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Abstract

VOICES from a Distance Challenge 2019 aimed at the evalua-
tion of speaker verification (SV) systems using single-channel
trials based on the Voices Obscured in Complex Environmen-
tal Settings (VOICES) corpus. Since it comprises recordings
of the same utterances captured simultaneously by multiple mi-
crophones in the same environments, it is also suitable for mul-
tichannel experiments. In this work, we design a multichan-
nel dataset as well as development and evaluation trials for
SV inspired by the VOiCES challenge. Alternatives discard-
ing harmful microphones are presented as well. We asses the
utilization of the created dataset for x-vector based SV with
beamforming as a front end. Standard fixed beamforming and
NN-supported beamforming using simulated data and ideal bi-
nary masks (IBM) are compared with another variant of NN-
supported beamforming that is trained solely on the VOiCES
data. Lack of data revealed by experiments with VOiCES-
data trained beamformer was tackled by means of a variant of
SpecAugment applied to magnitude spectra. This approach led
to as much as 10% relative improvement in EER pushing results
closer to those obtained by a good beamformer based on IBMs.

1. Introduction

Over the last three years, the speech community has observed
significant improvements in speaker recognition (SR). This is
mainly due to the advent of embedding extracting neural net-
works, most notably x-vector extractor [1]. Becoming a new
state of the art, they have almost completely replaced i-vectors
[2]. While an embedding extractor is typically trained discrimi-
natively, a generative backend in form of Probabilistic Linear
Discriminant Analysis (PLDA) [3] is still often used to pro-
duce verification scores. With newly proposed loss functions
for the embedding network training [4, 5, 6, 7, 8], cosine sim-
ilarity scoring has, however, been shown to perform better in
some scenarios [9].

Despite recent advances, difficulties arise when it comes to
far-field recognition. In such a scenario, the microphone or mi-
crophone array records all noises and distractors. The recording
usually takes place in reverberant enclosures, such as rooms.
This adds another level of difficulty since reverberation is a dif-
ferent type of corruption. As opposed to additive noise, the ef-
fects of room acoustics can be modeled with a certain level of
abstraction by linear filtering. The interest of industry in far-
field and also multichannel speaker verification (SV) has been
increasing, which lead to more research and consequently to re-
leasing suitable benchmarks and datasets. The HI-MIA dataset
[10] has recently been released for the task of text-dependent
SV. It contains utterances of “Hi, Mia” in English and “ni hao,
mi ya” in Chinese. It was recorded in a real smart home en-
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vironment by six 16-microphone arrays and one high fidelity
close-talking microphone. A few corpora have also been re-
leased for the text-independent SV, which we are dealing with
in this paper. In [11], authors have introduced a benchmark
that is based on a public CHiME-5 corpus which was originally
released for an automatic speech recognition (ASR) challenge.
The SV benchmark includes multi-speaker and single-speaker
enrollment and test recordings. It is designed for both single-
channel and multichannel approaches. The dataset of our par-
ticular interest is the Voices Obscured in Complex Environmen-
tal Settings (VOIiCES) corpus [12]. We will analyze it w.r.t. its
capacity of being used for designing a multichannel SV bench-
mark. The dataset itself does not aim only on fostering far-field
SV research but its goal is also to support research in ASR,
source separation, sound localization, and other areas. By the
time of writing this paper, there were two releases, each com-
prising recordings from two rooms. Totally 15 hours of En-
glish read speech from 300 speakers (with the same amount of
male and female voices) taken from LibriSpeech [13] were re-
transmitted in indoor conditions. A loudspeaker replaying the
clean utterance was placed on a motorized stand to simulate
head movements. The corpus includes four noise conditions
according to background distractors playing concurrently with
the speech loudspeaker — television, music, babble, and ambient
(no replayed noise). Authors of the VOICES corpus organized
a challenge. It had two tasks — SV and ASR - each of which
had two conditions according to training data: fixed or open. In
this paper, we are dealing with SV, therefore, we will make use
of the trials defined for the speaker identity related part of the
challenge.

