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ABSTRACT

This paper presents an analysis of our diarization system
winning the second DIHARD speech diarization challenge,
track 1. This system is based on clustering x-vector speaker
embeddings extracted every 0.25s from short segments of the
input recording. In this paper, we focus on the two x-vector
clustering methods employed, namely Agglomerative Hierar-
chical Clustering followed by a clustering based on Bayesian
Hidden Markov Model (BHMM). Even though the system
submitted to the challenge had further post-processing steps,
we will show that using this BHMM solely is enough to
achieve the best performance in the challenge. The analy-
sis will show improvements achieved by optimizing individ-
ual processing steps, including a simple procedure to effec-
tively perform “domain adaptation” by Probabilistic Linear
Discriminant Analysis model interpolation. All experiments
are performed in the DIHARD II evaluation framework.

Index Terms— Speaker Diarization, Variational Bayes,
HMM, x-vector, DIHARD

1. INTRODUCTION

In our previous works, we introduced a Bayesian Hidden
Markov Model (BHMM) with eigenvoice priors for diariza-
tion (often referred to as Variational Bayes (VB) diarization)
[1, 2]. Recently, we introduced a simplified variant of the
BHMM for a fast and robust clustering of x-vectors [3], which
is in contrast to the original approach where the model was
used to cluster frame-level Cepstral features. To robustly
discriminate between speakers the BHMM uses Probabilis-
tic Linear Discriminant Analysis (PLDA) pre-trained on x-
vectors. The BHMM is used to model the sequence of neu-
ral network based speaker embeddings (x-vectors) that are
extracted from consecutive short sub-segments of the input
recording. The inference in this model gives us the diarization
output, that is, it infers the number of speakers, the speaker
models and the assignment of x-vectors to speakers.
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Experiments performed on the DIHARD I dataset [4, 5]
showed that this model outperforms the Agglomerative Hi-
erarchical Clustering (AHC) commonly used to cluster x-
vectors for diarization tasks [6, 1]. In this work, we fur-
ther analyze the model and show that, using more appropri-
ate configurations, the BHMM would achieve the best per-
formance in the recent DIHARD II challenge (track 1) even
without the need of re-segmentation or overlap speech post-
processing steps that were present in our official winning sub-
mission to this challenge. We further show how to effectively
adapt BHMM to the target domain by a simple interpolation
of PLDA models.

This work is conducted on the DIHARD II dataset [7],
designed for the second of a yearly evaluation series focus-
ing on hard diarization conditions. The Second DIHARD
Speech Diarization Challenge had four different tracks: tracks
one and two focused on single-channel diarization following
DIHARD I format; tracks three and four introduced multi-
channel diarization tasks, using CHiME 5 data [8]. The
present work focuses on the optimization of the BHMM sys-
tem, which is the core of the system submitted to track 1.
For more details on the whole system description for track 1
and description of the systems submitted by BUT team to the
other tracks we refer the reader to [9].

2. BAYESIAN HMM FOR X-VECTOR CLUSTERING
The diarization model used for x-vector clustering is a
Bayesian HMM, where the states correspond to speakers, the
transition between states represent the speaker turns and the
state distributions are derived from a PLDA model pre-trained
on labeled x-vectors in order to facilitate discrimination be-
tween speaker voices.

The HMM has a one-to-one correspondence between the
HMM states and speakers. The HMM model is ergodic (i.e.
transitions between all speakers are possible), where the (ini-
tial) number of states is chosen to be at least the highest num-
ber of speakers we would expect to appear in a conversation.

