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Learning Document Embeddings Along With
Their Uncertainties

Santosh Kesiraju

Abstract—Majority of the text modeling techniques yield only
point-estimates of document embeddings and lack in capturing
the uncertainty of the estimates. These uncertainties give a notion
of how well the embeddings represent a document. We present
Bayesian subspace multinomial model (Bayesian SMM), a gener-
ative log-linear model that learns to represent documents in the
form of Gaussian distributions, thereby encoding the uncertainty
in its covariance. Additionally, in the proposed Bayesian SMM,
we address a commonly encountered problem of intractability
that appears during variational inference in mixed-logit models.
We also present a generative Gaussian linear classifier for topic
identification that exploits the uncertainty in document embed-
dings. Our intrinsic evaluation using perplexity measure shows
that the proposed Bayesian SMM fits the unseen test data better
as compared to the state-of-the-art neural variational document
model on (Fisher) speech and (20Newsgroups) text corpora. Our
topic identification experiments show that the proposed systems are
robust to over-fitting on unseen test data. The topic ID results show
that the proposed model outperforms state-of-the-art unsupervised
topic models and achieve comparable results to the state-of-the-art
fully supervised discriminative models.

Index  Terms—Bayesian
identification.

methods, embeddings, topic

1. INTRODUCTION

EARNING word and document embeddings have proven
L to be useful in a wide range of information retrieval, speech
and natural language processing applications [1]-[5].

These embeddings elicit the latent semantic relations present
among the co-occurring words in a sentence or bag-of-
words from a document. Majority of the techniques for learning
these embeddings are based on two complementary ideolo-
gies, (i) topic modeling, and (ii) word prediction. The former
methods are primarily built on top of the bag-of-words model
and tend to capture higher-level semantics such as topics. The
latter techniques capture lower-level semantics by exploiting the
contextual information of words in a sequence [6]—[8].
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On the other hand, there is a growing interest towards devel-
oping pre-trained language models [9], [10], that are then fine-
tuned for specific tasks such as document classification, question
answering, named entity recognition, etc. Although these mod-
els achieve state-of-the-art results in several NLP tasks; they
require enormous computational resources to train [11].

Latent variable models [12] are a popular choice in unsu-
pervised learning; where the observed data is assumed to be
generated through the latent variables according to a stochastic
process. The goal is then to estimate the model parameters, and
also the latent variables. In probabilistic topic models (PTMs),
the latent variables are attributed to topics, and the generative
process assumes that every document is a distribution over topics
and every topic is modeled as a distribution over words in the
vocabulary [13]. Recent works showed that auto-encoders could
also be seen as generative models for images and text [14], [15].
Generative models allow us to incorporate prior information
about the latent variables, and with the help of variational Bayes
(VB) techniques [14], [16], [17], one can infer a posterior distri-
bution over the latent variables instead of just point-estimates.
The posterior distribution captures the uncertainty of the latent
variable estimates while trying to explain (fit) the observed data
and our prior belief. In the context of text modeling, these latent
variables are seen as embeddings.

In this paper, we present the Bayesian subspace multino-
mial model (Bayesian SMM) as a generative model for the
bag-of-words representation of documents. We show that our
model can learn to represent each document in the form of a
Gaussian distribution, thereby encoding the uncertainty in its
covariance. Further, we propose a generative Gaussian classifier
that exploits this uncertainty for topic identification (ID). The
proposed VB framework can be extended in a straightforward
way for subspace n-gram model [18], that can model n-gram
distribution of words in sentences.

Earlier, (non-Bayesian) SMM was used for learning document
embeddings in an unsupervised fashion. They were then used for
training linear classifiers for topic ID from spoken and textual
documents [19], [20]. However, one of the limitations was that
the learned document embeddings (also termed as document
i-vectors) were only point-estimates and were prone to over-
fitting, especially for shorter documents. Our proposed model
can overcome this problem by capturing the uncertainty of the
embeddings in the form of posterior distributions.

Given the significant prior research in PTMs and related algo-
rithms for learning representations, it is crucial to draw precise
relations between the presented model and previous works. We
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do this from the following viewpoints: (a) graphical models
illustrating the dependency of random and observed variables,
(b) assumptions of distributions over random variables and their
limitations, and (c) approximations made during the inference
and their consequences.

The contributions of this paper are as follows: (a) we present
Bayesian subspace multinomial model and analyze its rela-
tion to popular models such as latent Dirichlet allocation
(LDA) [21], correlated topic model (CTM) [22], paragraph
vector (PV-DBOW) [8] and neural variational document model
(NVDM) [15], (b) we adapt tricks from [14] for faster and
efficient variational inference of the proposed model, (c) we
combine optimization techniques from [23], [24] and use them to
train the proposed model, (d) we propose a generative Gaussian
classifier that exploits uncertainty in the posterior distribution of
document embeddings, (e) we provide experimental results on
both text and speech data showing that the proposed document
representations achieve state-of-the-art perplexity scores, and (f)
with our proposed classification systems, we illustrate robust-
ness of the model to over-fitting and at the same time obtain
superior classification results when compared systems based on
state-of-the-art unsupervised models.

We begin with the description of Bayesian SMM in Section II,
followed by VB for the model in Section III. The complete VB
training procedure and algorithm is presented in Section III-A.
The procedure for inferring the document embedding posterior
distributions for (unseen) documents is described in Section III-
B. Section IV presents a generative Gaussian classifier that ex-
ploits the uncertainty encoded in document embedding posterior
distributions. Relationship between Bayesian SMM and existing
popular topic models is described in Section V. Experimental
details are given in Section VI, followed by results and analysis
in Section VII. Finally, we conclude and discuss directions for
future research in Section VIII.

II. BAYESIAN SUBSPACE MULTINOMIAL MODEL

The following steps explain the generative process of our
model. For each document, a K -dimensional latent vector w
is generated from isotropic Gaussian prior with mean O and
precision A:

w~ N(w[0,(AI)™) (1)

The latent vector w is a low dimensional embedding (KX < V)
of document-specific distribution of words, where V' is the size
of the vocabulary. More precisely, for each document, the V-
dimensional vector of word probabilities @ is calculated as:

n=m+Tw, 2)
0 = softmax(n), 3)

where {m, T} are parameters of the model. The vector m
known as universal background model (or bias) represents log
uni-gram probabilities of words. T" known as total variability (or
weight) matrix [25], [26] is a low-rank matrix defining subspace
of document-specific distributions.
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Finally, for each document, a vector of word counts x (bag-
of-words) is sampled from Multinomial distribution:

x ~ Multi(0; N), 4)

where N is the number of words in the document.

