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ABSTRACT

Galaxy clusters appear as extended sources in XMM-Newton images, but not all ex-
tended sources are clusters. So, their proper classification requires visual inspection
with optical images, which is a slow process with biases that are almost impossible
to model. We tackle this problem with a novel approach, using convolutional neural
networks (CNNs), a state-of-the-art image classification tool, for automatic classifica-
tion of galaxy cluster candidates. We train the networks on combined XMM-Newton
X-ray observations with their optical counterparts from the all-sky Digitized Sky Sur-
vey. Our data set originates from the X-CLASS survey sample of galaxy cluster can-
didates, selected by a specially developed pipeline, the XAmin, tailored for extended
source detection and characterisation. Our data set contains 1 707 galaxy cluster candi-
dates classified by experts. Additionally, we create an official Zooniverse citizen science
project, The Hunt for Galaxy Clusters, to probe whether citizen volunteers could help
in a challenging task of galaxy cluster visual confirmation. The project contained 1600
galaxy cluster candidates in total of which 404 overlap with the expert’s sample. The
networks were trained on expert and Zooniverse data separately. The CNN test sam-
ple contains 85 spectroscopically confirmed clusters and 85 non-clusters that appear
in both data sets. Our custom network achieved the best performance in the binary
classification of clusters and non-clusters, acquiring accuracy of 90 %, averaged after
10 runs. The results of using CNNs on combined X-ray and optical data for galaxy
cluster candidate classification are encouraging and there is a lot of potential for future
usage and improvements.
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1 INTRODUCTION

Galaxy clusters are massive systems at the peaks of the
cosmic web. Their composition, rich in dark matter and
hot baryonic gas makes them a potentially powerful tool
to constrain cosmological parameters, growth of structure,
neutrino mass and sterile neutrinos through cluster number
counts, the cluster mass function and the baryon fraction
(Allen et al. 2011; Mantz et al. 2015; Bohringer & Chon
2016).

In recent years, large cluster surveys such as XXL
(Pierre et al. 2016; Pacaud et al. 2016), XCS (Mehrtens et al.
2012), X-CLASS (Clerc et al. 2012a; Ridl et al. 2017), Planck
(Bartlett et al. 2008), redMaPPer (Rykoff et al. 2014), or the
SPT-SZ survey (Bleem et al. 2015) have made it possible to
statistically improve constraints on cosmology. However one
of the challenges in using galaxy clusters for cosmology is un-
derstanding and modelling of the cluster selection function
(e.g. Pacaud et al. 2006). The selection function has to be
modelled in terms of observable parameters (like flux and ap-
parent size), which can then be converted into galaxy cluster
mass for a given cosmology and galaxy cluster physics evolu-
tion. The selection function of galaxy clusters is not trivial to
model and often oversimplified. A selection function should
not only take into account the volume and redshift of the
survey but also the choice of clusters, which is often more
complicated than a cut in flux. In X-ray wavelengths, whilst
extended emission is generally a robust indicator of a galaxy
cluster, the emission can also be attributed to nearby galax-
ies, saturated AGN and unresolved double point-sources. For
this reason, galaxy cluster candidates are still visually exam-
ined together with optical data, prior to any spectroscopic
confirmation (Adami et al. 2018). This process is tedious
and out-dated with uncertainties impossible to model. With
large X-ray sky surveys such as e-ROSITA (Merloni et al.
2012) expecting to discover tens of thousands of new galaxy
clusters, combined with large optical surveys including LSST
(Ivezic et al. 2008) and EUCLID (Racca et al. 2016), the old
techniques will become obsolete. We need to prepare for the
future with new methods that are able to deal with big data
and improved accuracy.

Citizen science projects proved to be a great asset for
scientific problems where human classifications are required
for large amounts of data (e.g. Lintott et al. 2008; Willett
et al. 2013). In the first version of the most well known of all
citizen science projects, the Galaxy Zoo (Lintott et al. 2008),
citizen volunteers managed to achieve more than 90 % agree-
ment with experts in a task of morphological classification
of galaxies. While citizen projects are intended to provide
huge manpower in the assessment of large astronomical data
sets, the question whether this is an advantage over a limited
number of evaluations by experts in the case of the confirma-
tion of galaxy cluster candidates remains to be addressed.
This paper scrutinizes this issue by evaluating the citizen
volunteers success rate.

Machine learning offers a more constructive approach
to the problem. The power of Machine learning has been
demonstrated in astronomy for more than two decades, with
applications including star-galaxy discrimination (Odewahn
et al. 1992; Bertin 1993), classification of galaxy spectra
(Folkes et al 1996), photometric redshift estimation (Col-
lister & Lahav 2004) or anomaly detection in X-ray spec-

tra (Ichinohe & Yamada 2019), to name a few. With the
introduction of Convolutional Neural Networks (CNNs, Le-
Cun et al. 1999) and deep learning (E Hinton 2007), it has
been possible to automate human vision tasks such as im-
age recognition (see e.g. Goodfellow et al. 2014; Schawinski
et al. 2017; Ackermann et al. 2018; Lieu et al. 2018).

Supervised learning with convolutional neural networks
(CNNs) was designed specifically for image classification
tasks. If the true labels (classification classes) of the images
are known, they can be used to train CNNs. The current
way galaxy clusters are classified are liable to false positives
and false negatives. Galaxy cluster candidates picked by an
automated pipeline are visually analysed by several experts
to create an initial catalogue of galaxy clusters, that are later
verified with a spectroscopic confirmation. This process will
not scale with large data volumes. Citizen science allows us
to harness a large number of opinions on each object classi-
fication on a short timescale, speeding up the process signif-
icantly yet having a reasonable agreement with experts (see
e.g. Willett et al. 2013; Dieleman et al. 2015). CNNs can be
then trained on classifications made by either experts or citi-
zen volunteers or both, to automate the final classification of
galaxy cluster candidates, or even skipping the first step of
the pipeline picking the candidate clusters. Applying CNN
selection on simulations will enable modelling the selection
function.