The HMM topology and transition probabilities model
the speaker turn durations (see Figure 1 for an example
with 3 speaker states): Ploop is a tunable parameter, which
corresponds to the probability of staying in the same state
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(speaker). For each input observation (x-vector), we leave
the current state with probability 1−Ploop and we transition
to new state of speaker s with probability πs1. The probabili-
ties πs also control the selection of the initial HMM state. The
probabilities πs are inferred from the input conversation using
the iterative VB updates. Thanks to the automatic relevance
determination (ARD) [10, 2] principle, the values πs for any
redundant speakers tend to converge to zero. This allows to
infer the number of speakers in the input conversation.

s1

s2s3

1− Ploop

1− Ploop

1− Ploop

Ploop

Ploop
Ploop

π1

π2

π3

Fig. 1. HMM model for 3 speakers with 1 state per speaker,
with a dummy non-emitting (initial) state.

Each speaker (or HMM state) specific distribution is a
Gaussian modeled using PLDA like model, which is pre-
trained on a large number of speaker labeled x-vectors. We
consider the simplified PLDA model [11], which assumes that
the distribution of speaker means

ms = m + Vys, (1)
where ys is a latent vector with standard normal prior and
where the speaker specific distribution of x-vectors

p(xt|ys) = N (xt;ms,Σwc), (2)

where Σwc is the within speaker covariance matrix shared by
all speaker models. To estimate the speaker specific distribu-
tions, we only need to infer the ys vectors.

To address the speaker diarization task for a given input
observation (x-vector) sequence, the speaker distributions and
the probabilistic alignment of observations to HMM states
(speakers) are jointly estimated together with the πs proba-
bilities. We use Variational Bayes (VB) inference [10] to it-
eratively estimate the distributions using the update formulas
that can be found in [3]. The most likely alignment of obser-
vations to HMM states (speaker) is the diarization solution.
For a more detailed description of the model, update formu-
las, and definition of the configuration parameters, we kindly
refer the reader to [1, 2, 3] or directly to our python imple-
mentation of this inference [12].

3. SYSTEM DESCRIPTION
The diarization system submitted to the track 1 of the sec-
ond DIHARD speech diarization challenge consists of the
following steps. In the training phase, an x-vector extractor

1For convenience, we allow to re-enter the same speaker as it leads to
simpler update formulas.

and an i-vector extractor are trained. Also, two PLDA mod-
els are trained: one on x-vectors from the VoxCeleb dataset
[13] and one on x-vectors from the DIHARD development
set. The two models are interpolated by averaging the covari-
ance matrices to obtain the final robust and domain adapted
PLDA model, which is used for AHC and BHMM-based x-
vector clustering. In the diarization phase, Weighted Pre-
diction Error (WPE) [14] is used first to de-reverberate the
speech signal. Then x-vectors are extracted from the input
conversation using a 1.5s sliding window and a shift of 0.25s.
The x-vectors are centered, whitened and length normalized
(which is also done for the PLDA training data). Next the
x-vectors are pre-clustered using AHC to obtain initial labels
for the BHMM clustering. x-vectors are then clustered using
the BHMM model. To refine the diarization output another
BHMM model is used at frame-level (using MFCCs features)
as re-segmentation step. This model uses the pre-trained i-
vector extractor as part of the frame-level BHMM to model
speaker distributions [2] (not to extract any i-vectors). Finally,
the segments with overlapped speech of two-speakers are de-
tected and post-processed to get two speaker labels assigned.
This last overlapped speech detection step is not analyzed in
this paper. Details on this step can be found in [9].

3.1. x-vector extraction
Our x-vector extractor is based on time-delay neural network
(TDNN) similar to [15]. It is trained for speaker classification
on VoxCeleb [13] training and VoxCeleb2 [16] development
data with data augmentation, amounting to 6 million utter-
ances from 7146 speakers. The utterances are further cut into
2s segments for the neural network training. 64-dimensional
filter banks (Fbanks) are used as input features, using an
energy-based voice activity detector (VAD) to remove silence.
For test conversations, the 512 dimensional x-vectors are ex-
tracted from the penultimate layer every 0.25s from (up to)
1.5s segments. x-vectors are centered and whitened using
statistics estimated from DIHARD development and evalu-
ation data, and then length normalized.