7 from (3) represents the natural parameters of the Multino-
mial distribution. Further, we can see that our model is linear in
the space of natural parameters (2). Note that the parameters of
any probability distribution under the exponential family can be
expressed in terms of its natural parameters [16].

The above described generative process fully defines our
Bayesian model, which we will now use to address the following
problems: given training data X, we estimate model parameters
{m, T} and, for any given document Z, we infer a posterior dis-
tribution over the corresponding document embedding p(w | Z).
Parameters of such posterior distribution can be then used as a
low dimensional representation of the document. Note that such
distribution also encodes the inferred uncertainty about such
representation.

Using Bayes’ rule, the posterior distribution of document
embedding w is written as:'

p(x|w)p(w)

P = T afw)p(w) dw ©

In numerator of (5), p(w) represents the prior distribution of
document embeddings (1), and p(x|w) represents the likeli-
hood of observed data. According to our generative process, we
assume that every document « is a sample from Multinomial
distribution (4); hence the log-likelihood is computed as follows:

1%
log p(a|w) = > z; logb;, 6)
=1

exp{m; + t;w}

14
- ;xl o2 (Zj exp{m; + t(,»w}> 0

14
=2 i
i=1

v
log Zexp{mj+tjw} ], (3)

J=1

where t; represents a row in matrix 7'. The problem arises
while computing the denominator in (5). It involves solving the
integral over a product of likelihood term containing the softmax
function and Gaussian distribution (prior). There exists no
analytical form for this integral. This intractability is a generic
problem that arises while performing Bayesian inference for
mixed-logit models [22], [27], multi-class logistic regression or
any other model where the likelihood p(x|w) and prior p(w) are
not conjugate to each other [16]. In such cases, one can resort to
variational inference and find an approximation to the posterior
distribution p(w|x). This approximation to the true posterior

'For clarity, explicit conditioning on T" and m is omitted in the subsequent
equations.
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Fig. 1. Graphical model for Bayesian SMM. The arrows indicate the depen-
dency. The rectangular plate with a symbol on the lower right corner denotes the
number of repetitions of variables inside the plate. The shaded x4; represents
the observed variable (word count), w represents the document-specific latent
variable with hyperparameters o and A. The variables m and T represent model
parameters.

is referred as variational distribution ¢(w) and is obtained by
minimizing the Kullback-Leibler (KL) divergence Dkr, (¢ || p)
from the approximate to the true posterior. But, computing the
Dx1,(q||p) also requires the functional form of true posterior
p(w | x), which is intractable. Hence, we take an alternative
approach to minimize the KL divergence. We express the log
marginal (evidence) of the data as:

log p(z) = Eyflog p(z, w)] + Hlg] + Dxi(q||p), (9
= L(q) + DxL(q|| p)- (10)

Here HJq| represents the entropy of g(w). Given the data x,
log p(x) is a constant with respect to w, and Dx1,(q || p) can be
minimized by maximizing £(q), which is known as Evidence
Lower BOund (ELBO) for a document. This is the standard for-
mulation of variational Bayes [16], where the problem of finding
an approximate posterior is transformed into the optimization of
the functional £(q).

III. VARIATIONAL BAYES

In this section, using the VB framework, we derive and explain
the procedure for estimating model parameters {rn, T} and
inferring the variational distribution, ¢(w). Before proceeding,
we note that our model assumes that all documents and the corre-
sponding document embeddings (latent variables) are indepen-
dent. This independence can be seen from the graphical model
in Fig. 1. Hence, we derive the inference only for one document
embedding w, given an observed vector of word counts .

We chose the variational distribution ¢(w) to be Gaussian,
with mean v and precision T, i.e., ¢(w) = N'(w | v, T~1). The
functional £(¢q) now becomes:

L(q) = E4[log p(z, w)] + Hq], (11
= Eq[logp(z | w)] + Ey[logp(w)] + H[g],  (12)
= E,flogp(x | w)] — Dxw(q||p) (13)

A B

The term B in (13) is the KL divergence from the variational
distribution ¢(w) to the document-independent prior (1), which
can be computed analytically [28] as:

1
Dxr(q||p) = 3 [Mr(l"_l) + log [T'|—Klog A+ viv— K],
(14)
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where K denotes the document embedding dimensionality. The
term A from (13) is the expectation over log-likelihood of a
document (8):

v
Eqlogp(z |w)] = le (m; + t;v)

~E, [mg ( ZV: exp{m; +tjw})] ] .

J=1

F
5)

(15) involves solving the expectation over the log-sum-
exp operation (denoted by F), which is intractable. It appears
when dealing with variational inference in mixed-logit mod-
els [22], [27]. We can approximate F with empirical expectation
using samples from ¢(w), but F is a function of ¢(w), whose
parameters we are seeking by optimizing £(q). The correspond-
ing gradients of £(g) with respect to ¢(w) will exhibit high
variance if we directly take samples from ¢(w) for the empirical
expectation [29]. To overcome this, we will re-parametrize the
random variable w by introducing a differentiable function g

over another random variable € [14]. If p(e) = N(0, I), then:
w=g(e)=v+L e, (16)

where L is the Cholesky factor of I'"!. Using this re-
parametrization of w, we obtain the following approximation:

R v
1 -
F = = Zlog Zexp{mj +tig(&)} |,
r=1

j=1

a7

where R denotes the total number of samples €, from p(e).

Combining (14), (15) and (17), we get the approximation to
L(q). We will introduce the document suffix d, to make the
notation explicit:

L(qa) = — Dxw(qa || p)

v
+ D wa | (mi+tiva)
=1

R 1%
1 ]
— 5D log | Y _exp{m; +1t; g(€ar)}
r=1 =1
(18)

For the entire training data X, the complete ELBO will be simply
the summation over all the documents, i.e., Y ; £(gq). Note that
the KL divergence term in (18) is always non-negative and is
independent of the observed data, hence acts as a regularization
term for the embeddings.

A. Training

The variational Bayes (VB) training procedure for Bayesian
SMM is stochastic because of the sampling involved in the re-
parametrization trick (16). Like the standard VB approach [16],
we optimize ELBO alternately with respect to ¢(w) and
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{m,T}. Since we do not have closed-form update equations,
we perform gradient-based updates. Additionally, we regularize
rows in matrix T while optimizing. Thus, the final objective
function becomes:

D \4
L= L(ga)—w> It
d=1 i=1

where we have added the term for ¢; regularization of rows in
matrix 7', with corresponding weight w. The same regularization
was previously used for non-Bayesian SMM in [20]. This can
also be seen as obtaining a maximum a posteriori estimate of 1"
with Laplace priors.

