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Abstract—The processing of speech corrupted by interfering
overlapping speakers is one of the challenging problems with
regards to today’s automatic speech recognition systems. Recently,
approaches based on deep learning have made great progress
toward solving this problem. Most of these approaches tackle
the problem as speech separation, i.e., they blindly recover all
the speakers from the mixture. In some scenarios, such as smart
personal devices, we may however be interested in recovering one
target speaker from a mixture. In this paper, we introduce Speaker-
Beam, a method for extracting a target speaker from the mixture
based on an adaptation utterance spoken by the target speaker.
Formulating the problem as speaker extraction avoids certain
issues such as label permutation and the need to determine the
number of speakers in the mixture. With SpeakerBeam, we jointly
learn to extract a representation from the adaptation utterance
characterizing the target speaker and to use this representation
to extract the speaker. We explore several ways to do this, mostly
inspired by speaker adaptation in acoustic models for automatic
speech recognition. We evaluate the performance on the widely
used WSJ0-2mix and WSJ0-3mix datasets, and these datasets mod-
ified with more noise or more realistic overlapping patterns. We
further analyze the learned behavior by exploring the speaker rep-
resentations and assessing the effect of the length of the adaptation
data. The results show the benefit of including speaker information
in the processing and the effectiveness of the proposed method.

Index Terms—Speaker extraction, speaker-aware neural net-
work, multi-speaker speech recognition.

I. INTRODUCTION

AUTOMATIC speech recognition systems are now becom-
ing widely deployed in real applications, which increases

the need for robustness in adverse conditions. One particularly
challenging problem, commonly occurring in spontaneous
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conversations and human-machine communication, is speech
corrupted by interfering speakers. This type of interference has
shown to be very difficult to reduce and greatly deteriorates the
quality of speech transcriptions. Most of the research dealing
with overlapping speech has focused on speech separation
[1], [2], where all the source signals are recovered from the
observed mixture signal. This problem has been studied in
the past using methods, such as Computational auditory scene
analysis [3], [4], Non-negative matrix factorization [5], [6]
and Factorial Hidden Markov models [7], [8], and was greatly
advanced recently thanks to deep learning based approaches
[2], [9]–[11]. However, in some practical situations, such as
smart personal devices, we may be interested in recovering a
single target speaker while reducing noise and the effect of
interfering speakers [12]–[15]. We call this problem target
speaker extraction. In contrast to speech separation, extracting
the target speaker avoids problems such as label permutation,
dependence on the number of speakers and the speaker-tracing
problem (see Section II-A for further discussion).

Most previous studies aiming to extract the target speaker
[16]–[18] realized their aim by training a neural network on the
target speaker data only, thus creating a model specifically de-
signed to extract this particular speaker. The models are trained
either in a speaker-pair-dependent mode, where both the target
speaker and the interferer are observed in the training data, or
in a target-dependent mode where the model can generalize to
unseen interfering speakers. Both of these modes rely on the
assumption of having substantial amount of data from the target
speaker and do not allow the extraction of a speaker that was
unseen during the training.

In this work, we follow the idea of target speaker extraction
using a neural network, but rather than using a specialized model
for a particular target speaker, we train a speaker independent
model and inform it about the target speaker using additional
speaker information. The network can use this information to
focus on the target speaker, considering all the others as interfer-
ence. We call this approach SpeakerBeam. The neural network
in SpeakerBeam can be trained on a variety of speakers and
employed to extract speakers unseen during the training. The
additional speaker information determining the target speaker
is obtained from an adaptation utterance spoken by the target
speaker. In practice, this adaptation utterance could be obtained,
for example, from part of a conversation without any overlap or
pre-recorded by the target user on his/her personal device.
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We explore different approaches for utilizing the information
from adaptation utterances to cause the neural network to ex-
tract the target speaker. Most of these approaches are inspired
by speaker adaptation of acoustic models. There are two main
problems to be solved: a) how to use the speaker information
to modify the behavior of the neural network, and b) how to
extract the speaker information from the adaptation utterance.
For the first problem, we look into three different methods: in-
put bias adaptation [19]–[21], factorized layer [22] and scaled
activations [23]. To extract the speaker information from the
adaptation utterance, we can either use speaker representations
that have been widely used for speaker identification tasks, such
as i-vectors [24] or jointly learn the speaker representation using
sequence summarization [21] or its modification with a simple
attention mechanism.

In this paper, we first explain how this work relates to re-
cent speech separation and extraction methods and our previous
work (Section II). Then, we describe the proposed SpeakerBeam
method and its variants (Section III). Section IV describes the in-
tegration of the method with multichannel processing and an au-
tomatic speech recognizer. Sections V and VI outline the datasets
used and the experimental setup. Finally, the results are reported
in Section VII and further analysis is provided in Section VIII.

II. RELATIONSHIP TO PREVIOUS WORK

A. Related Speech Separation Work

Most recent work on the neural network processing of over-
lapped speech tackles the problem from a speech separation per-
spective, i.e. recovering all the sources from the given mixture.
Compared with the separation of speech and non-speech signals
(e.g. speech-noise or speech-music mixtures), where the indi-
vidual sources have inherently different characteristics, speech-
speech separation gives rise to several problems that require
more specialized approaches. To introduce these problems, let
us consider a simple approach, where the neural network pro-
cesses a mixture signal and produces all the source signals as
individual outputs. This approach suffers from the following
problems:

1) dependence on the number of speakers — the architec-
ture of the neural network inherently limits the number of
speakers in the mixture, that can be processed.

2) label-permutation problem — the correspondence be-
tween outputs of the network and the speakers is arbitrary,
therefore there are multiple possible correct outputs of the
network where the speaker order varies. This makes it dif-
ficult to define the targets for the network and to compute
the error function during training.

3) speaker-tracing problem — when processing a mixture
with a network frame-by-frame or block-by-block, the or-
der of the speakers on the output may change arbitrarily
and proper alignment across the frames or blocks needs to
be ensured.