In this paper, we introduce a citizen science project we
created to obtain large numbers of classified objects. We
compare the performance of citizen volunteers with experts.
We train CNNs on classifications of citizen volunteers and
experts and compare their results. CNNs are tested on spec-
troscopically confirmed galaxy clusters and objects classified
as non-clusters by experts.

The structure of the paper is as follows: in Section 2
we present our citizen science project and its development
together with a description of the observations and the con-
struction of their classifications by the experts, in Section 3
we introduce the machine learning methods we use, Sec-
tion 4 presents measurements used to evaluate classification
or detection performance, Section 5 presents the results of
the citizen science campaign as well as the results and dis-
cussion of neural networks analysis. Finally, we conclude in
Section 6.

2 THE HUNT FOR GALAXY CLUSTERS

Our citizen science project, The Hunt for Galazy Clusters®,
was launched online as an official Zooniverse project on the
24th of October 2018. There were 1600 galaxy cluster can-
didates in the project that have been detected as extended
X-ray sources by the XAmin wavelet-based pipeline (Pacaud
et al. 2006). Each object was classified by at least 30 differ-
ent volunteers and this was completed by the 29th of April
2019. 1227 volunteers participated in the project. Classifi-
cations of not logged in volunteers, as well as classifications
which have been done on each object multiple times by the
same volunteer, were not considered.

1 https://www.zooniverse.org/projects/matej-dot-kosiba/the-
hunt-for-galaxy-clusters
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Figure 1. Top left: raw X-ray image with contours showing the
areas of constant X-ray brightness and a cyan cross marking the
object selected for classification. Bottom left: raw X-ray image
without contours and markings. Right: corresponding optical im-
ages.

The project starts with a short tutorial briefly explain-
ing how to navigate in the project’s page and how to clas-
sify candidate clusters. Each object comes with four images,
covering the exact same area of the sky (7x7 arcmin?): two
X-ray and two optical images. Figure 1 shows all four images
of a galaxy cluster candidate as shown to the volunteers in
The Hunt for Galazy Clusters.

Our project uses six questions to help determine the
class of a galaxy cluster candidate. Each question has two
or three possible answers, and due to the structure of the
decision tree (Figure 2), only a subset of the questions are
answered. Those questions come with help notes, example
images, as well as descriptions to each answer. We selected
example images very carefully to cover a broad range of ob-
jects and /or instrument effects, in order to avoid biases. The
Zooniverse volunteer’s answers were then used to create a
binary classification scheme of cluster and non-cluster.

2.1 Data

The data in this work originates from the XMM CLuster
Archive Super Survey (X-CLASS) (Clerc et al. 2012b), an X-
ray galaxy cluster search in the archival data of the European
Space Agency’s X-ray observatory XMM-Newton, combined
with corresponding optical counterparts from the Digitized
Sky Survey POSS-II (DSS2). We used XMM-Newton data
obtained between 2000 and 2015, employing selection crite-
ria described in (Clerc et al. 2012b), and excluding the data
used by the XXL survey (Pierre et al. 2016).

MNRAS 000, 1-14 (2020)
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Look atimages 1 & 3. Do you see X-fay
emission close to the centre of the image?

No emission close Emission close Emission near
to the centre to the cenfre the chip edge

Look atimages 1 & 3. Is the X-ray
emission point-like or extended?

Extended

Pointlike
emission

emission

Look at all images. Is the X-ray emission dominated
by a single galaxy in the opiical images?

Optical Image
‘ e ‘ ‘ Incompleie

Do you see lots of galaxies close
to the centre of the image?

Do you think that this is a
distant galaxy cluster?

Do you think that this is a
nearby galaxy cluster?

Figure 2. The decision tree of The Hunt for Galazy Clusters
Zooniverse citizen science project. Blue cells represent questions,
red are answers leading to the cluster class and yellow are answers
leading to the non-cluster class.

2.2 X-ray pipeline

Our sample of galaxy cluster candidates has been
constructed using the intermediate XAmin 3.5 version
(new source models added: double point-source and
point + extended source). This version, after the processing
of the X-CLASS survey, appeared to suffer from a miss-
centering problem randomly affecting a tiny fraction of the
point-source population, that led to classify them as ex-
tended. In order to remove miss-classified sources, experts
then performed an in-depth screening of the putative clus-
ter candidate lists. The screening dealt as well with usual
nearby galaxies and saturated AGNs, that both appear ex-
tended in the X-ray images

The pipeline is briefly described below. Firstly, a
combined MOS14+MOS2+PN image of an XMM-Newton
(Jansen 1999) observation is smoothed with a dedicated
wavelet smoothing program called mr_filter, described by
Starck et al. (1998) and shown in Starck & Pierre (1998) to
effectively recover structures in X-ray images characterised
by low numbers of photons.

Secondly, the wavelet smoothed image is analysed
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by the source extraction software SExtractor (Bertin &
Arnouts 1996). It creates a list of candidate sources for fur-
ther analysis, returning an estimate of their position and
their flux.

Note that, since SExtractor was developed for optical
images which contain many more photons than the X-ray
ones, smoothing the X-ray image is a necessity as SExtrac-
tor would not be able to work with raw data. This smooth-
ing can be performed in several ways; the wavelet smoothing
used by XAmin is one of the possible ways of smoothing the
image and was shown by Valtchanov et al. (2001) to give the
best results for X-ray images of diffuse sources like galaxy
clusters.

Finally, we characterise the candidate sources found by
SExtractor. This is done by fitting both a point source
model given the XMM-Newton PSF computed at the source
position and an extended S model (Cavaliere & Fusco-
Femiano 1976) which better describes galaxy clusters. A
source is declared to be a point source (AGN or an extended
source too faint to be characterised as extended) or an ex-
tended source (galaxy cluster) depending on which of these
two models best fits the candidates source. The details, in-
cluding the relevant formulas and the selection criteria for
defining an (almost) pure sample of galaxy clusters, are given
in Pacaud et al. (2006).