1) Parameter Initialization: The vector m is initialized to
log uni-gram probabilities estimated from training data. The
values in matrix 7" are randomly initialized from A/(0, 0.001).
The prior over latent variables p(w) is set to isotropic Gaus-
sian distribution with mean 0 and A = {1,10}. The varia-
tional distribution g(w) is initialized to N(0, (0.1)I). Later
in Section VII-A, we will show that initializing the poste-
rior to a sharper Gaussian distribution helps to speed up the
convergence.

2) Optimization: The gradient-based updates are done by
ADAM optimization scheme [23]; in addition to the following
tricks:

We simplified the variational distribution ¢(w) by making its
precision matrix I" diagonal.? Further, while updating it, we used
the log standard deviation parametrization, which ensures that
the variance is always positive:

I'! = diag(exp{2¢}).

The gradients of the objective (18) w.r.t. the mean v is given as
follows:

19)

(20)

v 1B v
_ T . _
VL= | t](x; - = > 0y an)| —hv,  (21)
i=1 r=1 k=1
where

> exp{m; +tig(e)}
The gradient w.r.t log standard deviation ¢ is given as:

VL =1—rexp{2¢}

V. o BV
- Zx’fﬁ Z Z 0t ®expl{sl Oe., (23)
k=1

r=11i=1

where 1 represents a column vector of ones, ® denotes
element-wise product, and exp is element-wise exponential
operation.

The ¢; regularization term makes the objective function (19)
discontinuous (non-differentiable) at points where it crosses the
orthant. Hence, we used sub-gradients and employed orthant-
wise learning [24]. The gradient of the objective (19) w.r.t. a
row t; in matrix 7" is computed as follows:

2This is not a limitation of the model, but only a simplification.
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Algorithm 1: Stochastic VB Training.

1 initialize the model and the variational parameters
2 repeat
3 ford=1...D do
sample €4 ~ N (0, 1)
compute £(qq) using (18)
compute gradient V,,, L using (21)
compute gradient V¢, £ using (23)
update v4 and ¢4 using ADAM
end
10 compute £ using (19)
1 compute sub-gradients ﬁt,;ﬁ using (24) and (25)
12 update rows in 7" using (26)
13 until convergence or max_iterations

r=1...R

L =JE-CREEN S 7 N

D
Vi, L = —wsign(t;) + Z Taivy
d=1
1% 1 R
_ [(Z :L’k,L) E Z Qdir(ug —+ G;Ii—r ® exp{gT})‘| ‘| . (24)
k=1 r=1

Here, sign and exp operate element-wise. The sub-gradient
V¢, L is defined as:

Vtikﬁ + w, tir =0,

Vi L —w, tir =0,

07 tzk = 07

Vti,cﬁ, |tik‘ >0

Finally, the rows in matrix 1" are updated according to:
t; ’Po(ti + di)

where d; is the step in ascent direction:

d; = ndiag(y/s; + e)_lfi.

Here, 7 is the learning rate, f; and s, represent bias-corrected
first and second moments (as required by ADAM) of sub-gradient
@till respectively. Po represents orthant projection, which
ensures that the update step does not cross the point of non-
differentiability. It is defined as:

0 if ¢ (ti + dix) <O,
tir -+ d;p otherwise.

Vtikﬁ < —w
Vtikﬁ > w

= a
Vil = Vo L] < w

(25)

(26)

27

Pol(ti +d;) = { (28)
The orthant projection introduces explicit zeros in the estimated
T matrix and results in a sparse solution. Unlike in [20], we
do not require to apply the sign projection, because both the
gradient @tiﬁ and step d have same sign (point to the same
orthant). The stochastic VB training is outlined in Algorithm 1.

B. Inferring Embeddings for New Documents

After obtaining the model parameters from VB training,
we can infer (extract) the posterior distribution of document
embedding ¢(w) for any given document . This is done by
iteratively updating the parameters of ¢(w) that maximize £(q)
from (18). These updates are performed by following the same
ADAM optimization scheme as in training.

Authorized licensed use limited to: Brno University of Technology. Downloaded on September 04,2020 at 14:37:43 UTC from IEEE Xplore. Restrictions apply.



KESIRAJU et al.: LEARNING DOCUMENT EMBEDDINGS ALONG WITH THEIR UNCERTAINTIES

Note that the embeddings are extracted by maximizing the
ELBO, which does not involve any supervision (topic labels).
These embeddings which are in the form of posterior distribu-
tions will be used as input features for training topic ID classi-
fiers. Alternatively, one can use only the mean of the posterior
distributions as point estimates of document embeddings.

IV. GAUSSIAN CLASSIFIER WITH UNCERTAINTY

In this section, we will present a generative Gaussian classifier
that exploits the uncertainty in posterior distributions of docu-
ment embedding. Moreover, it also exploits the same uncertainty
while computing the posterior probability of class labels. The
proposed classifier is called Gaussian linear classifier with un-
certainty (GLCU) and is inspired by [30], [31]. It can be seen as
an extension to the simple Gaussian linear classifier (GLC) [16].

Let /=1...L denote class labels, d =1...D represent
document indices, and h, represent the class label of document
d in one-hot encoding.

GLC assumes that every class is Gaussian distributed with
a specific mean iy, and a shared precision matrix D. Let M
denote a matrix of class means, with g, representing a column.
GLC is described by the following model:

Wy = K4 + €d, (29)

where pg = Mhgy, p(e) = N(e]0,D ') and w, represent
embedding for document d. GLC can be trained by estimating
the parameters © = { M, D} that maximize the class condi-
tional likelihood of all training examples. For a single training
example, the likelihood is computed as:

p(wg|he, ©) = N(wg| pe, D). (30)

In our case, however, the training examples come in the
form of posterior distributions, g(wq) = N(wq|ve, T';') as
extracted using our Bayesian SMM. In such case, the proper
ML training procedure should maximize the expected class-
conditional likelihood, with the expectation over w, calculated
for each training example with respect to its posterior distribu-
tion g(wg), i.e., B[N (wq | pa, D).