The two main approaches that address neural network based
speech separation are Deep clustering (DC) and Permutation
Invariant Training (PIT). In DC [10], [25] and its variants [26],

a neural network is used to compute embeddings for all time-
frequency bins. These embeddings can be then clustered into
group time-frequency bins corresponding to the same speaker.
This solves the label-permutation problem as the estimated em-
beddings are ignorant as regards the order of the sources. The
architecture of such a network is also independent of the number
of speakers, although this number must be determined during the
clustering step.

In PIT [11], [27], the neural network outputs estimations of all
source signals. The main idea is to solve the label permutation
problem by finding the permutation of the estimated sources on
the output of the network that best matches the desired targets.
Kolbæk et al. [27] have also shown that the same network can
be used to process mixtures with different numbers of speakers
as long as we can define a maximum, which can be a reasonable
assumption in many scenarios. The objective of PIT is more
closely related to the actual separation task than in DC and can
be more easily combined with the joint training of e.g. an ASR
system.

For the speaker tracing problem, both the DC and PIT meth-
ods rely on the ability of a recurrent architecture to keep its
outputs consistent over time. In DC, the network should keep
the embeddings for the same speaker in the same part of the
embedding space, and in PIT, it should keep assigning the same
speaker to the same output of the network. This has proven to
work well in cases where the mixture is short and fully over-
lapped, but can cause problems for longer recordings or more
complicated overlapping patterns, which naturally occur in real
conversations.

The proposed SpeakerBeam method does not suffer from
problems 1) and 2) as the neural network predicts the speech of
the target speaker only. Additionally, it also solves the speaker
tracing problem as the explicit speaker information enables the
neural network to follow the same speaker over different frames
or processing segments.

B. Relationship With Our Previous Work

We gradually built and refined the SpeakerBeam approach
over several studies [28]–[31]. In this section, we clarify the
relationship between this work and our previous research.

In [28], we first introduced the speaker-aware extraction
scheme as part of a multi-channel system and experimented with
different speaker-dependent neural network architectures. The
work in [28] focused mainly on a closed-speaker-set case and
evaluated a factorized layer scheme (see Section III) as the most
suitable method. We later extended this method with sequence
summarization in [29] to improve the performance in an open-
speaker set scenario. Therein, we also evaluated SpeakerBeam
as the front-end of an automatic speech recognition system. In
[30], the automatic speech recognition performance was further
improved by exploring the joint training of the SpeakerBeam
front-end with an ASR system. While these studies [28]–[30]
focused on a multichannel case, in [31], we investigated the
ASR performance in a single-channel setting.

This paper builds upon the previous ones, summarizes the
findings, and brings new modifications, evaluation and anal-
ysis. In particular, we provide a thorough evaluation of the
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Fig. 1. Overall scheme of single-channel extraction for an example with one interfering speaker and noise.

single-channel scenario and different variants of SpeakerBeam
on standard WSJ0-2mix and WSJ0-3mix datasets. We also cre-
ate new WSJ0-2mix-long and WSJ0-2mix-noisy datasets to ex-
plore the effect of more natural overlapping patterns and a higher
amount of noise on the results. Furthermore, we experiment with
a combination of SpeakerBeam and DC, leading to improved
performance. We finally provide an analysis of the learned
embeddings and behavior with different lengths of adaptation
utterance.

C. Related Speaker Extraction Work

After our proposal of SpeakerBeam in [28], several other stud-
ies followed the idea of extracting a target speaker using an adap-
tation utterance [15], [32], [33]. The authors of [15] built upon
deep attractor networks [26] and suggested using the adaptation
utterance to map the time-frequency points of the mixture into a
canonical embedding space, where the embeddings correspond-
ing to the target speaker are pulled together. The results show
effectiveness even for very short adaptation utterances, however,
the approach remains to be tested on a publicly available dataset
or under more challenging conditions.

The work reported in [32] realized target speech extraction
by combining speech separation and speaker identification. The
authors proposed making use of embeddings in deep attractor
networks to identify the target speaker in the extracted signals.
This approach cannot exploit auxiliary information about the
target speaker to improve the separation process. Moreover, it
requires an additional module for speaker selection that may
introduce speaker identification errors.

The method introduced in [33] proposes concatenating a d-
vector [34] extracted from the adaptation utterance with one of
the layers of the neural network to achieve the target speaker
extraction. A similar way of using the speaker representation
did not work well in our experiments (see ’input-bias’ method in
Section VII-A). This may possibly be due to the difference in the
experimental settings, i.e. in [33], the target speaker was notably
dominant over the interference (10.1 dB signal-to-distortion ra-
tio), while in our experiments, the target and interference are
equally strong on average (0.2 dB SDR).

III. PROPOSED SPEAKERBEAM METHOD

In this section, we formally define the problem of speaker
extraction, introduce the notation we use and describe the pro-
posed SpeakerBeam method. Figure 1 shows the overall scheme
of the mixing model and the extraction.

A. Problem Definition

The problem of speaker extraction is to isolate the speech of a
target speaker from an observed mixture of multiple overlapping
speakers and optionally an additional noise. We assume a mixing
model:

y(m)[n] = s
(m)
0 [n] +

I−1∑

i=1

s
(m)
i [n] + v(m)[n], (1)

where n is the discrete time index, I is the number of speakers in
the mixture, s(m)

i [n] for i = 0, . . . , I − 1 is the speech signal of
the ith speaker as captured by microphone m with i = 0 being
the target speaker, v(m)[n] is the additional noise and y(m)[n] is
the observed mixture.

In this work, we perform the extraction in the short-time
Fourier transform (STFT) domain, where we can model the mix-
ing process as

Y (m)[t, f ] = S
(m)
0 [t, f ] +

I−1∑

i=1

S
(m)
i [t, f ] + V (m)[t, f ]. (2)

Here, [t, f ] are the indexes corresponding to the time frame and
the frequency bin and Y , Si, V are the STFT-domain counter-
parts of y, si, v, respectively. We will use the notation Y, Si,
V for the T × F matrices comprising all time-frequency points
Y [t, f ], Si[t, f ], V [t, f ], respectively, with T being the number
of time frames and F the number of frequency bins in the STFT
representation of given signal. In the remainder of this section,
we will focus on a single channel case (in this case, index (m) can
be omitted). A multi-channel extension of SpeakerBeam will be
addressed in Section IV.