3.2. PLDA models
The out-of-domain PLDA model is trained using the large
VoxCeleb training set. The in-domain PLDA model is trained
on the limited DIHARD dev set. Both models are estimated
from centered, whitened and length-normalized x-vectors ex-
tracted from 3s segments. In our submission to DIHARD II
challenge, we used the following domain adaptation strategy:
The directions where the within- and across-class variability
were higher in the in-domain PLDA model than in the out-of-
domain PLDA were identified and the extra variability was
added to the corresponding covariance matrices in the out-of-
domain PLDA. Later, we found that the simple interpolation
of the two PLDA models is sufficient and even slightly im-
proves the results. Hence, experiments in this paper are per-
formed with the latter simpler approach resulting in a slightly
better performance than reported in the official leaderboard.
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3.3. AHC
The AHC approach mainly follows [6] as implemented in [17]
using Kaldi toolkit [18] with some optimizations. The full
clustering process goes as follows: For each input conver-
sation, x-vectors are extracted for 1.5s windows with 0.25s
overlap (in contrast to the default 0.75s in [17]). A conver-
sation specific Principal Component Analysis (PCA) is esti-
mated on the x-vectors and used to project the x-vectors (and
also PLDA model) to few dimensions so as to keep only a
30% of the total variability (instead of the Kaldi default 10%).
See Section 5.1 for details on this new frame-rate and en-
ergy percentage settings. The projected x-vectors are once
more length-normalized. PLDA speaker verification scores
are calculated for pairs of x-vectors to construct the pairwise-
similarity matrix that is used in the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) variant of AHC.
different-speaker hypothesis. The threshold used as stopping
criteria for the AHC is fine-tuned on the development set.
Before performing AHC, the scores in the similarity matrix
are optionally calibrated using conversation specific unsuper-
vised linear calibration as follows: a GMM with two univari-
ate Gaussian components with shared variance is trained on
all the scores from the similarity matrix. The two learned
Gaussian components are assumed to model the distributions
of same-speaker (the component with the higher mean) and
different-speaker scores. The two Gaussian distributions and
the corresponding learned priors (the component weights) are
then used to map the scores in the similarity matrix to log odds
ratios between the same- and different-speaker hypothesis.

3.4. BHMM clustering of x-vectors
The PLDA models used are the same as the ones trained for
the AHC. The BHMM is initialized from the AHC diarization
output. We tune the AHC to under-cluster so that the BHMM
has more freedom to search for the optimal results and con-
verge to the right number of speaker models2. The parameters
of the model [3] are set as follows: Given that the input fea-
tures are x-vectors extracted every 0.25s, the downsampling-
Factor (commonly set to 25 for frame level features) and min
duration are set to 1 and effectively not used. The Speaker
regularization coefficient FB was optimized on the develop-
ment set and set to 11. Details on the Acoustic scaling factor
FA and Ploop can be found in the analysis in section 5.2.

3.5. Frame-level BHMM re-segmentation
As features, standard 19 MFCC plus Energy plus first or-
der delta coefficients are used, extracted from 16kHz speech.
Neither mean nor variance normalization are applied in the
feature extraction. We use a gender-independent UBM-
GMM, with 1024 diagonal-covariance Gaussian components.
The dimensionality of the speaker latent variable ys is 400.
The UBM-GMMs and the total variability matrix are trained

2Note that the inference in BHMM cannot converge to higher number of
speakers than what is suggested by the AHC-based initialization.

using the VoxCeleb2 dataset, which amounts to 2025h of
speech. A single iteration of this frame-level BHMM is ap-
plied [3]. The optimal values found for the parameters [2] are
FA = 0.1, FB = 1, Ploop = 0.95, min duration = 1 and
downsamplingFactor = 5.