However, it is more convenient to introduce an equivalent
model, where the observations are the means v ;4 of the posteriors
q(wg) and the uncertainty encoded in I';* is introduced into the
model through the latent variable y, as:

Vg = pd + Yad + €, (31)

where p(yq) = N(yq|0,T;"). The resulting model is called
GLCU. Since the random variables y, and €, are Gaussian-
distributed, the resulting class conditional likelihood is obtained
using the convolution of two Gaussians [16]:

p(valhg, O) =

The model parameters for both GLC and GLCU have the same
interpretation, i.e., each class is Gaussian distributed with spe-
cific mean and a common precision matrix. The difference lies
in the evaluation of the likelihood function (30) vs (32).

Nwa|pa, T+ D). (32)
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GLCU can be trained by estimating its parameters ©, that
maximize the class conditional likelihood of training data (32).
This can be done efficiently by using the following EM algorithm.

A. EM Algorithm

In the E-step, we calculate the posterior distribution of latent
variables:

P(Ya|va, ha, ©) x p(va|ya, ha®) p(ya)

o« N(ya|uq, V'), (33)

where
Vi=D+T,, (34)
=[I+ D 'Ta] ' (va — pa). (35)

In the M-step, we maximize the auxiliary function Q with
respect to the model parameters ©. This auxiliary function is the
expectation of log joint-probability with respect to p(yq | V4):

D
Ep lz logp(va, ya | ©)

d=1

Q (36)

D
-D
= Tlog |D| — = [Z (tr( DVd + (ug — (Vg — Nd))T
d=1

X D (ug— (Vg — pa)))| + const.

(37)

Maximizing the auxiliary function Q w.r.t. ©, we have:

7 Z vg—ug) V0=1...L (38)
deZy
-1 1 > T -1
D=5 > (aqa)) +V, (39)
d=1

where ag = ug — (Vg — pa), and Zy is the set of documents
from the class ¢. To train the GLCU model, we alternate between
E-step and M-step until convergence.

B. Classification

Given the posterior distribution of a test document embed-
ding g(w) = N(w |v,T~1), we compute the class conditional
likelihood according to (32), and the posterior probability of a
class Cy, is obtained by applying the Bayes’ rule:

p(v | pr, D, T) p(Cy)
22ep(¥ | e, D.T)p(Ce)

p(Cr |v,T,0) = (40)

V. RELATED MODELS

In this section, we review and relate some of the popular PTMs
and neural network-based document models. We begin with a
brief review of LDA [21], a probabilistic generative model for
the bag-of-words representation of documents.
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Fig.2.  Graphical model for LDA, where z 4, is the observed variable, and 6 4,
z4; are the latent variables.

A. Latent Dirichlet Allocation

Let ® iy represent K topics, where every (row) topic ¢y is
adiscrete distribution over a fixed vocabulary of size V. LDA as-
sumes that every document d is generated by a two-step process:
first, adocument-specific vector (embedding) representing a dis-
crete distribution over K topics is sampled, i.e., 84 ~ Dir(a).
Then, for each word in document d, a topic indicator variable z;
is sampled: z; ~ Multi(64; 1) and the word x; is in turn sampled
from the topic-specific distribution: z; ~ Multi(¢,,;1).

The topic (¢) and document () vectors live in (V' — 1) and
(K — 1) simplexes, respectively. For every word z; in docu-
ment d, there is a discrete latent variable z; that tells which
topic was responsible for generating the word. This topic-word
dependency can be seen from the graphical model in Fig. 2.

During inference, the generative process is inverted to obtain
posterior distribution over latent variables, p(0, z |z, a, ®),
given the observed data « and prior belief «. Since the true
posterior is intractable, Blei e al. [21] resorted to the variational
inference, which finds an approximation to the true posterior
as a variational distribution ¢(0, z). Further, mean-field ap-
proximation was made to make the inference tractable, i.e.,
(0, z) = q(0)I1; a(z:).

In the original model proposed by Blei et al. [21], the param-
eters ® were obtained using the maximum likelihood approach.
The choice of Dirichlet distribution for ¢(@) simplifies the infer-
ence process because of the Dirichlet-Multinomial conjugacy.
However, the assumption of Dirichlet distribution causes limita-
tions to the model, i.e., ¢(@) cannot capture correlations between
topics in each document. This was the motivation for Blei and
Lafferty [22] to model documents with Gaussian distributions,
and the resulting model is called correlated topic model (CTM).

B. Correlated Topic Model

The generative process for a document in CTM [22] is the
same as in LDA, except for document vectors are now drawn
from Gaussian:

n~ N | p, (D)),
0 = softmax(n).

(41)
(42)

In this formulation, the document embeddings 77 are no longer
in the (K — 1) simplex; instead they are dependent through the
logistic normal. This is the same as in our proposed Bayesian
SMM (1). The advantage is that the document vectors can model
the correlations in topics. The topic distributions over vocabulary
@, however, still remained discrete. In Bayesian SMM, the
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Fig. 3. Graphical model for CTM, where x4; is the observed variable, and
M4, Z4; are the latent variables.

topic-word distributions (I") are not discrete; hence it can model
the correlations between words and (latent) topics [22]. The
variational inference in CTM is similar to that of LDA, including
the mean-field approximation, because of the discrete latent vari-
able z (Fig. 3). An additional problem is dealing with the non-
conjugacy. More specifically, it is the intractability while solving
the expectation over log-sum-exp function (see F from (15)).
Blei and Lafferty [22] used Jensen’s inequality to form an upper
bound on F, and this in-turn acted as a lower bound on ELBO.
In our proposed Bayesian SMM, we also encountered the same
problem, and we approximated J using the re-parametrization
trick (Section III). There exist similar approximation techniques
based on quasi-Monte Carlo sampling [27].

Unlike in LDA or CTM, Bayesian SMM does not require
to make a mean-field approximation, because the topic-word
mixture is not discrete, thus eliminating the need for discrete
latent variable z.

C. Subspace Multinomial Model

SMM is a log-linear model; originally proposed for model-
ing discrete prosodic features for the task of speaker verifica-
tion [25]. Later, it was used for phonotactic language recogni-
tion [32] and eventually for topic identification and document
clustering [19], [20]. A similar model was proposed by Maas
et al. [33] for unsupervised learning of word representations.
One of the significant differences among these works is the type
of regularization used for matrix 7"

Another difference is in obtaining embeddings w; for a given
test document. Maas et al. [33] obtained them by projecting the
vector of word counts x4 onto the matrix T, i.e., wqg = T x4,
whereas the authors from [19], [20] extracted the embeddings
by maximizing regularized log-likelihood function. However,
the embeddings extracted using SMM are prone to over-fitting,
especially when the observed documents are short. Our Bayesian
SMM overcomes this problem by capturing the uncertainty of
document embeddings in the posterior distribution. Our exper-
imental analysis in Section VII-C illustrates the robustness of
Bayesian SMM.