Our method extracts the target speaker from the mixture, using
additional information about the target speaker in the form of an
adaptation utterance. This utterance will be denoted a[n] in the
time domain, A[t, f ] in the STFT domain and A for a Ta × F
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Fig. 2. Three different methods of informing the neural network about the target speaker. The red box represents the speaker information λ derived from the
adaptation utterance. �; denotes vector-scalar multiplication, �; denotes element-wise vector-vector multiplication.

matrix comprising all time-frequency points, where Ta is the
number of frames in the adaptation utterance. The adaptation
utterance a[n] contains speech from the same speaker as s0[n],
however it is always a different utterance from s0[n].

The extraction is performed by means of a neural network
that takes the mixture as an input, the adaptation utterance as
auxiliary information and provides a mask that can be used to
obtain an estimate of the target speech:

M = g(|Y|, |A|), (3)

∧
S0 = M�Y, (4)

where g is the transformation carried out by the mask estima-
tion neural network, | · | denotes the magnitude of a given STFT
signal, M is the estimated mask, � denotes element-wise mul-
tiplication and

∧
S0 is the estimated target-speaker STFT signal.

In general, it would be possible to process directly the complex
spectrum of the signals, but in this work, we limit ourselves to
using the magnitudes only as in most of the related studies [10],
[11], [26].

B. Informing the Network

Modifying the behavior of a neural network using additional
speaker information is a task that has been heavily explored for
speaker adaptation in acoustic models. The methods applied in
our work are thus inspired by previous findings in this field.
We explore three different ways of informing the network —
input bias adaptation, a factorized layer and scaled activations, as
depicted in Figure 2. Please note, that the figure depicts a rough
schematic view of the network, and a more precise description
of the layers and the architecture will be given in the System
configuration sub-section in Section VI. All three methods make
use of the speaker information λ (red box in Figure 2). In III-C,
we will specify how λ is obtained from the adaptation utterance.

1) Input Bias Adaptation: The most straightforward tech-
nique, commonly used in acoustic modeling, is to append the
speaker information to the features on the input of the neural
network [19]–[21]. This effectively performs the adaptation of
the biases in the first layer of the network [22]. We can express
the neural network processing as

X1 = σ0(L0([X0,λ
(bias)];ψ0)), (5)

Xk+1 = σk(Lk(Xk;ψk)) for k ≥ 1, (6)

where Xk is the input to the kth layer, Lk(Xk, ψk) is the trans-
formation computed by the kth layer parameterized by ψk, and
σk is an activation function. For example, with fully connected
layers, ψ = {W,b} and L(X, ψ) = Wx+ b, where W is a
weight matrix and b is a bias vector.

2) Factorized Layer: Previous literature has shown, that a
more powerful adaptation than simply adapting the input bias
can be achieved by modifying all the parameters in one of the
layers of the network. In a method introduced in [35], one of
the layers of the network is factorized into multiple sublayers,
which are then combined using weights derived from the speaker
information. Following the previous notation and denoting the
index of the factorized layer q and the number of sub-layers as
J , the network processing is defined as

Xk+1 =

{
σk(Lk(Xk;ψk)) for k �= q,

σk(
∑J−1

j=0 λ
(fact)
j Lk(Xk;ψ

(j)
k )) for k = q.

(7)
The network thus learns common basis for all the speakers,

which then can be combined with different weights λ(fact) to
make the network extract different speakers. The size of vector
λ(fact) is determined by the number of factorized sub-layers J ,
which is chosen as a hyper-parameter.

3) Scaled Activations: An alternative speaker adaptation
method is introduced in [23], [36], where the output of each
unit in one of the layers of the network is scaled by weights
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derived from the speaker information. This method is similar
to the factorized layer approach, however it is computationally
simpler. In this case, the processing performed by the neural
network is:

Xk+1 =

{
σk(Lk(Xk;ψk)) for k �= q,

σk(λ
(act) � Lk(Xk;ψk)) for k = q.

(8)

Here the size of vector λ(act) is determined by the size of the
adaptive layer, rather than the number of factorized sub-layers
as in the previous approach. Note that although the method in-
troduced here follows the same idea as in [23], [36], it differs
slightly in how the scaling weights are obtained and where ex-
actly they are applied.

C. Obtaining the Speaker Information

In this section, we describe methods for extracting speaker
information λ from an adaptation utterance, which is then used
to inform the network, as described in the previous section. We
explore three different methods — i-vector based extraction, a
sequence summarizing network and its extension using simple
attention.

1) I-Vectors: A common way to represent speaker-related in-
formation in speech data is the i-vector, which has been used
extensively for e.g. speaker recognition [24], speaker adaptation
[19], [37] or speaker diarization [38]. I-vectors are fixed-length
low-dimensional representations of speech segments of variable
length. For more information on i-vector extraction, we refer the
reader to [24], [39]. In our work, we extract the i-vector from
the adaptation utterance and post-process it with an auxiliary
network to obtain the vector λ used in one of the three schemes
presented in the previous section.

2) Sequence Summarizing Network: Although i-vector
extraction is designed to preserve speaker variability, it uses
a separate step, which is not optimized for the target speaker
extraction task we are addressing. Therefore, some information
important for speaker extraction may be lost. The second
method we propose applies the adaptation utterance directly to
the input of the auxiliary network. To convert from frame-wise
features to an utterance-wise vector, we employ average pool-
ing after the last layer in the auxiliary network. This way, the
extraction of speaker information from the adaptation utterance
may be learned jointly with the speaker extraction:

λ̄t = z(|A|), (9)

λ =
1

Ta

∑
λ̄t, (10)

where z is the transformation performed by the auxiliary neural
network, λ̄t is the frame-wise vector extracted by the auxiliary
network for frame t, which is then averaged over the T frames
in the adaptation utterance to obtain the final λ.