Coordinates of the galaxy cluster candidates picked by
XAmin are then used to produce normalised images (Ap-
pendix A) with and without X-ray contours to show lines
of constant X-ray brightness. These contours are superim-
posed onto the optical counterpart image, together with a
cyan cross mark and are used only for human screening to
help visualise the X-ray emission.

2.3 Weighting volunteers classifications

Since each object is classified by 30 volunteers, we may end
up with different classifications for the same galaxy cluster
candidate. Each person’s classification ability may vary ac-
cording to the class and the question asked, and there may
even be volunteers who purposely create malicious classifica-
tions. To mitigate those effects, we weight classifications of
each user question-wise. Weighting is done according to the
agreement of the majority, so each user has an accuracy de-
termining a portion of his/her classifications being in agree-
ment with the majority of votes, which is done question-wise,
C;

Qi
where G is the weight applied for an individual on question
i, C; is the number of answers to question i given by the
individual that were in agreement with the majority and Q;
is the total number of answers the individual has made for
question 4. G; essentially describes the ability of an indi-
vidual to classify as the majority of volunteers would. Every
classification in the project is then weighted according to the
classifying volunteer’s accuracy for the specific question. The
bottom red leafs of the decision tree (Figure 2) are classifica-
tion ending answers corresponds to the final answers stating
that the classified object is a galaxy cluster. Similarly, all yel-
low leafs corresponds to the final answers stating that the
object is not a galaxy cluster. Each galaxy cluster candidate
gets 30 votes, each vote is an accuracy of the voting user

Gi = i€l,..,6 (1)

for the question of his/her classification ending answer (one
of bottom red leafs or any yellow leaf). Those 30 weighted
scores are summed to galaxy cluster (bottom red leafs) and
non-galaxy cluster (yellow leafs) categories. The higher score
determines the final Zooniverse weighted classification for
the galaxy cluster candidate.

2.4 Classifications of experts

The galaxy cluster candidates generated by the XAmin
pipeline are manually classified by the X-CLASS collabo-
ration. Each galaxy cluster candidate is classified by two ex-
perts and three moderators make the final classification on
conflicting decisions. Figure 3 shows how a galaxy cluster
candidate is presented to the experts. The images are pro-
vided without redshift or sky coordinate information, and
the experts make decisions without consulting with each
other to avoid any bias. The experts were given the opportu-
nity to classify objects as a low redshift cluster (0 < z < 0.3),
high redshift cluster (z > 0.3), nearby galaxy, point source,
star or AGN, double source, artefact, edge, fossil group, high
background image, no optical image or dubious source. We
create a binary classification scheme where the last four cat-
egories in the list are not used, low and high redshift clus-
ters are collectively referred to as clusters and the remaining
classes are collectively referred to as non-clusters.

3 MACHINE LEARNING APPROACH

Now, we turn our attention to a machine learning approach,
which allows us to automatically process astronomical data
on much larger scales than what is possible to achieve by
human annotations. We use neural networks — a parametric
model, that is able to learn to approximate a complex func-
tion from training examples of inputs and the correspond-
ing outputs. In our case, each training example consists of
combined X-ray and optical image as the input and the cor-
responding output class label obtained from a human anno-
tator. In our experiments, we consider binary classification,
where the class labels are galaxy cluster and non-cluster, but
also multi-class classification with subcategories that will be
discussed in Section 5.5. From the training examples, our
neural networks learn to predict posterior probabilities of all
classes given an input image. In our experiments, we evalu-
ate the performance of the neural networks using measures
discussed in Section 4. For some of the measures, we need
to make a hard classification decision for each input image
from our evaluation set. In such a case, we simply select the
most probable class.

In this work, we use Convolutional Neural Networks
(CNN), which is currently the most popular and very effec-
tive neural network architecture for image processing (Lecun
et al. 1989; Ciresan et al. 2012; Krizhevsky et al. 2012). A
deeper knowledge of CNNs is not necessary for interpret-
ing our results and understanding the presented analyses.
It is only necessary for understanding some of the techni-
cal details. This paper also can not give a complete tuto-
rial to CNNs, therefore, we do not provide a further intro-
duction to CNNs and we kindly refer the interested reader
to the relevant textbooks (Goodfellow et al. 2016; Bishop
2006) or the numerous tutorials available online. We use two

MNRAS 000, 1-14 (2020)



Figure 3. Images of a galaxy cluster candidate classified by
experts. Top left: an X-ray raw image overplotted with con-
tours showing areas of constant X-ray brightness, and marks pro-
duced by the XAmin pipeline. Top right and bottom left images
are smoothed versions of the X-ray images, wavelet and Gaus-
sian smoothing produced by the XAmin pipeline, respectively. The
Gaussian smoothed image is overplotted with Gaussian contours,
the sigma is chosen to be 3 pixels (with a pixel size of 2.5 arc
seconds so the sigma is 7.5 arc seconds). Bottom right: the opti-
cal counterpart of the X-ray image with superimposed marks and
wavelet X-ray contours. All images cover the exact same area of
the sky, 7x7 arcmin?, except for the bottom panel, where we focus
in the central region (4x4 arcmin?) of the optical image, because
with the contours and the symbols it is not easy to see the central
cluster brightest galaxy and overdensity of faint galaxies.

CNNs architectures for our experiments: Using the Keras
toolkit (Chollet et al. 2015), we build and train our custom
network, which uses a conventional CNN architecture with
interleaving convolutional and pooling layers and final dense
layers. The second architecture is MobileNet (Howard et al.
2017). We take these networks as provided by its authors
pre-trained on the ImageNet (Deng et al. 2009) data, which
is a large data set of millions of real-word images categorised
into thousands of classes. We assume that such pre-training

MNRAS 000, 1-14 (2020)
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Figure 4. Left is the 356 x356 pixel X-ray rgb .PNG image, mid-
dle is its 356356 pixel optical .PNG counterpart and right is an
rgb .PNG image made by stacking grayscaled optical image as
blue channel, grayscaled X-ray image as green channel and the
red channel was filled with zeros.

can serve as a good initialisation of the CNN parameters,
which are further retrained on our training data for galaxy
cluster classification.