D. Paragraph Vector

Paragraph vector bag-of-words (PV-DBOW) [8] is also a log-
linear model, which is trained stochastically to maximize the
likelihood of a set of words from a given document. SMM can
be seen as a special case of PV-DBOW since it maximizes the
likelihood of all the words in a document.
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TABLE I
DATA SPLITS FROM FISHER PHASE 1 CORPUS, WHERE EACH DOCUMENT
REPRESENTS ONE SIDE OF THE CONVERSATION

Set # docs. Duration (hrs.)
ASR training 6208 553
Topic ID training 2748 244
Topic ID test 2744 226

E. Neural Network-Based Models

Neural variational document model (NVDM) is an adaptation
of variational auto-encoders for document modeling [15]. The
encoder models the posterior distribution of latent variables
given the input, i.e., pg(z | ), and the decoder models distri-
bution of input data given the latent variable, i.e., pp(x | z). In
NVDM, the authors used bag-of-words as input, while their en-
coder and decoders are two-layer feed-forward neural networks.
The decoder part of NVDM is similar to Bayesian SMM, as
both the models maximize expected log-likelihood of the data,
assuming Multinomial distribution. In simple terms, Bayesian
SMM is a decoder with a single feed-forward layer. For a given
test document, in NVDM, the approximate posterior distribution
of latent variables is obtained directly by forward propagating
through the encoder; whereas in Bayesian SMM, it is obtained
by iteratively optimizing ELBO. The experiments in Section
VII show that the posterior distributions obtained from Bayesian
SMM represent the data better as compared to the ones obtained
directly from the encoder of NVDM.

F. Sparsity in Topic Models

Sparsity is often one of the desired properties in topic mod-
els [34], [35]. Sparse coding inspired topic model was proposed
in [36], where the authors have obtained sparse representations
for both documents and words. ¢; regularization over rows in T’
matrix of SMM (¢; SMM) was observed to yield better results
when compared to LDA, STC and {5 regularized SMM (/5
SMM) [20]. The relation between SMM and sparse additive
generative model (SAGE) [34] was explained in [19]. In [37],
the authors proposed an algorithm to obtain sparse document
embeddings (called sparse composite document vector (SCDV))
from pre-trained word embeddings. In our proposed Bayesian
SMM, we introduce sparsity into the model parameters 1" by
applying ¢, regularization and using orthant-wise learning.

VI. EXPERIMENTS
A. Datasets

We have conducted experiments on two benchmark
datasets [19], [38], [39] from speech and NLP communities. The
first one is Fisher speech corpus,® which is a collection of 5850
conversational telephone speech recordings with a closed set of
40 topics. Each conversation is approximately 10 minutes long
with two sides of the call and is supposedly about one topic. We
considered each side of the call (recording) as an independent
document, which resulted in a total of 11700 documents. Table I

3[Online]. Available: https://catalog.ldc.upenn.edu/LDC2004S13
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presents the details of data splits; they are the same as used in
earlier research [19], [40], [41]. Our pre-processing involved
removing punctuation and special characters, but we did not
remove any stop words. Using Kaldi open-source toolkit [42],
we trained a sequence-discriminative DNN-HMM automatic
speech recognizer (ASR) system [43] to obtain automatic tran-
scriptions. The ASR system resulted in 18% word-error-rate
on a held-out test set. We report experimental results on both
manual and automatic transcriptions. The vocabulary size while
using manual transcriptions was 24854, for automatic, it was
18292, and the average document length is 830, and 856 words
respectively.

The text corpus used is 20Newsgroups,* which is a benchmark
dataset for evaluating topic models [15], [44]-[46]. It contains
11314 training and 7532 test documents over 20 topics. Our
pre-processing involved removing punctuation and words that
do not occur in at least two documents, which resulted in a
vocabulary of 56433 words. The average document length is
290 words.

B. Hyperparameters of Bayesian SMM

In our topic ID experiments, we observed that the embedding
dimension (K) and regularization weight (w) for rows in ma-
trix T" are the two important hyperparameters. The embedding
dimension was chosen from K = {100,...,800}, and regular-
ization weight from w = {0.0001, ...,10.0}.

C. Proposed Topic ID Systems

Our Bayesian SMM is an unsupervised model trained itera-
tively by optimizing the ELBO; it does not necessarily correlate
with the performance of topic ID. This is valid for SMM, NVDM
or any other generative model trained without supervision. A
typical way to overcome this problem is to have an early stop-
ping mechanism (ESM), which requires to evaluate the topic
ID accuracy on a held-out (or cross-validation) set at regular
intervals during the training. It can then be used to stop the
training earlier if needed.

Using the above-described scheme, we trained three different
classifiers: (i) Gaussian linear classifier (GLC), (ii) multi-class
logistic regression (LR), and, (iii) Gaussian linear classifier with
uncertainty (GLCU). Note that GLC and LR cannot exploit
the uncertainty in the document embeddings; and are trained
using only the mean parameter v of the posterior distributions;
whereas GLCU is trained using the full posterior distribution
q(w), i.e., along with the uncertainties of document embeddings
as described in Section IV. GLC and GLCU do not have any hy-
perparameters to tune, while the /5 regularization weight for the
parameters of LR was tuned using cross-validation experiments.
Our code is available online.’

D. Baseline Topic ID Systems

1) NVDM: Since NVDM and our proposed Bayesian SMM
share similarities, we chose to extract the embeddings from

4[Online]. Available: http://qwone.com/~jason/20Newsgroups/
3[Online]. Available: https://github.com/BUTSpeechFIT/BaySMM
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NVDM and use them for training linear classifiers. Given a
trained NVDM model, embeddings for any test document can
be extracted just by forward propagating through the encoder.
Although this is computationally cheaper, one needs to decide
when to stop the training, as a fully converged NVDM may
not yield optimal embeddings for discriminative tasks such as
topic ID. Hence, we used the same early stopping mechanism, as
described in the earlier section. We used the same three classifier
pipelines (LR, GLC, GLCU) as we used for Bayesian SMM. Our
architecture and training scheme are similar to ones proposed
in [15], i.e., two feed-forward layers with either 500 or 1000
hidden units and {sigmoid, ReLU, tanh} activation functions.
The latent dimension was chosen from K = {100,...,800}.
The hyperparameters were tuned based on cross-validation
experiments.