3) Sequence Summarizing Network With Attention: The av-
erage pooling at the end of the auxiliary network weighs all
frames equally. This may be detrimental when some of the
frames are silence or for example, corrupted by noise. To make
the scheme more flexible, we extend it with a simple attention
mechanism. Here, the output of the auxiliary network is extended

with one value, āt. This predicted value for each frame is then
used, after a softmax operation, to weigh the contribution of the
individual frames to the averaging operation:

(λ̄t, āt) = z(|A|), (11)

a = softmax(ā), (12)

λ =
∑

atλ̄t, (13)

where ā = [ā1, . . . , āTa
] denotes the attention energies (before

the softmax), and a = [a1, . . . , aTa
] is the final attention vector,

after the softmax normalization.

D. Training Objective

The neural network in SpeakerBeam estimates a T-F mask
corresponding to the target speech. Different choices for the ob-
jective function for training the mask estimation networks have
been previously explored in the literature. Here, we follow
the findings in [40], which show that a good choice for the objec-
tive function is the mean square error between the magnitude of
the STFT of the desired speech and the magnitude of the STFT of
the observation, masked by the estimated mask. In addition, we
also weigh the different time-frequency points using the phase
differences between the clean and observed signals as suggested
in [27]. This leads to an objective function with the form:

Jspkbeam = ||M� |Y| − |S0| �max(0, cos(θy − θs0))||2,
(14)

where θy and θs0 are the T × F matrices of the phases of
observed speech and target speaker speech, respectively.

We also explore the multi-task training of SpeakerBeam to-
gether with the Deep clustering method, in a similar fashion to
that employed for Chimera networks [41], where the DC objec-
tive serves as a regularizer in a singing voice separation task. In
this case, the neural network has two output layers, one predict-
ing a mask for SpeakerBeam and the other predicting embed-
dings for Deep clustering

(M,E) = g(|Y|, |A|), (15)

whereE is the matrix of the embeddings. The objective function
of the training is then computed as the average of the Speaker-
Beam and Deep clustering objective functions

Jspkbeam+dc = αJspkbeam + βJdc, (16)

where α, β are interpolation weights. In this paper, we set α and
β so that both objectives are in approximately the same range
(α = 0.5, β = 0.5e−5). For details on the computation of the
objective function for deep clustering Jdc from the estimated
embeddings E, please refer to [10], [25].

IV. INTEGRATION WITH BEAMFORMING AND ASR

In this section, we describe how to integrate the SpeakerBeam
method with beamforming and an ASR-level objective criterion.
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A. Multi-Channel Extraction

Following the single-channel procedure, the neural network
estimates a mask corresponding to the target speech in the mix-
ture. The mask is estimated for each channel separately and the
overall mask is obtained as a median across all the channels.
The resulting mask is then used to accumulate statistics about
the target signal and compute statistically optimal beamforming
filters. Finally, to obtain the estimate of the target speech, the
filters are applied to the multi-channel signal. The procedure for
estimating the statistics of the target signal can be described as

M(m) = g(|Y(m)|, |A|), (17)

M = median(M(m)), (18)

ΦSS [f ] =

∑
tM [t, f ]y[t, f ]yH [t, f ]∑

tM [t, f ]
, (19)

ΦNN [f ] =

∑
t(1−M [t, f ])y[t, f ]yH [t, f ]∑

t(1−M [t, f ])
, (20)

where M(m) is the estimated mask for channel m and
ΦSS ,ΦNN are the spatial co-variance matrices (SCM) corre-
sponding to the target speech and interference, respectively.
y[t, f ] = [Y (1)[t, f ], . . . , Y (M)[t, f ]] is a vector comprising the
observed signal at time-frequency point [t, f ] for all micro-
phones. Different beamforming filters, such as the Generalized
Eigenvalue beamformer (GEV) [42] or Minimum variance dis-
tortionless response (MVDR) beamformer [43], can then be
computed using the estimated ΦSS ,ΦNN . In this work, we use
the GEV beamformer defined as

hGEV[f ] = argmax
h

hH [f ]ΦSS [f ]h[f ]

hH [f ]ΦNN [f ]h[f ]
, (21)

where h is a beamforming filter. The computed beamforming
filters then can be used to estimate the target signal as

∧
S[t, f ] = hH [f ]y[t, f ]. (22)

This procedure for neural network mask-based beamform-
ing was proposed for speech denoising [44], [45] and has been
shown to be very effective. Estimating the mask by using the neu-
ral network from each channel separately ensures independence
from microphone array configuration, and averaging across time
and channels when computing the statistics provides robustness
against small errors made by the network. Additionally, speech
produced by the linear filtering process is better suited for pro-
cessing by automatic speech recognition systems than signals
produced by masking as in Eq. (4).

B. Joint Training With ASR

For a case where SpeakerBeam is used in a chain with beam-
forming and the ASR acoustic model, we also explore the option
of training it jointly with the acoustic model, using the cross-
entropy between the estimated tied-state distribution and the true
tied-state labels, Jasr. To train the SpeakerBeam network, this
objective is then back-propagated through the acoustic model,

feature extraction and the beamforming process:

∂Jasr
∂ψ

=
∂Jasr

∂
∧
sfbank

∂
∧
sfbank

∂
∧
S

∂
∧
S

∂M

∂M

∂ψ
, (23)

where
∧
sfbank are the features extracted from the estimated sig-

nal,
∧
S is the STFT of the estimated signal, M are the estimated

masks andψ is the vector of the parameters of the SpeakerBeam
neural network. Most of the gradients can be computed using
backpropagation through standard neural network blocks. For
gradient ∂

∧
S/∂M, we need to backpropagate through a GEV

beamformer, in particular through complex eigenvalue decom-
position. This step was thoroughly covered in [46].