4. EVALUATION DATA AND METRIC
The experiments are evaluated on the DIHARD II dataset.
This dataset was created for the second DIHARD challenge
[7], the second of a yearly series of challenges designed
to foster research on diarization in hard conditions. The
dataset is an extension of the first DIHARD dataset [4] and
includes utterances coming from several sources (YouTube,
court rooms, meetings, etc.). The corpus consists of 192 de-
velopment and 194 evaluation recordings, containing around
18h and 17h of speech, respectively.

The system is evaluated in terms of the Diarization Error
Rate (DER) as defined by NIST [19]. We employ the for-
mat established for track 1 of the second DIHARD challenge:
we use the oracle speech activity labels so that only speaker
errors are accounted for in the DER, we evaluate the system
with no collar and we evaluate the overlap speech regions.

5. SYSTEM ANALYSIS & RESULTS

5.1. AHC optimization

From previous works [3] and the Kaldi baseline [17], we in-
herited the practice of projecting x-vectors by means of PCA
so as to keep only 10% of their variability (see section 3.3).
Table 1 shows results of AHC clustering when the x-vectors
are projected keeping 10%, 30% and 100% of variability and
when the AHC is performed on non-calibrated or calibrated
PLDA scores. As seen in the table, projecting the x-vectors

% Energy kept
Set Calibration 10 30 100

Dev No 21.33 20.33 23.44
Yes 20.89 20.46 30.03

Eval No 21.70 21.19 25.89
Yes 20.86 21.12 30.98

Table 1. DER results attained with AHC using PLDA models
trained on VoxCeleb with different energy levels kept for the
x-vector projection and with/without score calibration

to a smaller dimensionality is important to obtain better per-
formance [20]. Still, for the DIHARD data, it is better to
keep around 30% of the energy than only a 10%. Regard-
ing calibration, it interestingly helps or harms depending on
the percentage of energy kept. It improves performance when
10% energy is kept it hurts for the case of 100%. For the
usually optimal PCA projection, keeping 30% of energy, cal-
ibration does not have a very significant effect, nevertheless,
for further experiments, we decided to keep the 30% energy
x-vectors and perform AHC on calibrated scores.
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PLDA trained on
Set VB reseg. VoxCeleb DIHARD dev Interp.

Dev No 20.46 20.55 19.74
Yes 19.84 20.20 19.21

Eval No 21.12 22.29 20.96
Yes 20.11 21.48 19.97

Table 2. DER results attained with AHC using PLDA mod-
els trained on VoxCeleb (out-of-domain), DIHARD dev (in-
domain) and when interpolating them

In Table 2, we present results attained by the AHC when
the PLDA is trained either on VoxCeleb data, on the DI-
HARD dev set or when both PLDA models are interpolated.
In this table (and the following tables), numbers in gray de-
note cheating results, when the training data includes the test
data. As it can be seen, even though by only a small margin,
the interpolated model provides the best performance. Apply-
ing frame-level BHMM re-segmentation on top of the AHC
output improves the results on eval set 1% absolute DER.

5.2. BHMM optimization
Table 3 shows the improvement that can be achieved by using
x-vector level BHMM clustering. In order to obtain optimal
results, the AHC used as initialization needs to be run so as
to under-cluster the x-vectors (see section 3.4). Performing

Threshold
Set method Optimal for AHC Under-clustered

Dev AHC 20.46 (33.55)
BHMM 19.33 18.34

Eval AHC 21.12 (33.31)
BHMM 19.90 19.14

Table 3. DER for different clustering methods and thresholds

x-vector BHMM clustering provides a 2% absolute DER gain
in both sets compared to the AHC (18.34% vs 20.46% in dev
and 19.14% vs 21.12% on eval). Next, we analyze the effect

Frame rate
Set FA Ploop 0.75s 0.25s

Dev 1.0 0.0 19.55 23.20
0.4 0.8 20.13 18.34

Eval 1.0 0.0 20.29 22.89
0.4 0.8 22.74 19.14

Table 4. DER for different x-vectors extracting frame rates

of using different frame rates for extracting the x-vectors. Ta-
ble 4 compares results when extracting x-vectors every 0.75s
(as done in [3]) or every 0.25s. We also illustrate which are
the optimal settings for the FA and Ploop parameters, as tun-
ning them is crucial for obtaining best performance. Overall,
increasing the frame rate for estimating x-vectors results in
more than an 1% absolute DER gain in both dev and eval
sets.