2) SMM: Our second baseline system is non-Bayesian SMM
with /; regularization over the rows in 7" matrix, i.e., /1 SMM.
It was trained with hyperparameters such as embedding di-
mension K = {100,...,800}, and regularization weight w =
{0.0001, ...,10.0}. The embeddings obtained from SMM were
then used to train GLC and LR classifiers. Note that we cannot
use GLCU here, because SMM yields only point-estimates of
embeddings. We used the same early stopping mechanism to
train the classifiers. The experimental analysis in Section VII-C
shows that Bayesian SMM is more robust to over-fitting when
compared to SMM and NVDM, and does not require an early
stopping mechanism.

3) ULMFiT: The third baseline system is the universal lan-
guage model fine-tuned for classification (ULMFiT) [9]. The
pre-trained® model consists of 3 BiLSTM layers. Fine-tuning
the model involves two steps: (a) fine-tuning LM on the target
dataset and (b) training classifier (MLP layer) on the target
dataset. We trained several models with various drop-out rates.
More specifically, the LM was fine-tuned for 15 epochs,’ with
drop-out rates from {0.2,...,0.6}. The classifier was fine-
tuned for 50 epochs with drop-out rates from {0.2,...,0.6}. A
held-out development set was used to tune the hyperparameters
(drop-out rates, and fine-tuning epochs).

4) TF-IDF: The fourth baseline system is a standard term
frequency-inverse document frequency (TF-IDF) based docu-
ment representation, followed by multi-class logistic regression
(LR). Although TF-IDF is not a topic model, the classification
performance of TF-IDF based systems is often close to state-
of-the-art systems [19]. The hyperparameter (/2 regularization
weight) of LR was selected based on 5-fold cross-validation
experiments on training set.

VII. RESULTS AND DISCUSSION
A. Convergence Rate of Bayesian SMM

We observed that the posterior distributions extracted using
Bayesian SMM are always much sharper than standard Normal
distribution. Hence we initialized the variational distribution

®[Online]. Available: https:/github.com/fastai/fastai
"Fine-tuning LM for higher number of epochs degraded the classification
performance.
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Fig.4. Convergence of Bayesian SMM for various initializations of variational

distribution. The model was trained on 20Newsgroups corpus with K = 100,
and w = 1.

to (0, (0.1)I) to speed up the convergence. Fig. 4 shows
objective (ELBO) plotted for two different initializations of
variational distribution. Here, the model was trained on 20New:s-
groups corpus, with the embedding dimension K = 100, regu-
larization weight w = 1.0 and prior set to standard Normal. We
can observe that the model initialized to V'(0, (0.1)I) converges
faster as compared to the one initialized to standard Normal. In
all the further experiments, we initialized® both the prior and
variational distributions to A/(0, (0.1)I).

B. Perplexity

Perplexity is inversely proportional to the log-likelihood of the
data. When computed on the test data, it gives a notion of how
well the model explains (fits) the test (unseen) data. Perplexity
computed on test data is a standard way of evaluating language
models [47], [48]. Since topic models built on bag-of-words are
equivalent to unigram language models, perplexity is seen as an
intrinsic measure for topic models [15], [49]. It is computed as
an average of every test document according to:

log p(x
PPLpoc = exp{ 5 Z gﬁd ) } (46)

or for an entire test corpus according to:

i log p(zd) } @
>a—1Na

where N, is the number of word tokens in document d.

In our case, log p(x) from (10) cannot be evaluated, because
the KL divergence from variational distribution ¢ to the true
posterior p cannot be computed; as the true posterior is in-
tractable (5). We can only compute £(gq), which is a lower bound
on log p(x). Thus, the resulting perplexity values act as upper
bounds. This is true for NVDM [15] or any other model in the
VB framework, where the true posterior is intractable [16]. We
estimated £(q) from (18) using 32 samples, i.e., R = 32,in order
to compute perplexity. We used the same number of samples for

PPLcorpus = exp {—

80ne can introduce hyper-priors and learn the parameters of prior distribution.
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(b) PPL of 20Newsgroups test data.

Comparison of training and test data perplexities obtained using Bayesian SMM and NVDM for both Fisher and 20Newsgroups datasets. The horizontal

solid green line shows the test data perplexity computed using the maximum likelihood (ML) probabilities estimated on the test data. The latent (embedding)

dimension was set to 200 for both the models.

TABLE II
COMPARISON OF PERPLEXITY (PPL) RESULTS ON 20NEWSGROUPS. THE
VALUES IN THE BRACKETS INDICATE RESULTS WITH A LIMITED VOCABULARY

OF 2000 WORDS
Model K PPLCORPUS PPLDOC
NVDM 50 1287 (769) 1421 (820)
NVDM 200 1387 (852) 1519 (870)
Bayesian SMM 50 1043 (629) 1064 (639)
Bayesian SMM 200 882 (519) 851 (515)
ML estimate - 153 (90) 93 (42)

the baseline NVDM. We observed that perplexity values are
consistent when estimated with R > 16. In [15], the authors
used 20 samples.

We present the comparison of 20Newsgroups test data per-
plexities obtained using Bayesian SMM and NVDM in Table II.
It shows the perplexities of 20Newsgroups corpus under full
and a limited vocabulary of 2000 words [15]. We also show the
perplexity computed using the maximum likelihood probabil-
ities estimated on the test data. It acts as the lower bound on
the test perplexities. NVDM was shown [15] to achieve superior
perplexity scores when compared to LDA, docNADE [50], Deep
Auto Regressive Neural Network models [51]. To the best of our
knowledge, our model achieves state-of-the-art perplexity scores
on 20Newsgroups corpus under limited and full vocabulary
conditions.

In further investigation, we trained both Bayesian SMM and
NVDM until convergence. At regular checkpoints during the
training, we froze the model, extracted the embeddings for both
training and test data, and computed the perplexities; shown in
Figs. 5(a) and 5(b). We can observe that both the Bayesian SMM
and NVDM fit the training data equally well (low perplexities).
However, in the case of NVDM, the perplexity of test data
increases after a certain number of iterations; suggesting that
NVDM fails to generalize and over-fits on the training data.

In the case of Bayesian SMM, the perplexity of the test data
decreases and remains stable, illustrating the robustness of our
model.