V. DATASETS

For our evaluation, we chose the dataset introduced in [10],
which has been used in many previous studies [10], [25]–[27].
It consists of simulated mixtures based on utterances taken from
the Wall Street Journal (WSJ0) corpus [47]. For different experi-
ments, we report results for four different versions of the dataset,
namely WSJ0-2mix [10] for single-channel 2-speaker exper-
iments, WSJ0-3mix [10] for single-channel 3-speaker experi-
ments, WSJ0-2mix-MC [48] for multi-channel experiments and
our own modification of WSJ0-2mix, WSJ0-2mix-long, which
consists of single-channel 2-speaker mixtures with a longer du-
ration and more complicated overlapping pattern and WSJ0-
2mix-noisy, where we mixed additional noise into the mix-
tures. In the following, we describe these sets in detail. With
all datasets, the adaptation utterances are randomly chosen. In
evaluation set, for each mixture and each speaker in the mix-
ture, we randomly choose one utterance from the same speaker,
different than the utterance in the mixture, to be the adaptation
utterance. For training set, for each mixture and each speaker,
we randomly choose 100 adaptation utterances which we iterate
through over the training epochs (the same adaptation utterance
may be repeated). The choice for both evaluation and training is
fixed for all experiments.

A. WSJ0-2mix and WSJ0-3mix

The WSJ0-2mix [10] contains mixtures of two speakers at
signal-to-noise ratios between 0 dB and 5 dB. It consists of a
training set, a cross validation set and an evaluation set of 30,
10 and 5 hours, respectively. For training and cross-validation
sets, the mixed utterances were randomly selected from the
si_tr_s, while for evaluation set, the utterances were taken
from si_dt_05 and si_et_05 parts of WSJ0. In total, the
training set contains 20000 mixtures from 101 speakers, the
cross-validation set contains 5000 mixtures from the same 101
speakers and the evaluation set contains 3000 utterances from 18
speakers (unseen in the training). The WSJ0-3mix [25] contains
three-speaker mixtures analogous to WSJ0-2mix in terms of the
amounts of data, number of speakers and WSJ0 sets from which
the utterances are selected. All data are used at an 8 kHz sam-
pling rate for consistency with previous studies. In experiments
evaluating only signal-based measures, we use “min” versions
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Fig. 3. Type of mixtures in datasets WSJ0-2mix and WSJ0-2mix-long. The
first row corresponds to speech from speaker A, the second row to speech from
speaker B.

of the datasets, where the mixture is cut to the length of the short-
est utterance (for consistency with previous work). However, to
be able to evaluate ASR accuracy in Sections VIII.D, VIII.E,
VIII.F, we use the “max” version, where the shorter utterance in
the mixture is padded with zeros.

B. WSJ0-2mix-long

In addition to the original WSJ0-2mix, we created a dataset
that aims to model more realistic overlapping conditions, similar
to those occurring in natural conversations. The mixing process
followed the procedure used to create WSJ0-2mix, but for each
of the speakers in the mixture, we selected 3 random utterances
and placed them in sequence with random pauses in between
(sampled uniformly in the 0-10 seconds range). This resulted
in a dataset of mixtures with an average length of 45 seconds
and an average overlap of 20%. Figure 3 shows a schematic
comparison of the types of mixtures in WSJ0-2mix and WSJ0-
2mix-long.

C. WSJ0-2mix-MC

The WSJ0-2mix-MC [48] dataset is a spatialized version of
WSJ0-2mix. It is created by convolving the data with room
impulse responses generated with the image method [49], [50]
to simulate an 8-channel microphone array. The room char-
acteristics, speaker locations and microphone array geometry
are randomly generated — microphone array sizes range from
15 to 25 cm, T60 is drawn from 0.2-0.6 seconds. The average
distance of a speaker from the array is 1.3 m with a 0.4 m
standard deviation.

D. WSJ0-2mix-noisy

The WSJ0-2mix-noisy dataset is equivalent to WSJ0-2mix,
but with additional noises added to the mixtures. The noises
were randomly selected from the CHiME-1 [51] and CHiME-3
[52] corpora. The CHiME-1 noises were recorded in a living
room, and thus contain noises from typical domestic environ-
ments and often children’s speech. The CHiME-3 noises are
from four environments — buses, streets, cafes and pedestrian
areas. We split the noises into training and test subsets and mixed
them into the mixtures at SNRs of 20 dB to 0 dB (with respect
to the mixture signal).

VI. SYSTEM CONFIGURATION

A. Speaker Extraction Neural Network Settings

In the experiments, we used two different neural network
configurations. The first and smaller configuration, is used to

Fig. 4. Final configuration of the neural network for SpeakerBeam with the
scaled activations method and sequence summarization with attention. For more
details, see Equations (8), (11)–(13).

compare the different techniques of informing the neural net-
work about the speaker in the SpeakerBeam scheme. For all the
following experiments, we used the larger configuration. The
small configuration consisted of one BLSTM and three fully
connected layers. All the layers used ReLU activations and batch
normalization, except for the output layer with logistic sigmoid
activation. The numbers of neurons in the layers were 300-1024-
1024-257. The larger configuration consisted of 3 BLSTM lay-
ers, each followed by a linear projection layer and one linear
output layer. The BLSTM layers had 512 units per direction
and their output of dimensionality 1024 (512 forward + 512
backward) was then transformed by the projection layer back
to dimension 512. Each projection layer was followed by tanh
nonlinearity. The larger configuration is depicted in Figure 4.
For both the factorized layer and scaled activations methods,
the second layer was used as speaker adaptive layer. With the
factorized layer, it was split into 30 sub-layers. For the input-bias
method, the dimension of the appended speaker vector (extracted
by the auxiliary network) was 100. The networks were trained
with an Adam optimizer with a learning rate 1e− 4. With the
larger configuration, we did not use dropout, or batch normal-
ization (in contrast with the smaller configuration where batch
normalization was used). The network parameters were initial-
ized using the Glorot initialization [53]. The neural networks
used for comparison with DC and PIT had the same architecture
apart from the last layer, which was I × 257 for PIT (predicting
masks for all the speakers) andD × 257 for DC, whereD = 30
is the embedding size.