3.1 Data preprocessing

For training neural networks, we use images without con-
tours and marks. For each candidate cluster, a pair of X-ray
and optical PNG images were merged into a single PNG
image. As well as our custom network, we use existing ar-
chitectures, that were designed to take input images with 3
colour channels. In order to achieve this, we grayscale the
X-ray and optical images and stack them together as indi-
vidual channels, leaving one channel empty (zero-filled) to
create a single RGB image. Although training of our custom
network can be done with any number of input channels, we
use the same 3-channel images as the input to the network
unless stated otherwise. By default, we construct the input
images as follows: the blue channel contains the grayscaled
optical image, the green contains the grayscaled X-ray image
and the red is filled with a matrix of zeros (Figure 4).

3.2 Data augmentation

With smaller data sets, the risk of over-fitting increases, re-
sulting in poor generalisation to data outside of the train-
ing set. To prevent overfitting, we use data augmentation
to reduce the probability that the network will see exactly
the same image twice and to essentially increase our train-
ing sample size. At each training step, the input image is
randomly scaled to a uniform value between 1/1.3 and 1.3,
rotated by a random uniform angle between 0 and 360° and
translated in x and y directions by a random uniform value
between —4 and 4 pixels.

4 PERFORMANCE MEASUREMENTS

This section describes the measurement methods we chose
to evaluate our neural networks compared to a baseline.

Accuracy is the most intuitive performance measure-
ment. It is the ratio of correct predictions to all predictions
and is defined as

_ TP+TN @)
" TP+TN+ FP+ FN’
where T' P refers to the number of true positives, in our case
the number of clusters correctly classified as clusters, T'N is
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a number of true negatives (number of non-clusters correctly
classified as non-clusters), F'P is a number of false positives
(number of non-cluster incorrectly classified as clusters) and
F N states for a number of false negatives (number of clusters
incorrectly classified as non-clusters).

Precision is the ratio of the correctly classified positives
(i.e. clusters) and all objects classified as positives. This is
defined as

TP
P=————. 3
TP+ FP (3)
Recall is the ratio of the correctly classified positives
and all positives examples in the test data. It is defined as

TP
= 4
TP+ FN @)
The receiver operating characteristic (ROC) is a perfor-
mance measurement of detection problems plotted as a true

positive rate (recall) against the false positive rate, defined
as

R

TN

FPR= s (5)
at various thresholds. The area under the curve (AUC) de-
scribes the model’s capability to distinguish between two
classification classes and is independent of the choice of the
threshold. When reporting detection performance for a class
(from the CNN output) in terms of ROC curve, we compare
the posterior probability of the class to a varying detection
threshold.

5 RESULTS AND DISCUSSION
5.1 The Hunt for Galaxy Clusters results

The data set of 1600 galaxy cluster candidates in The Hunt
for Galazxy Clusters contained 404 objects previously classi-
fied by experts.

Table 1 displays a comparison of the unweighted and
weighted classifications of the Zooniverse volunteers (sub-
section 2.3) based on the agreement with the experts. Fig-
ure 5 shows ROC curves computed for the whole crossmatch
sample of 404 objects classified by both the Zooniverse vol-
unteers and experts and the ROC computed on a subsample
of 170 objects, 85 spectroscopically confirmed galaxy clus-
ters and 85 objects classified as non-clusters by experts. This
subsample is also used for the testing of the CNNs. The
Zooniverse volunteers performed better on the subsample of
170 objects than on the whole crossmatch sample of 404 ob-
jects. This could be an indication of a bias towards correctly
classifying easier objects since spectroscopically confirmed
galaxy clusters tend to be larger.

Figure 6 shows the fraction of the Zooniverse volunteer’s
individual answers in agreement with experts to all Zooni-
verse answers for classification ending answers, except for
not a nearby cluster and not a distant cluster, which do not
have a direct counterpart in the classification of experts. As-
suming that the expert classifications are the ground truth,
the biggest difficulty for the volunteers seems to be dis-
tinguishing extended from point-like X-ray emission. Also,

the volunteers inconsistently classified a large fraction of no
emission classes, suggesting that they struggled to interpret
the X-ray images. The huge discrepancy between volunteer’s
individual classifications and classifications of experts were
in the edge category, used for galaxy cluster candidates close
to the edge of XMM-Newton’s chips and its field of view.
Based upon discussions within the online forum, we assume
that this bias could emerge from XMM-Newton’s grid-like
pattern created by small gaps between its individual detec-
tors, which volunteers often mistaken for the edge of the
chips. The nearby galaxy category was also a difficult ques-
tion for the volunteers. Again based on the forum discussion
we find that volunteers often classified nearby galaxy clus-
ters with a prominent brightest central galaxy as a nearby
galazy class, which could lead to many nearby galaxy clus-
ters missed. In general, the Zooniverse volunteers preferen-
tially classified objects as non — clusters.

Some of the biases could be mitigated in possible future
versions of the project if explanations were clearer and more
focus was put on example images in the help notes. Possi-
bly the most important biases were often a classification of
an X-ray emission as no emission and misclassification of
an extended X-ray emission as a point-like X-ray emission.
This are the main reasons why clusters were missed by the
Zooniverse volunteers. We tried to keep in mind the possi-
bility of low scientific knowledge of the volunteers and not
to overwhelm the volunteers with huge amounts of informa-
tion, which could discourage them, but we were still able to
provide a detailed explanation of the X-ray emission in the
tutorial and the help notes, with nice example images and
diagrams to help with the X-ray contours. Small interviews
with our beta testers revealed that around 20 % of them did
not read the supporting texts. It might be possible that clas-
sifications with a lot of disagreement in the interpretation of
the X-ray emission preferentially came from volunteers who
did not adequately read the supporting material. A ques-
tionnaire would be needed to further probe this possibility.
These biases could be cut down with simpler and shorter
explanations of the X-ray properties, so it would be easier
to understand and less information to digest. Another com-
mon tendency was the misclassification of nearby clusters
that contain prominent BCGs (brightest cluster galaxies),
with that of nearby galaxies. This could be reduced with a
dedicated pair of images for the two situations in the help
notes.

