENTS AND RESULTS

In order to draw a reliable conclusion about each trick described in
the previous section, we performed several experiments. Reporting
results for all of them is not possible, hence we only report the most
important ones in Table 2 and we summarize the remaining in the
text.

The first set of experiments is related to normalizing the input
features. Adding a BN layer to the input of the network degrades the
performance in most cases, while normalizing features using global
mean and variance normalization improves the performance in about
half cases. Variance normalization of input features is not important,
which is in line with the Kaldi implementation where only mean
normalization is applied [13].

Normalizing statistics using the BN layer has a similar trend as
normalizing input features and its results were not consistent in all

cases. Adding a BN layer after stats pooling using Adam optimizer
slightly improves the performance in some cases. But our exper-
iments with SGD optimizer and normalizing statistics using mean
and standard deviation calculated in few initial iterations improves
the performance. So, it seems this trick is dependent on which op-
timizer is used. From here, neither input feature normalization nor
statistic normalization was used.

Investigating the order of non-linearity and BN layer showed
that using BN immediately after non-linearity yields better perfor-
mance for speaker embedding, while in other fields like image clas-
sification [29] and audio scene classification (ASC) [30, 31] usually
BN layer is used immediately before non-linearity. Our previous ex-
periments in ASC also confirmed that for 2-dimensional CNN net-
work it is better to used BN before ReLU while for x-vector topol-
ogy (i.e. 1-dimensional network) it is better to put it after the non-
linearity [32].

As explained in 3.4, we tried to use dropouts to reduce over-
fitting to the training speakers. Dropouts were shown to improve
generalization for classification task, however, our task is to learn
speaker representations. Although we observed improved speaker
classification performance on our crossvalidation data, the speaker
verification performance with the extracted x-vectors degraded for
most of the tested dropout probabilities. Also, in our previous work
on x-vector based ASC [32], dropout helps the performance. It
seems that dropouts are useful for classification tasks but not for
learning the utterance embeddings.

Table 2 reports few results of different systems to better com-
pare the gain attained by each technique. The first section of the table
shows the results of Kaldi toolkit. The first row shows the Kaldi orig-
inal recipe for SRE16 where SITW and SRE18 CMN2 were added
to it with exactly the same training data. By comparing results of
this row with the second row, it is clear that on average about 15 %
relative improvement can be attained by adding more training data
and augmentation (or simply having more training speakers).

The third row of the table shows the results of Kaldi toolkit when
CNN layers are used in the second and third layers of the network
instead of TDNN. In this case, the performance is quite similar to the
TDNN while training CNN version needs about 35 % more time and
also extracting embedding from the network is about 20 % slower.

The second section of Table 2 shows the baseline results of our
TF implementation. Comparing this results with the Kaldi version
results shows that our implementation is comparable with Kaldi,
sometimes is better and sometimes worse. Here, again the differ-
ence between CNN and TDNN is not too much and they performed
almost the same.

In the last section of the table, we report results using different
tricks for improving our x-vector system. In the first system, L2-
regularization was applied to the CNN network (i.e. sixth row of
the table). We investigated several configurations for adding L2-
regularization. In the simplest way, L2-regularization was applied
to all weights of the network while in the second case, it just added
to the segment level of the network (i.e. all layers after pooling).
Experimental results have shown that the latter case is better and we
just consider this case from now.

As explained before, after adding L2-regularization, we faced
with sparse x-vectors. For solving this problem, we first remove
L2-regularization of the interested embedding layer and it degraded
the performance. We also test a smaller coefficient for β for this
layer and found it was better. Empirically, β was set to 0.00002 for
embedding layer and 0.0002 for other weights in the segment level
of the network. Comparing the results of fifth and sixth rows of
the table shows that this simple technique improves the performance
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Table 2. The comparison results of different systems and implementations. All networks use CNN except for those explicitly named as
TDNN. L2 means applying L2-regularization, Att means using attention mechanism in the network and Noise means adding Gaussian noise
during training. Kaldi recipe means the original x-vector system from the official Kaldi GitHub repository. SRE18 results are only for CMN2
part.

SITWcore−core SRE16, All SRE16, Tagalog SRE16, Cantonese SRE18, Dev. SRE18, Evl.