ŽMOLÍKOVÁ et al.: SPEAKERBEAM: SPEAKER AWARE NEURAL NETWORK FOR TARGET SPEAKER EXTRACTION IN SPEECH MIXTURES 807

B. Speaker Information Extraction Settings

For i-vectors, we used a Kaldi i-vector extractor [54], trained
on clean data. The Universal Background model we used
consisted of 2048 Gaussians, and the i-vectors were 100-
dimensional. The i-vectors were computed per utterance.

As the auxiliary network, we used a network with 2 fully
connected layers with 200 units per layer and ReLU activations.
The output layer had linear activation. Its size was determined
by the method used (see Figure 2). The auxiliary network was
trained jointly with the main network.

C. Beamforming Settings

The beamforming was undertaken in the STFT domain with
20 ms windows and a 10 ms shift. We used a GEV beamformer
as specified in IV-A. We regularized the noise spatial co-variance
matrix by adding 1e−3 to its diagonal to stabilize its inversion.
The output signal was post-processed with a single-channel post-
filter [42].

D. ASR Settings

The input acoustic features were 40-dimensional log Mel fil-
terbanks with a context window extension of 11 frames. The
features were mean-normalized per utterance. For the acoustic
model, we used a simple DNN with 5 fully connected hidden
layers of 2048 units each and ReLU activation functions. For
training, we used HMM tied-state alignments obtained from
single-channel clean data using a GMM-HMM system.

VII. EXPERIMENTS

This section provides an experimental evaluation of our ap-
proach. We compare the different methods used to inform the
neural network about the target speaker and compare the perfor-
mance with DC and PIT. We also explore the effectiveness with
mixtures containing three speakers. Then, we explore the perfor-
mance with noisy and multichannel data. All the experiments are
evaluated using the signal-to-distortion ratio (SDR) (as defined
by [55] and computed using [56]) or the frequency-weighted
signal-to-noise ratio (fw-SNR) computed using tools provided
with the REVERB challenge [57]. For automatic speech recog-
nition experiments, we provide word error rates (WER).

A. Methods for Informing the Network

We compared different methods for informing the network
about the target speaker and for extracting speaker information
from the adaptation utterance as described in Sections III-B,
III-C. These experiments were performed on the WSJ0-2mix
dataset and used the smaller architecture of the network, as some
methods do not scale well to a larger architecture. Table I shows
the results of the experiments.

We can observe that the input bias adaptation (input-bias)
method performs rather poorly. In this case, the neural network
does not learn to make proper use of the additional input fea-
tures and keeps extracting all speakers present in the mixture.

TABLE I
COMPARISON OF DIFFERENT METHODS FOR INFORMING THE NETWORK

ABOUT THE SPEAKER AND EXTRACTING THE SPEAKER INFORMATION.
RESULTS SHOW SDR AND FW-SNR IMPROVEMENTS FOR THE 2MIX

DATASET. IBM STANDS FOR IDEAL BINARY (ORACLE) MASK

Although adapting the bias is a very successful approach to ASR
acoustic models adaptation, for our task, it is arguably insuffi-
ciently powerful. We confirmed that the poor results are not a
consequence of the smaller architecture of the network by re-
peating the input-bias + seqsum + att experiment with the larger
architecture. This lead to−1.7 dB SDR degradation and−0.9 dB
fw-SNR degradation.

The factorized layer (fact-layer) and scaled activations
(scaled-act) both yield notably better extraction. The factorized
layer approach tends to be slightly better, however, this is at
the cost of increased computation and memory demands due
to the many sub-layers. Therefore, for experiments described
in the following sections, we used the scaled activations method,
which constitutes a compromise between performance and com-
putational cost.

Comparing the different methods of extracting the speaker in-
formation, we find that all three methods (ivec, seqsum, seqsum-
att) lead to similar results. Training the speaker representation
jointly with the network performs slightly better. Although the
attention does not significantly improve the performance, we
observed that the learned attention weights properly detect the
non-silent parts of the adaptation utterance, which could be help-
ful when the adaptation utterances contain larger amounts of si-
lence or noise. We therefore retained the attention mechanism
for the following experiments.

B. Comparison With DC and PIT

To better evaluate the ability of SpeakerBeam to extract a
target speaker, we compare its performance with Deep clustering
and Permutation invariant training. For these experiments, we
use the larger architecture, which is similar to settings used in
previously published work on DC [10], [25] and PIT [27]. Note
that with PIT and DC, the outputs are assigned to individual
speakers in an oracle way, i.e. we choose an assignment that
minimizes the error. With SpeakerBeam, we extract each of the
speakers by providing the network with the speaker information,
and the assignment is thus decided within the method. For a
fairer comparison, we could consider coupling DC and PIT with
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TABLE II
COMPARISON OF THE SDR IMPROVEMENTS [DB] WITH WSJ0-2MIX AND

WSJ0-2MIX-LONG DATASETS FOR SPEAKERBEAM, DC AND PIT.
FOR DC AND PIT, WE USE ORACLE PERMUTATIONS OF THE

SEPARATED SOURCES FOR EVALUATION

a speaker identification module, possibly introducing additional
errors. However, we adhere to using the oracle assignment to
inspect the upper bound of such an extraction.

The first set of experiments compares performance for the
2mix dataset, which is commonly used to evaluate speech sep-
aration methods. Table II shows that the results for this dataset
are comparable, with Deep clustering performing slightly worse
than the other two methods. Previously published work on DC
[58] achieved an SDR improvement of 9.4 dB with a similar
network architecture. The main differences between [58] and
our setup are the optimization schedule and dropout regulariza-
tion. Tuning these training settings could thus lead to improved
accuracy.

The last experiment in the first part of Table II shows that
we can combine Deep clustering and SpeakerBeam. For this
experiment, the SpeakerBeam architecture was extended by an
additional output layer with a Deep clustering objective. This
additional loss can serve to better train the network, while dur-
ing evaluation, this output is discarded. The results show that
the combination indeed helps with training, and the accuracy
surpasses both SpeakerBeam and DC when used individually.