We have to note that even the classifications of experts
could be biased towards low-z clusters, since we use DSS
optical images, which are limited to z~ 0.3.

Another possible bias may come from the fact that spec-
troscopically confirmed clusters are biased to big clusters,
which might affect our interpretation.

To explore if the Zooniverse volunteers were biased find-
ing preferentially most prominent galaxy clusters, we made
extent — extension likelihood plane plots (see Appendix B).
We found that the galaxy clusters found by the Zooniverse
volunteers populate all of the space, not showing bias and
their sample of galaxy clusters also can not be recreated by
a simple cut in this space.

Even though the Zooniverse volunteers did not show
a high accuracy compared to experts, misclassifying many
galaxy clusters as other options, the sample of galaxy clus-
ters they selected is pure. This makes us conclude that, via

MNRAS 000, 1-14 (2020)
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Table 1. The results of cluster classification by Zooniverse volunteers on two data sets, 404 objects are those classified by both, scientists
and Zooniverse volunteers, the 170 objects data set is a subsample of the 404 objects, where 85 objects are spectroscopically confirmed

clusters and 85 are objects classified as non-clusters by experts.

Data set Zooniverse Classifications | TP TN FP FN accuracy precision recall
404 objects  unweighted 69 150 0 185 0.542 1.000 0.272
404 objects  weighted 102 149 1 152 0.621 0.990 0.401
170 objects  weighted 55 84 1 30 0.818 0.982  0.647
Table 2. The number of objects in the training, validation and
1.0 test data sets classified by Zooniverse and experts.
p——— s
e Class Zooniverse Experts
05 | ,/’ Train  Validate | Train Validate Test
' ,,4’ cluster 320 130 845 200 85
o ’/' non-cluster 880 100 388 104 85
T 061 o total 1200 230 1233 304 170
1] 2
2 -
z e
a td
¢ 0.4 e
= S~
0.2 ’,/'
,/’ — Zooniverse 404 crossmatch objects, AUC = 0.917
(,J’ —— Test sample of 170 objects, AUC = 0.924
0.0 . . : . 170
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 5. The receiver operating characteristic (ROC) curves
for the classifications by Zooniverse volunteers, taking the classi-
fications of experts as the ground truth. Closer the curve copies
the left vertical and top horizontal axis, better the classifier. The
dashed line shows how would the results be if the people guessed
totally randomly.

mmm  All classifications
B Correct classifications

[N} N
(=3 (<l
o (=
(=} o

1500

Number of classifications
-

o (=]
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o

c d e
Classification class

Figure 6. A quantification of the Zooniverse classifications for
a)no emission, b)edge, c¢)point, d)nearby galaxy, e)no opti-
cal image, f) nearby galaxy cluster, g) distant galaxy cluster, as-
suming the ground truth is the expert classification.

the Zooniverse project, the general public can help scientific
research where a very pure sample of galaxy clusters is re-
quired, but it did not prove to be helpful in a case where a
sample of galaxy clusters should be complete.

5.2 CNN training

We use two different data sets, one classified by experts and
one by the Zooniverse volunteers. We use balanced training
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Figure 7. A Venn diagram presenting the data sets.

batches, containing the same number of classification classes,
randomly sampled from the training data. This is to prevent
the network from being biased towards the class that occurs
most frequently in the training sample.

Regardless of the training data, all the networks were
tested on the same data set of 85 spectroscopically confirmed
galaxy clusters and 85 objects classified as non-clusters by
the experts, the 170 test objects. Table 2 and Figure 7 de-
scribe the numbers of objects used in the training, valida-
tion and test data sets, classified by experts and the Zooni-
verse volunteers for testing on the 170 object test sample.
All the networks were trained on grayscaled and combined
X-ray and optical images as described in subsection 3.1 if
not stated otherwise.

We experimented with both a custom network (Ta-
ble 3) and using 3 different state of the art CNN ar-
chitectures: VGG19 (Simonyan & Zisserman 2014), In-
ceptionV3 (Szegedy et al. 2015) and MobileNet (Howard
et al. 2017). We used those networks with their pre-trained
weights, using a large learning rate and unfreezing all the
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Table 3. The architecture of our custom network which achieved
the best performance. Each of the convolutional and dense layers
is followed by a ReLLU non-linearity with the exception of the final
output dense layer which has the softmax for classification.

Layer | Layer type filter shape / stride  input shape
1 conv 3%x3x64/(1, 1) 356x356%3
2 max pool 2%x2/(2, 2) 356356 x64
3 conv 3x3x32/(1, 1) 178x178x64
4 max pool 2%x2/(2, 2) 178 x178x 32
5 conv 3x3x32/(1, 1) 89x89x32
6 max pool 2%x2/(2, 2) 89x89x32
7 | conv 3x3x32/(1, 1) 45x45x32
8 max pool 2%x2/(2, 2) 45x45x 32
9 conv 3x3x32/(1, 1) 23%23x32
10 max pool 2%x2/(2, 2) 23x23x32
11| conv 3x3x32/(1, 1) 12x12x32
12 max pool 2%x2/(2, 2) 12x12x32
13 flatten - 6x6x32
14 dense 256 1152
15 dense 2 256

Table 4. Hyperparameters of our custom network and the Mo-
bileNet network. The number of iterations, batches yielded during
training, is shown for training on the data set classified by experts.