System EER DCFmin
0.01 EER DCFmin

0.01 EER DCFmin
0.01 EER DCFmin

0.01 EER Cmin
Prm EER Cmin

Prm

Kaldi recipe, ReLU, TDNN 6.45 0.543 8.84 0.604 12.72 0.764 5.02 0.409 9.16 0.578 9.35 0.598
Kaldi, ReLU, TDNN 5.03 0.482 8.02 0.566 11.79 0.738 4.38 0.383 7.30 0.501 8.72 0.569
Kaldi, ReLU 4.98 0.479 7.81 0.566 11.56 0.740 4.18 0.357 7.44 0.504 8.76 0.578

TF, ReLU, TDNN 5.08 0.500 7.72 0.573 11.47 0.743 4.08 0.359 7.92 0.531 8.85 0.584
TF, ReLU 5.33 0.517 7.87 0.583 11.62 0.756 4.15 0.362 7.63 0.520 8.83 0.582

TF, L2, ReLU 4.84 0.471 7.59 0.568 11.24 0.747 4.02 0.355 7.57 0.517 8.43 0.586
TF, L2, PReLU 4.78 0.480 7.39 0.563 11.01 0.742 3.86 0.336 7.89 0.515 8.38 0.573
TF, L2, LReLU 4.73 0.467 7.40 0.550 11.08 0.722 3.79 0.340 7.51 0.485 8.62 0.566
TF, L2, LReLU, Att 4.54 0.448 7.06 0.539 10.70 0.716 3.47 0.324 7.42 0.517 8.27 0.557
TF, L2, LReLU, Att, Noise 4.56 0.459 7.20 0.543 10.74 0.710 3.66 0.349 6.90 0.485 8.39 0.550

about 6 % relatively on average.
Although smaller L2-regularization coefficient has better perfor-

mance, it did not solve the x-vector sparsity. For solving this, we
evaluated two other versions of ReLU and their results are shown in
the second and third rows of this section. For LReLU, we just select
0.2 for the slope of the negative part and did not check other val-
ues. It is obvious that both non-linearities have better performance
than ReLU and LReLU performs slightly better. In theory, PReLU
should perform better because learns the slope based on the data but
it seems it overfitted more to the training speakers.

The two types of attention mechanism described in Section 3.8
were evaluated in this work and we found the variant with separate
activations for calculating attention weights and pooled statistics to
perform better. The ninth row of the table shows the result of this
configuration. This method improves the verification performance
for most of the conditions while it increases the computation cost by
about 100 % in our case.

In the last row of the table, we report the effect of adding Gaus-
sian noise to the features during training as an additional regulariza-
tion method. For each feature dimension, zero mean Gaussian noise
is added with standard deviation of 0.2 times the standard deviation
of that dimension. This augmentation improves performance for few
cases.

5. CONCLUSIONS

In this work, we have successfully implemented and trained x-vector
extractor using a general-purpose machine learning toolkit, namely
Tensorflow. We have tested different configurations and modifica-
tions to the x-vector extractor topology. We show that using the
tricks an suggestions from this paper a similar or better performance
can be obtained as compared to the well tuned original x-vector im-
plementation from the highly optimized Kaldi toolkit.

We tested different normalizations applied to input features and
statistics in the pooling layer, but these experiments did not provide
consistent improvements over all evaluation datasets. Similarly, we
found dropout regularization ineffective when training our speaker
embedding extractor. On the other hand, L2-regularization consis-
tently improves the verification performance across all the evaluation
conditions.

Both LReLU and PReLU activation functions have improved
the verification performance consistently as compared to standard
ReLU non-linearity. LReLU performs slightly better than PReLU,

which seems to overfitted more to the training data. Attention mech-
anism have improved the performance for most conditions while it
increased the x-vector extraction time by about 100 %. However, for
the moment, it is not clear whether this improvement comes from the
attention mechanism or from the increased number of parameters in
the network. This still needs to be investigate in future.

Like other augmentation methods, adding Gaussian noise to the
input features during the training has a positive effects on the perfor-
mance for some conditions. In our experiments, we filter speakers
used for training by a minimum number of utterances available per
speaker. Adding more augmentations increases the number of utter-
ances available for individual speakers and, as a result, we include
more data from more speakers into our training set. Therefore, in fu-
ture experiments, we should investigate, whether the improvements
obtained from the augmentations do not actually come only from
having more speaker in the training data.

We will also investigate other neural network architectures, new
topologies and training objectives in our future work on learning
speaker representations.
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