The second part of Table II shows the performance with the
WSJ0-2mix-long dataset with longer, less overlapped mixtures.
For these mixtures, we used networks trained for the WSJ0-2mix
and refined them using random 10-second excerpts from the
WSJ0-2mix-long training data. The network could thus learn to
process segments with no or a partial overlap. The results show
that for these data, SpeakerBeam performs better. The degra-
dation of DC and PIT compared with SpeakerBeam originates
from the errors in tracing the speaker correctly over time; in
some mixtures, the speakers on the output are switched in the
middle of the utterance as shown in the example in Figure 5.
The outputs of DC and PIT would require further processing for
tracing the speakers over the utterance, whereas SpeakerBeam
does this jointly with the extraction. We can speculate that such
behavior would appear more frequently with even longer mix-
tures or more speakers. Combining the DC and SpeakerBeam
objectives during training again leads to a performance gain.

C. Three Speaker Experiments

Table III shows the results of the extraction when applied
to mixtures with 3 speakers. Since the neural network in

Fig. 5. Example of a mixture from the WSJ0-2mix-long dataset as processed
by SpeakerBeam and Deep Clustering methods.

TABLE III
RESULTS OF PERFORMING EXTRACTION ON MIXTURES OF TWO AND THREE

SPEAKERS, USING WSJ0-2MIX AND WSJ0-3MIX DATASETS. THE

RESULTS ARE IN TERMS OF SDR IMPROVEMENTS [DB]

SpeakerBeam is independent of the number of speakers in the
mixture, we can train the same network for both 2-speaker and
3-speaker data. Table III compares the performance for both
2-speaker and 3-speaker mixtures with different training sets.
The results show that a network trained only on 2-speaker mix-
tures does not generalize very well to 3-speaker mixtures. If we
train only on 3-speaker mixtures, the network can extract speak-
ers from both 2- and 3-speaker mixtures with a reasonable level
of performance. For the 2-speaker mixtures, there is still a gap in
accuracy compared with matched training. The use of all the data
for training leads to good performance with both 2 and 3 speaker
mixtures. We performed the same set of experiments with DC
and PIT. For DC, we used the oracle number of speakers during
the clustering step. For PIT, we used a network with 3 outputs.
For 2-speaker mixtures, during the training, we considered one
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TABLE IV
RESULTS OF AUTOMATIC SPEECH RECOGNITION WITH WSJ0-2MIX IN TERMS

OF WORD ERROR RATE USING SINGLE-CHANNEL RECORDINGS

TABLE V
RESULTS OF AUTOMATIC SPEECH RECOGNITION ON WSJ0-2MIX IN

TERMS OF WORD ERROR RATE USING MULTI-CHANNEL

RECORDINGS AND BEAMFORMING

of the outputs to be silent channel, and during testing, we kept
only two outputs with the most energy. This follows the proce-
dure described in [27]. The results of both PIT and DC show
similar trend as with SpeakerBeam, with even slightly worse
generalization from network trained on 2 speakers to 3-speaker
mixtures, especially with PIT.

D. Automatic Speech Recognition Experiments

Table IV shows the results we obtained for the automatic
speech recognition of the extracted speech in the WSJ0-2mix
dataset. Note that in these experiments, to allow for ASR evalu-
ation, we used the max version of the dataset, where the length
of the mixture corresponds to the length of the longer of the two
utterances. By contrast, in the previous experiments the mix-
tures were cut to the length of the shorter utterance. The single
speaker and mixtures results show the lower and upper bounds
of the error. In all the experiments, the speech recognition sys-
tem is trained on matched training data (single-speaker, mixture
or processed with SpeakerBeam, PIT or DC). We can see that
SpeakerBeam significantly reduces the error compared with the
original mixtures and can thus work as a front-end for an ASR
system. Additionally, we also processed single speaker data with
SpeakerBeam, to see how much the processing degrades the
speech when there is no overlap. The result shows degradation
from 12.2% to 15.3% WER. In this case, SpeakerBeam was
not trained on single-speaker data, such training could possibly
reduce the performance gap.

E. Multi-Channel Experiments

The experimental results in Table V show the ASR perfor-
mance with the multi-channel dataset WSJ0-2mix-MC. Note
that these results cannot be directly compared with Table IV as
WSJ0-2mix-MC contains much more reverberation. Speaker-
Beam is used here in combination with a GEV beamformer as

TABLE VI
RESULTS OF EXTRACTION FOR DATASET WITH ADDITIONAL NOISE

IN TERMS OF SDR IMPROVEMENTS

TABLE VII
RESULTS OF EXTRACTION FOR DATASET WITH ADDITIONAL NOISE

IN TERMS OF SPEECH RECOGNITION ERRORS

described in Section IV-A. The use of the beamformer, which
employs the SpeakerBeam output, improves the accuracy of the
ASR system to 22.5% WER.

In addition, training the front-end jointly with the ASR using
the cross-entropy objective further improves the results. In this
case, the SpeakerBeam network is initialized with the network
trained with the mask objective (Eq. (14)) and the acoustic model
with the network trained on the data enhanced by SpeakerBeam.
Both networks are then jointly fine-tuned with the final ASR
objective. The masks extracted with the front-end tend to be
sparser when trained for the ASR objective which may be more
convenient for further processing with beamforming.

F. Noisy Data

Tables VI,VII show the results of experiments on WSJ0-2mix-
noisy. For all the experiments (PIT, DC, SpkBeam), the networks
are trained on a training set, where each mixture contains ad-
ditional noise with a randomly selected SNR as described in
Section V-D. For testing, we created several copies of the test-set
with various levels of noise ranging from 20 to 0 dB. We can see
that even with quite high levels of unstationary noises, Speaker-
Beam still succeeds in extracting the target speaker and im-
proves both the signal-level measure and the ASR performance.
For more results on noisy and reverberant mixtures, reader can
also refer to our study in [59] or our demo video [60]. Note
that although the presented experiments use noises recorded
in real environments, the mixtures consist of fully overlapped
speech, thus may not well reflect the nature of real conversations.
The application of speech extraction methods in real conditions
is an important issue which we plan to investigate in future
work.
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Fig. 6. t-SNE of derived speaker representations. The clusters correspond to
speakers in the test data.