Hyperparameters Custom net MobileNet
Batch size 10 20
Iterations 153000 3825
Optimizer SGD Adadelta

Nest. Momentum 0.90 -

Rho - 0.95
Initial Ir. 0.0001 1.0
Ir. decay 106 0.95
Minimal Ir. 10~4 0.01
Ir. red. patience 14 4
Ir. red. factor 0.75 0.85
Dense dropout 0.65 0.65
Output activation softmax softmax
Loss function cat. crossentropy  cat. crossentropy
Input image size 356 x356 224 %224

layers. Of the 3 models, MobileNet, pre-trained on the Ima-
geNet (Deng et al. 2009), achieved the best performance and
therefore we only discuss this architecture. Similarly, Lieu
et al. (2018) found MobileNet to be the superior architec-
ture for classifying solar system objects. The hyperparam-
eters for our custom network and the MobileNet network
are given in Table 4. We used Keras (Chollet et al. 2015)
with TensorFlow (Abadi et al. 2015) backend. The 1r. red.
patience and 1lr. red. factor are parameters of the Re-
ducelLROnPlateau Keras callback. The parameter 1lr. red.
patience defines how many epochs without improvement of
the validation accuracy (different proxy can be chosen to
monitor) have to pass to change the current learning rate
by multiplying it with the 1r. red. factor.

The batches used to train the networks were randomly
generated during training, always from the whole training
sample. Validation started once a satisfying number of gen-
erated batches was presented to the network, this is the
training data set size divided by the batch size. This was
done to maximise the use of our data while keeping bal-
anced numbers of classes in the yielded training batches, in
order to avoid biasing the network.

5.3 CNN results

We demonstrate that convolutional neural networks are ca-
pable of high accuracy, automated galaxy cluster candidate
classification. We trained each of our networks 10 times with
the exact same hyperparameters, differing only in the seed
for generation of random numbers during network’s initial-
isation, the order of random image selection into balanced
mini-batches during training and the random sampling of
augmentation values applied during training but keeping the
same objects in the training, validation and test data sets.
The results of individual runs are averaged and presented
together with their standard deviations in Table 5 and Fig-
ure 8, helping to compare various networks.

To report accuracy (A), precision (P) and recall (R) in
Table 5), we need to make hard classification decision for
each example image from our test set. Our neural networks
are trained to output the probability that the input image
is a galaxy cluster. Therefore, we classify input images as
galaxy cluster if this probability is higher than 0.5.

Our best-performing custom network (CN-E), trained
on the expert classified data set, achieved an average ac-
curacy of (90 £ 3) %. We also explored training on concate-
nated PNG images, without the grayscaling, so having six
channels instead of three, but this did not change the per-
formance significantly.

The MobileNet architecture trained on the data classi-
fied by experts achieved an average accuracy of (88 +2) %.
Perhaps MobileNet has slightly different sensitivity for indi-
vidual colour channels due to the potential bias in its original
training sample. We explored this possibility by training it
on two additional channel configurations, X-ray green, op-
tical red, empty blue and X-ray red, optical green, empty
blue, but its performance did not change significantly.

Training using the labels obtained in the Zooniverse
project resulted in lower performance for both, our custom
network (CN-Z) and the MobileNet (MN-Z), achieving av-
erage accuracies (824 1) % and (79 +2) %, respectively.

Lastly, we also explored the training of neural networks
on single wavelength PNG images. Our custom network us-
ing expert labels trained only on the X-ray images without
their optical counterparts (CN-E solo X-ray) achieved an
average accuracy of (81 £1)%. Our custom network using
expert labels trained only on the optical images (CN-E solo
optical) performed the worse, achieving an accuracy of only
68 & 2) %. This is rather easily understandable knowing that
the XMM-Newton data are much deeper than the POSS-II
images used for the current analysis: while XMM-Newton
can detect galaxy clusters as extended sources out to z = 1
at least, the POSS sensitivity strongly drops beyond z~ 0.3
rendering galaxies are hardly identifiable.

Using augmentation (subsection 3.2) was critical to
achieving good performance, the accuracy of the network
CN grayscale would drop from (90 & 3) % to (75 + 2) % with-
out the augmentation and from (88 £2) % to (81+1) % for
MobileNet.

5.4 Interpreting the results

We further investigate the results of the best training run of
our custom network (CN-E), which can classify even faint
clusters and those close to the edge of XMM-Newton’s field
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Table 5. Averaged galaxy cluster candidate classification results of the networks each trained 10 times with the exact same hyperpa-
rameters, only with a different seed for generation of random numbers during its initialisation.

network A +£std P +£std R +£std AUC £std
CN-E 0.90+0.03 0.89+0.05 0.91+0.03 0.96+0.01
MN-E 0.88+0.02 0.87+0.03 0.91+0.03 0.94+0.01
CN-E solo optical | 0.68+0.02 0.64+0.02 0.854+0.04 0.7740.02
CN-E solo x-ray 0.81+0.01 0.78+0.03 0.86+£0.04 0.89+0.01
CN-Z 0.82+0.01 0.96+0.01 0.67+£0.02 0.91+0.01
MN-Z 0.79+0.02 0.96+0.03 0.624+0.03 0.86=+0.02
CN-E no augm. 0.75+0.02 0.70+0.02 0.87+0.03 0.87+0.01
MN-E no augm. 0.81+0.01 0.75+0.02 0.914+0.01 0.904+0.02

1.0

0.8

0.6 4

CN-E
0.4 1 ~ MN-E

Pid —— CN-E solo optical
» CN-E solo X-ray
02 | // — CN-Z

- —— MN-Z
. —— CN-E no augm.
Vi —— MN-E ne augm.

True positive rate

T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Figure 8. ROC curves for the best-performing networks when
trained on different data formats. Closer the curve copies the left
vertical and top horizontal axis, better the classifier. The dashed
line represents how would an untrained, randomly guessing classi-
fier score. Training on optical data only ended up with the poorest
results, using only X-ray data achieved much better results, how-
ever, the combination of optical and X-ray data resulted in the
best performance. CN refers to our custom network, MN to the
MobileNet architecture, E to the data set classified by experts, Z
to the data set classified by the Zooniverse volunteers.

of view. Figure 9 shows some of these randomly selected
correctly classified galaxy clusters.