C. Early Stopping Mechanism for Topic ID Systems

The embeddings extracted from a model trained purely in an
unsupervised fashion does not necessarily yield optimum results
when used in a supervised scenario. As discussed earlier in
Section VI-C and VI-D, an early stopping mechanism (ESM)
during the training of an unsupervised model (e.g., NVDM,
SMM, and Bayesian SMM) is required to get optimal perfor-
mance from the subsequent topic ID system. The following
experiment illustrates the idea of ESM:

We trained SMM, Bayesian SMM and NVDM on Fisher data
until convergence. At regular checkpoints during the training,
we froze the model, extracted the embeddings for both training
and test data. We chose GLC for SMM, GLCU for NVDM, and
Bayesian SMM as topic ID classifiers. We then evaluated the
topic ID accuracy on the cross-validation’ and test sets. Fig. 6
shows the topic ID accuracy on cross-validation and test sets
obtained at regular checkpoints for all the three models. The
circular dot (e) represents the best cross-validation score and the
corresponding test score that is obtained by employing ESM.
In the case of (non-Bayesian) SMM, the test accuracy drops
significantly after a certain number of iterations; suggesting the
strong need of ESM. The cross-validation accuracies of NVDM
and Bayesian SMM are similar and remain consistent over the
iterations. However, the test accuracy of NVDM is relatively
lower and decreases over the iterations. On the other hand, the
test accuracy of Bayesian SMM increases and stays consistent. It
shows the robustness of our proposed model, which besides does
not require any ESM. In all the further topic ID experiments, we

95-fold cross-validation on training set.
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Fig. 6. Performance of topic ID systems on Fisher data at various checkpoints during model training. The circular dot (e) represents the best cross-validation

score and the corresponding test score obtained using the early stopping mechanism (ESM). The embedding dimension was set to 100 for all the models.

TABLE III
COMPARISON OF RESULTS ON FISHER TEST SETS, FROM EARLIER PUBLISHED WORKS, OUR BASELINES AND PROPOSED SYSTEMS. x INDICATES
A PURE DISCRIMINATIVE MODEL

Systems Model Classifier ~ Accuracy (%) CE  Accuracy (%) CE
Manual transcriptions  Automatic transcriptions

Prior works BoW [40] NB 87.61 - - -
TF-IDF [19] LR 86.41 - - -

TF-IDF LR 86.59  0.93 86.77 0.94

ULMFiT % MLP 86.41 0.50 86.08 0.50

el {1 SMM LR 86.81 0.91 87.02 1.09

Our Baseline ) gnvim GLC 85.17  1.64 85.53 1.54
NVDM LR 81.16  0.94 83.67 1.15

NVDM GLC 84.47 1.25 84.15 1.22

NVDM GLCU 83.96 0.93 83.01 0.97

Bayesian SMM LR 89.91 0.89 88.23 0.95

Proposed Bayesian SMM GLC 89.47 1.05 87.23 1.46
Bayesian SMM GLCU 89.54 0.68 87.54 0.77

report classification results for Bayesian SMM without ESM;
while the results for SMM and NVDM are with ESM.

D. Topic ID Results

This section presents the topic ID results in terms of classifi-
cation accuracy (in %) and cross-entropy (CE) on the test sets.
Cross-entropy gives a notion of how confident the classifier is
about its prediction. A well-calibrated classifier tends to have
lower a cross-entropy.

Table III presents the classification results on Fisher speech
corpora with manual and automatic transcriptions, where the
first two rows are the results from earlier published works.
Hazen [40], used discriminative vocabulary selection followed
by a naive Bayes (NB) classifier. Having a limited (small)
vocabulary is the major drawback of this approach. Although
we have used the same training and test splits, May et al. [19]
had a slightly larger vocabulary than ours, and their best system
is similar to our baseline TF-IDF based system. The remaining
rows in Table III show our baselines and proposed systems. We
can see that our proposed systems achieve consistently better
accuracies; notably, GLCU, which exploits the uncertainty in

document embeddings has much lower cross-entropy than its
counterpart GLC. To the best of our knowledge, the proposed
systems achieve the best classification results on Fisher corpora
with the current set-up, i.e., treating each side of the conversation
as an independent document. It can be observed that ULMFiT
has the lowest cross-entropy among all the systems.

Table IV presents classification results on 20Newsgroups
dataset. The first three rows give the results as reported in
earlier works. Pappagari et al. [39], proposed a CNN-based
discriminative model trained to jointly optimize categorical
cross-entropy loss for classification task along with binary cross-
entropy for verification task. Sparse composite document vector
(SCDV) [37] exploits pre-trained word embeddings to obtain
sparse document embeddings, whereas neural tensor skip-gram
model (NTSG) [52] extends the idea of a skip-gram model for
obtaining document embeddings. The authors in (SCDV) [37]
have shown superior classification results as compared to para-
graph vector (PV-DM, PV-DBOW), LDA, NTSG, and other
systems. The next rows in Table IV present our baselines and
proposed systems. We see that the topic ID systems based on
Bayesian SMM and logistic regression is better than all the
other models, except for the discriminative CNN model. We can
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TABLE IV
COMPARISON OF RESULTS ON 20NEWSGROUPS FROM EARLIER PUBLISHED
‘WORKS, OUR BASELINES AND PROPOSED SYSTEMS. * INDICATES A PURE
DISCRIMINATIVE MODEL

Systems Model Classifier ~ Accuracy (%) CE
CNN [39] * - 86.12 -

Prior works SCDV [37] SVM 84.60 -
NTSG-1 [52] SVM 82.60 -

TF-IDF LR 84.47 0.73

ULMFiT * MLP 83.06 0.89

Our Baselines {1 SMM LR 82.01 0.75
) ° 41 SMM GLC 82.02 1.33
NVDM LR 79.57 0.86

NVDM GLC 77.60  1.65

NVDM GLCU 76.86  0.88

Bayesian SMM LR 84.65 0.53

Proposed Bayesian SMM GLC 83.22  1.28
Bayesian SMM GLCU 82.81 0.79

also see that all the topic ID systems based on Bayesian SMM
are consistently better than variational autoencoder inspired
NVDM, and (non-Bayesian) SMM.

In general, discriminative classifiers tend to perform better
than generative classifiers, since discriminative classifiers model
p(y|z) directly, whereas generative classifiers model p(x,y) to
determine p(y|z). However, in the presence of lower training
data, generative classifiers tend to be better [53]. For instance,
the cross-entropy results on Fisher test set (Table III) show
that GLCU is better than LR. The same is not observed on
20Newsgroups test set, where the training data is 5Xx more
when compared to Fisher. Moreover, Gaussian based generative
classifiers are much faster to train and can be easily adapted to
newer classes when compared to discriminative classifiers such
as logistic regression.