PLDA trained on
Set VB reseg. Voxceleb DIHARD dev Interp.

Dev No 18.34 17.87 17.90
Yes 18.35 18.16 18.23

Eval No 19.14 18.83 18.39
Yes 18.95 18.80 18.38

Table 5. DER results attained with BHMM using PLDA
models trained on VoxCeleb (out-of-domain), DIHARD dev
(in-domain) and when interpolating them

In table 5, we analyze the effect of using the interpo-
lated PLDA model for the BHMM x-vector clustering. The
BHMM clustering benefits more than the AHC from the
PLDA interpolation (see table 2), resulting in close to 0.7%
absolute DER gain on the eval set.

Finally, table 5 presents also results after adding the
BHMM re-segmentation step. Unfortunately, the frame-level
BHMM re-segmentation provides only marginal gains after
the x-vector level BHMM clustering. This is in contrast to the
great gains seen in our previous participation [21] and when
applied after AHC (see table 2). This is due to several fac-
tors: first of all, the x-vectors are newly extracted every 0.25s,
which means 3 times better time resolution as compared to
the typical 0.75s. Besides, the BHMM diarization output is
better than that attained with the AHC, leaving less margin
for improvements. Finally, the x-vector level BHMM clus-
tering uses the interpolated PLDA model, adapted to the tar-
get domain, whereas the frame-level re-segmentation model
is solely trained on (out of domain) VoxCeleb2 dataset (which
also explains the small degradation obtained on the develop-
ment set after the re-segmentation step). Our attempts to train
the frame-level BHMM re-segmentation models on DIHARD
dev data provided no significant gains on the evaluation so far.
Still, this direction will be explored in the future.

6. CONCLUSIONS

In this work we have described the core of our winning system
on track 1 of the second DIHARD speech diarization chal-
lenge, providing an analysis of the steps taken to optimize
performance. We have shown that the improved x-vector ex-
tractor, increasing the frame-rate for x-vector extraction and
using x-vector level BHMM diarization with PLDA model in-
terpolation for “domain adaptation” significantly boosts per-
formance.

Our last year’s system [21] consisted of an x-vector ex-
tractor, AHC, frame-level BHMM diarization and overlapped
speech detection modules, and (according to the leaderboard)
attained 25.01% DER on the DIHARD II evaluation set.
Compared to it, the actual described system improves perfor-
mance on by close to an absolute 7% DER, attaining a (first
position deserving) 18.39% DER. The code for this system is
available in [22].

6522

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 13,2020 at 09:14:31 UTC from IEEE Xplore.  Restrictions apply. 



7. REFERENCES

[1] M. Diez, L. Burget, and P. Matejka, “Speaker diarization
based on bayesian hmm with eigenvoice priors,” in Pro-
ceedings of Odyssey 2018, The speaker and Language
Recognition Workshop, 2018.

[2] M. Diez, L. Burget, F. Landini, and H. Černocký,
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dihard speech diarization challenge 2018,” in Proc. In-
terspeech 2018, 2018, pp. 2798–2802. [Online]. Avail-
able: http://dx.doi.org/10.21437/Interspeech.2018-1749

[22] L. Burget, M. Diez, S. Wang, and F. Landini, “VBHMM
x-vectors Diarization (aka VBx),” https://speech.fit.
vutbr.cz/software/vbhmm-x-vectors-diarization.

6523

Authorized licensed use limited to: Brno University of Technology. Downloaded on May 13,2020 at 09:14:31 UTC from IEEE Xplore.  Restrictions apply. 