Figure 10 shows two objects classified as non-clusters
by the experts, but as clusters by our custom network. The
top object raised a concern that it was actually a galaxy
cluster. We assume that it was classified as a galaxy cluster
by our custom network because of the presence of the faint
X-ray emission in the centre and that it is a promising can-
didate for further investigation and spectroscopic redshift
confirmation. Figure 11 displays images of spectroscopically
confirmed galaxy clusters which have been incorrectly clas-
sified by our custom network as a non-cluster class. The first
object from the top is a non-centered galaxy cluster. The sec-
ond contains a group of nearby galaxies with faint extended
X-ray emission, which might have fooled our network. The
third is a cluster that falls on a chip gap. The fourth is a
galaxy cluster with three prominent nearby galaxies along
the line of sight which is probably what fooled our network,
and the last object appears like a nearby galaxy, which can
be hard to classify even for the experts.

MNRAS 000, 1-14 (2020)

s

Figure 9. Spectroscopically confirmed galaxy clusters correctly
classified by our custom network randomly selected from the test
sample (TP). Left: optical, middle: X-ray, right: combined.

Figure 10. Non-galaxy clusters incorrectly classified as galaxy
clusters (FP) by our custom network. Left: optical, middle: X-

ray, right: combined.
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Figure 11. Galaxy clusters incorrectly classified as non-galaxy
clusters (FN) by our custom network. Left: optical, middle: X-ray,
right: combined.

Figure 12 shows outputs of the selected filters of our cus-
tom network for a spectroscopically confirmed nearby galaxy
cluster. We can see how the network learned to search for
edges and colour patches of X-ray or optical light. Some fil-
ters learned to search primarily for X-ray emission and oth-
ers for optical emission. Most of the filters detected both of
the emission components simultaneously. Multiple filters in
the same layer usually learned to search for X-ray emission,
but their sensitivity is different. There are filters which get
activated only by stronger emission, while other filters are
more sensitive to X-ray emission. The network uses the fil-
ters to probe the presence and extent of the X-ray emission
in the input image. Note that the filter output size decreases
deeper within the network because of the max-pooling op-
eration applied in the pooling layer after each convolutional
layer.

5.5 Multi-class classification

We also trained neural networks for multi-class classifica-
tion using the labels of the experts. We segregated objects
into 5 classification classes - low z cluster, high z cluster,

Figure 12. Top: Input image to the trained network. Each row
from second to last shows outputs (activation maps) of 3 selected
filters from 2nd, 4th and 6th convolutional layer of our custom
network, respectively.

Table 6. Results from the multi-class classification networks.

class A P R AUC

MN grayscale
" Low-z cluster | 0.77 0.62 094 0.93
High-z cluster | 0.87 0.56 0.22 091
Point source 0.87 0.88 0.36 0.89
Nearby galaxy | 0.90 0.70 0.73  0.92
Other 091 0.65 0.68 0.92

CN grayscale
" Low-z cluster | 0.79 0.68 0.81  0.89
High-z cluster | 0.84 0.44 0.65 0.89
Point source 0.84 0.75 0.27 0.88
Nearby galaxy | 0.89 0.74 0.57 0.85
Other 0.87 0.52 0.64 0.88

nearby galaxy, point source (point, star or AGN, double
source) and other (artefact, edge). The ROC curves and
performance measurements were calculated as one versus all
problem.

In this regime, the MobileNet architecture and our cus-
tom network achieved an AUC and accuracy, averaged over
all classes, within 1 sigma. The MobileNet achieved an AUC
score of (91 +2) % and accuracy of (86 +6) % , and our cus-
tom network obtained an AUC of (8842) % and (854 4) %
accuracy (Table 6).

In the case of multi-class classification problems, ROC
and AUC are plotted for each of the classes separately as one

MNRAS 000, 1-14 (2020)
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Table 7. The number of objects in the training, validation and
test data sets in a single fold of the 10 fold cross-validation.

Experts
Class Train  Validate  Test
cluster 904 113 113
non-cluster 399 57 114

Table 8. Classification results of our custom networks for a 10
fold cross-validation on classifications done by experts.

Fold A P R
1 0.89 0.89 0.88
2 092 091 0.93
3 0.90 0.90 0.91
4 0.88 091 0.83
5 0.87 0.88 0.86
6 0.87 0.87 0.88
7 0.88 0.90 0.86
8 0.92 0.89 0.95
9 0.88 0.84 0.94
10 0.89 092 0.87

versus all, reducing the problem to the binary case. From
the ROC curves (Figure 13), we see that the point source
and high-z galaxy cluster were the hardest classes to detect,
and in the custom network, the nearby galary class was the
easiest to distinguish. We interpret this as a consequence of
nearby galaxies being very distinct from the other classes
in the optical. Interestingly, this category did not achieve
the best performance for the MobileNet network, however,
it still placed among the top-performing classes.

We note that since we have trained the neural networks
on a sample of galaxy cluster candidates picked by the XAmin
pipeline, our sample of point sources is biased towards ob-
jects with some spatially extended emission. Thus we can
not consider the networks trained for multi-class classifica-
tion as a reliable point source classifiers since they are not
representative of the population and do not reflect the typ-
ical appearance of an X-ray point source. If one would like
to use our neural networks for point source detection, re-
training or fine-tuning of our models on a representative
sample of X-ray point sources would be required.

5.6 Cross-validation

We perform 10-fold cross-validation of CN-E to explore, if
the test data set, having all of its galaxy clusters spectro-
scopically confirmed, shows significant bias compared to the
galaxy cluster sample in the training data set. Table 7 con-
tains the number of example images in each data set for a
single fold of the cross-validation. The cross-validation ac-
curacy scores between 87 % and 92 % (Table 8, Figure 14)
and our CN-E achieved accuracy 90 % on average (Table 5,
Figure 8). Those results are consistent and the test sample
we used does not seem to have any significant bias on the
network’s performance.
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6 SUMMARY

In this paper, we have presented convolutional neural net-
works to classify extended X-ray sources detected by the
XAmin pipeline. This automated method can be used to re-
place the traditional manual screening confirmation task of
the XAmin galaxy cluster candidates, which is often tedious
and slow.