The advantages of the proposed Bayesian SMM are summa-
rized as follows: (a) the document embeddings are Gaussian
distributed which enables to train simple generative classifiers
like GLC, or GLCU; that can be extended to newer classes easily,
(b) although the Bayesian SMM is trained in an unsupervised
fashion, it does not require any early stopping mechanism to
yield optimal topic ID results; document embeddings extracted
from a fully converged model can be directly used for classifi-
cation tasks without any fine-tuning.

E. Uncertainty in Document Embeddings

The uncertainty captured in the posterior distribution of
document embeddings correlates strongly with the size of the
document. The trace of the covariance matrix of the inferred
posterior distributions gives us the notion of uncertainty. Fig. 7
shows an example of the uncertainty captured in the embeddings.
Here, the Bayesian SMM was trained on 20Newsgroups with an
embedding dimension of 100.

VIII. CONCLUSION

We have presented a generative model for learning docu-
ment representations (embeddings) and their uncertainties. Our
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Fig. 7. Uncertainty (trace of covariance of posterior distribution) captured in
the document embeddings of 20Newsgroups dataset.

proposed model achieved state-of-the-art perplexity results on
the standard 20Newsgroups and Fisher datasets. Next, we have
shown that the proposed model is robust to over-fitting and unlike
in SMM and NVDM, it does not require any early stopping
mechanism for topic ID. We proposed an extension to simple
Gaussian linear classifier that exploits the uncertainty in docu-
ment embeddings and achieves better cross-entropy scores on
the test data as compared to the simple GLC. Using simple linear
classifiers on the obtained document embeddings, we achieved
superior classification results on Fisher speech 20Newsgroups
text corpora. We also addressed a commonly encountered prob-
lem of intractability while performing variational inference in
mixed-logit models by using the re-parametrization trick. This
idea can be translated straightforwardly to the subspace n-gram
model for learning sentence embeddings, and also for learning
word embeddings along with their uncertainties. The proposed
Bayesian SMM can be extended to have topic-specific priors
for document embeddings, which enables to encode topic la-
bel uncertainty explicitly in the document embeddings. There
exist other scoring mechanisms that exploit the uncertainty in
embeddings [54], which we plan to explore in our future works.

APPENDIX A
GRADIENTS OF LOWER BOUND

The variational distribution is Gaussian with the following
parameterization:

q(w) = N(w |v,diag(exp{2s})). (45)
The lower bound for a single document is:
1 . .
Lg =~ —3 {)\ tr(diag(exp{2¢})) — log |diag(exp{2s})|
— K logh+ v — K}
v 1B v
+ z; |(m; +tiv)—— lo exp{m;+t; g(e, ,
;( )R;g;p{]ﬂ()}
(46)
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where

g(€) = v + diag(exp{c})e. 47)
It is convenient to have the following derivatives:
9g(e) _
5 = I (48)
8(t:§g<(e)) = diag(t]) diag(exp{s}) diag(€)
=t Oexp{s} O & (49)

A. Derivatives of the Parameters of Variational Distribution

Taking derivative of the objective function (46) with respect
to mean parameter v and using (48):

&)}
* 5 exp{m, + 4, ale >}] o0

1%
lZm ] — ZtT ! Zf?wak] —aw (5D

VoL =

14 1 R |4
i=1 r=1 k=1

(52)

Taking the derivative of the objective function (46) with respect
to ¢ and using (49):

oLy 1
iw‘ *ii exp{my + trg(e,))
i1 ' R —1 k1 K TZ exp{m;+t;g(e-)}
Okr
=1-— Aexp{2¢}

14 1 R V
- [Z v 2 2 th O expis) @e%] (53)
i=1

r=1k=1

p(yd ‘ Vg,
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B. Derivatives of the Model Parameters

Taking the derivative of complete objective (19) with respect
to a row t; from matrix 71"

Y
Dt~ D 2 2| i)
d=1i=1
LR v
- Zlog (Zexp{mj +t9(e )})]
r=1 j=1
v
—wy il (55)
=1
D v R
= Z [wdk'/d - Zl‘di Zg(edr)
d=1 i=1 r=1
exp{m; + ti g(€ar)}
>ojexp{m; +tjg(ear)}
Odkr
— wsign(tg) (56)
DT v L&
= |zavh - Zxdiﬁ Zg(edr)-redkr]
d=1 L =1 r=1
— wsign(tg) (57)
DT R
Ve L= |zarvy— [(Z xdz) Z dkr9(€ar) ] ]
a=1 L = =1
— wsign(tg). (58)
APPENDIX B
EM ALGORITHM FOR GLCU
E-STEP

Obtaining the posterior distribution of latent variable
©). Using the results from [28] (p. 41, (358)):
Ing(yd | Vg, hd» @)

= logp(va | Ya, ha) +log p(ya) — log p(va)
= logN(vq | pa+ya, D)

+log N(y4 | 0,T;') + const

= — }(ud — (ta +ya)) ' D(va — (pa + ya))

VoL =1-—rexp{2¢}

- (ZL%)%ER 1 k 1‘9th Oexp{s} O & |.

2
1 1
— iydl"dyd ~+ const
1 T
= - i(yd — (Va — pa)) D(yq — (va — pa))

1
- 5y§rdyd + const

(54)

=N(ya | ua, V")
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where ug is simplified as:

Uy = (D + I‘d)71

Taking the derivative with respect to shared precision matrix D

and equating it to zero:
(D(vq — pa) +T'30) auating

T
=[D"HD +Ta)]  (va — pa) 02 D,
- ap =22 "3 Z Vi
resulting in:
ug=[I+D'T4 " (vqg— pa) (59) 1 XD: N ( 0T T
5 (g — (Vg — pa))(uqg — (Vg — pa
Va=D+Ty (60) 2 =
(65)
M-STEP
1 [2
Maximizing the auxiliary function: D! ) Z V;l
O"" = argmax Q(0,0°9) (61) =1
o D
q(y) — p(y | w, @Old). (62) + Z Uq — Vd - /J'd))(ud - (Vd - /'l'd))T
d=1
Using the results from [28] [p. 43, (378)], the auxiliary function (66)

9Q(0, ©°4) is computed as:
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