Fig. 7. Matrix of pairwise distances of derived speaker representations.

VIII. ANALYSIS OF LEARNED BEHAVIOR

A. Learned Speaker Embeddings

The auxiliary network in the SpeakerBeam architecture
should convey information about the speaker from the adap-
tation utterance to the main network performing the speaker
extraction. However, the auxiliary network is never trained with
a direct speaker-related objective, only with the final objective
of the speaker extraction. In this section, we explore how the
learned vectors for the output of the auxiliary network capture
the speaker information. Figure 6 shows the embeddings ob-
tained from the adaptation utterances in test data, projected into
two dimensions by means of t-SNE [61]. We can see that the vec-
tors form 18 clusters corresponding to the 18 speakers in the test
data. Note that there is no overlap between the speakers in the
training and evaluation sets. The auxiliary network thus seems
to generalize well to unseen speakers. The same conclusions
can also be drawn from Figure 7, which shows the pair-wise
Euclidean distances of the embeddings. Apart from the distinct

speaker clusters, we can also see two main categories of speak-
ers corresponding to males and females; the gender represents
important variability in the embedding space.

B. Analysis of Performance Per Speaker

The speaker characteristics are arguably a big factor in the per-
formance of speaker extraction. In this Section, we inspect more
closely the accuracy of the method for different speakers. First,
we examine whether the accuracy varies greatly for different
target speakers in the dataset. We used the WSJ0-2mix dataset
and the larger neural network architecture for this analysis (cor-
responds to the 9.7 dB improvement in Table II). Figure 8 shows
that the mean SDR improvement does not vary very significantly
for different target speakers, with a minimum of 8.0 dB mean
SDR improvement for speaker ’423’ and a maximum of 11.2 dB
mean SDR improvement for speaker ’442’. A greater variation
can be observed in the results, if we consider the impact of the
combination of two speakers in the mixture. In Figure 9, we
show the mean SDR improvements for different combinations
of target and interfering speakers for SpeakerBeam, PIT and DC.
Again, we can see two main groups of speakers corresponding
to gender. Mixtures of same-gender speakers tend to be much
more difficult to separate. Overall, the mean SDR improvement
on same-gender mixtures is 7.2 dB, while for different-gender
mixtures, it is 11.9 dB (For PIT, the SDR improvements are
6.3 dB and 11.8 dB and for DC, 5.9 dB and 10.9 dB for same-
gender and different-gender mixtures respectively). We can see
a few speaker pairs where the method is unable to differentiate
between the speakers sufficiently well and the improvements are
close to zero. By comparison with Figure 7, these correspond
to cases where the extracted speaker embeddings are very sim-
ilar. We believe that the ability to differentiate between these
speakers would improve by training SpeakerBeam with a larger
speaker variability in the training set (the WSJ0-2mix dataset
we used comprises 101 training speakers).

C. Impact the Adaptation Utterance Length

In all of our experiments, the average length of an adaptation
utterance was about 6 seconds. However, for some applications,
it might be more convenient to use shorter utterances. In Fig-
ure 10, we thus further analyze the impact the length of the
adaptation utterance has on the accuracy of the separation. For
this analysis, we used the WSJ0-2mix dataset and assigned each
test utterance an adaptation utterance of longer than 8.5 seconds.
All the adaptation utterances were then cut to different lengths
of 0.5 to 8 seconds and used as an input to the auxiliary network.
During the cutting, we also removed the initial 0.5 seconds of the
utterances to avoid an initial silence. The plot shows the average
SDR improvements achieved using these shortened adaptation
data. For an adaptation utterance of longer than 2.5 seconds, the
performance saturates. Already at 1 second, the accuracy of the
extraction is fairly close to that of the longer utterances. With
less speech, the performance deteriorates, however even with
0.5 seconds of adaptation data, SpeakerBeam manages to im-
prove the SDR compared with the mixtures. Note that these
tendencies may be highly dependent on the training data.
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Fig. 8. SDR improvements for different speakers in the WSJ0-2mix testing set. The numbers at the top of the figure are the mean SDR improvements for each
speaker. The violin plot shows the distribution shape, maximum, minimum and mean SDR improvement over the utterances from the target speaker.

Fig. 9. Mean SDR improvements for different target-interfering speaker combinations in the WSJ0-2mix testing set. Speakers are sorted by gender. Speakers
051 to 447 are male, speakers 050 to 445 are female.

Fig. 10. Impact of the adaptation utterance length on SDR improvement.

IX. CONCLUSION

In this paper, we introduced the SpeakerBeam method for ex-
tracting a target speaker from a mixture of multiple overlapping
speakers based on informing the neural network about the tar-
get speaker using additional speaker information. We compared
different methods for informing the neural network. The results
show that the scaled-activations and factorized-layer methods
are more suitable than simply appending the speaker information

to the input. We compared the method to Deep Clustering and
Permutation invariant training, where we observed comparable
performance for short, fully overlapped mixtures and the advan-
tage of SpeakerBeam for longer mixtures with more complicated
overlapping patterns. This is due to the ability of SpeakerBeam
to better track the speaker over time. Furthermore, the method
can be also combined with Deep Clustering for further gains. In
addition to using our method with single-channel 2-speaker mix-
tures, we also showed its ability to handle 3-speaker mixtures
and the possibility of extending the method to multi-channel pro-
cessing and joint training with an automatic speech recognition
system.

In future work, we plan to explore the effect of using larger
datasets, especially with higher numbers of speakers, to further
improve learned speaker representations and extraction accu-
racy. Another possible direction involves combining Speaker-
Beam with existing speaker diarization approaches and testing
its performance on speaker diarization tasks.
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