Firstly, we built a crowd-sourcing Zooniverse project -
The Hunt for Galaxy Clusters, to obtain a classification of a
large number (1600) of galaxy cluster candidates in a short
time frame (6 months). Our volunteers obtained 62% agree-
ment with experts for identifying clusters and non-clusters
in an overlapping sample of 404 objects. We found that
the volunteers were often incorrectly classifying objects as
point sources or no emission. Out of 254 objects classified
as galaxy clusters by experts in the overlapping sample, vol-
unteers agreed on 104 of those (66/146 low-z and 38/108
high-z galaxy clusters), which is only about 40 %, but they
inconsistently classified only 1 non-cluster as a galaxy clus-
ter. In total, the volunteers found 506 clusters from 1600
candidates. We suspect the reason behind this low perfor-
mance of the Zooniverse volunteers in The Hunt for Galazy
Cluster, if compared to e.g. Galaxy Zoo, to be the com-
plexity of combined X-ray and optical data of galaxy cluster
candidates, burdened by multiple projection and instrumen-
tal effects (see subsection 5.1 for discussion of biases the
Zooniverse volunteers exhibited). We also tested a hypothe-
sis, that the Zooniverse volunteers would preferentially find
prominent galaxy clusters and that their sample could be
easily recreated by a cut in the extent — extension likeli-
hood plane (Pacaud et al. 2006), however, the Zooniverse
volunteers found galaxy clusters across the entire extent —
extension likelihood space (Appendix B), pointing out that
their help could be used for a galaxy cluster science.

Next, we trained CNNs on XMM-Newton X-ray im-
ages combined with their optical counterparts from DSS2,
to distinguish galaxy clusters from non-clusters. The cross-
validation of our custom network shows consistent results
(Table 8, Figure 14) with accuracy scoring between 87 %
and 92 %. We further developed networks on a fixed train-
ing, validation and test samples, the networks trained on
Zooniverse classified data having a different training and
validation samples than those trained on data classified by
experts, but both having the same test sample. Our best
network (CN-E) obtained an average accuracy of 90 % (sub-
section 5.3). This network used our custom architecture and
was trained on labels made by experts. The test sample of
170 objects is composed of 85 spectroscopically confirmed
galaxy clusters (62 low-z and 23 high-z), and 85 galaxy clus-
ter candidates classified as non-clusters by experts. For com-
parison, a similar network using the MobileNet architecture
(MN-E) obtained an average accuracy of 88 % and using the
custom architecture with the Zooniverse classifications (CN-
Z) gave an average accuracy of 82 % at best.

In this work, we show that CNNs trained using either
X-ray only or optical only images had significantly lower
performance in reliably identifying galaxy clusters in com-
parison to using the combined data. While in the X-rays
XMM-Newton detects galaxy clusters as extended sources to
z = 1 at least, the optical POSS-II data sensitivity strongly
drops beyond z~ 0.3, making galaxies hardly identifiable.
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Figure 13. ROC curves for multi-class classification performed by the MobileNet architecture (left) and our custom network (right).
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Figure 14. ROC curves for 10 fold cross-validation of our custom
network trained on expert classifications.

This is evident from the high number of false-positive de-
tections of galaxy clusters (low precision) using the optical
only data. The X-ray only network achieved higher accuracy
(81 %) than the optical only network (68 %).

Additionally we train our networks for multi-class clas-
sification using expert classified labels: low-z galaxy cluster,
high-z galaxy cluster, point source, nearby galaxy and other.
In this case, the MobileNet architecture performed slightly,
but not significantly, better than our custom network (Ta-
ble 5).

This project is a pilot study to determine the potential
of CNNs for the detection of galaxy clusters. In the future,
we intend to apply our methods to large sky surveys such
as the new eROSITA or LSST and FEuclid. Their enormous
data sets are expected to contain tens of thousands of new
galaxy clusters, which will require automated, fast and reli-
able methods to identify, as human screening of such large
data volumes will be impossible. Our methods can also be
applied to simulated data. Our custom network can be easily
fine-tuned to, e.g., eROSITA simulations and deliver an au-

tomated search tool for galaxy clusters from X-ray images.
Applying our CNN on simulations will also enable modelling
of the cluster selection function, important for cosmological
studies, which cannot be done with clusters selected by hu-
man inspection due to their inconsistent biases.
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APPENDIX A: IMAGE PREPROCESSING

The output of the XAmin pipeline is an image with the fol-
lowing normalisation: if a pixel value is lower than min cut,
it is attributed a value of 255; if a pixel is greater than max
cut it is attributed a value of 0; and 255 x (1- (data-min
cut) / (max cut-min cut)) otherwise Table Al. To produce
the .png images used in the neural networks, XAmin applies
the normalisation separately to each of the channels accord-
ing to Table A2.
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Table A2. PNG image channel values as constructed by the
XAmin pipeline. piz refers to the pixel value after cutting.

Channel | Pixel value Normalised pixel value
R pix >=176 255
pix < 176 pix x 255 /176
pix>=120 (pix-120) x 255/ (255- 120)
G .
pix. < 120 0
B pix >=190  (pix- 190) x 255 / (255- 190)
pix < 190 0
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Figure B1. Extent — extension likelihood plane for objects of the
170 test sample classified by experts and the Zooniverse volun-
teers.

APPENDIX B: EXTENT — EXTENSION
LIKELIHOOD PLANE PLOTS

The extent — extension likelihood plane plots (Figure BI,
Figure B2) of our C1 sample of galaxy cluster candidates
as described in (Pacaud et al. 2006), were used to analyse
the Zooniverse sample of galaxy clusters and investigate our
initial hypothesis, that the Zooniverse volunteers will pref-
erentially find most prominent galaxy clusters. We find that
the sample of the Zooniverse galaxy clusters span the entire
extent — extension likelihood plane and can not be recreated
by a simple cut in this space. Please note however that the
XAmin v3.5 we used to make the C1 sample had an issue
fitting the point source peak, resulting in many non-clusters
in the C1 region on the plots and that it is not the same
pipeline as the XXL collaboration used before.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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Figure B2. Extent — extension likelihood plane for objects of the
experts train sample and the Zooniverse train sample.
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