Along with the increased interest in far-field and mul-
tichannel benchmarks, research on these topics has also re-
ceived increased attention. In [14], authors proposed an end-
to-end framework utilizing multiple microphones for extraction
of speaker embeddings. The method is based on the simulta-
neous processing of channels by 2- and 3-dimensional convo-
lutional layers. Other studies approach multichannel process-
ing with beamforming [15, 16]. Usually, some type of beam-
former supported by a neural mask estimator is used. Mask
estimation performed by a neural network, where the masks
are subsequently used for cross power spectral density matrix
(PSD) estimation, was introduced in the ASR community [17].
In [15], authors examine minimum variance distortionless re-
sponse (MVDR) and generalized eigenvalue (GEV) [18] beam-
formers. MVDR is also utilized in [16] where it is combined
with dereverberation and finally also with x-vector extractor and
trained jointly. Many works use non-standard training and/or
evaluation datasets usually created by means of simulation. It
points out a long-lasting lack of appropriate datasets for bench-
marking. In this work, we examine the potentials and draw-
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backs of using the VOiICES dataset for the evaluation of multi-
channel SV systems. In our case, an NN-supported GEV beam-
former will be used. The problem of mask-based beamform-
ers is that simulated data are needed for training as knowledge
of clean speech and additive noise component is required. Re-
cently, we have proposed a solution to mask estimator training
for GEV beamformer where only clean reference is known —
this requirement is satisfied by the VOiCES dataset. Therefore,
we will also asses usability of the VOiCES corpora for training.

2. The VOICES dataset for multichannel
experiments

The VOICES from a Distance Challenge 2019 [19] offered a
track for SV. We focus on a verification that employs informa-
tion from multiple channels. We will, therefore, make use of
the fact that the data in VOICES are captured by multiple mi-
crophones. To this end, we will analyze and redefine both the
development and evaluation trials of the challenge and asses the
usefulness of the dataset for training and evaluation of multi-
channel SV systems.

2.1. Breakdown of the VOiICES challenge trial definition

The overall statistics of the original sets of data are shown in Ta-
ble 1. Development and evaluation sets share some properties:
sets of enrollment and test utterances are disjoint and they are
recorded in different rooms. Evaluation dataset is more difficult
as enrollment recordings contain not only utterances retransmit-
ted in room conditions but also original clean LibriSpeech files.
Clean enrollment recordings and those recorded in room 3 con-
tain voices of two disjoint sets of speakers. Sets of 196 speakers
in the development portion and 100 speakers in the evaluation
set are disjoint as well.

Both development and evaluation trials are created in such
a way that, for every enrollment recording, there are always
multiple test recordings containing the same content (utterance,
speaker, background noise, and room) recorded with multiple
microphones. Based on this fact, we will consider the case
where speakers are enrolled using a single microphone, which
can vary for every speaker. No pre-processing will be applied
to enrollment segments. Test utterances will then be assumed to
come from arbitrary microphone arrays and will be processed
by a multichannel system. This causes a mismatch between the
processing of enrollment and test recordings, and it can be per-
ceived as a more difficult scenario'. Since enrollment files will
remain untouched, the following analysis will be focused only
on the test part of the trials.

Development test set

In the original set of test recordings, every utterance is uttered
by only one speaker. Each speaker uttered at least 1 utterance
and at most 6 utterances, while the average is 2.6 utterances per
speaker. Every utterance was recorded in all noisy conditions —
music, babble, television — and also without the presence of a
distractor (none in Table 1). Eight microphones — 2, 4, 6, 8, 9,

IThere is still room for SV performance improvement by closing
the domain gap between enrollment and test recordings. An example is
presented in [20]. The authors artificially reverberate clean enrollment
recordings so that they become similar to test recordings and perform
embedding fusion on top of simulated audio. We did not explore such
direction as it would be more involved since some enrollment signals
are reverberant. Moreover, clean enrollment recordings are only in the
evaluation set.
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Table 1: Statistics of the development and evaluation trail lists
defined for the VOICES challenge [19]. The term clean in the
enrollment recordings section of the evaluation set denotes the
fact that also original (not retransmitted) LibriSpeech utter-
ances were used. Noise types are abbreviated as follows: B
— babble, T — television, M — music, and N — none.

Enroll. Test Total
env room 1 room 2 room 1, 2
noise N N,B, T.M N,B, T M
Dev.  spkrs 103 189 196
set utts 128 489 617
mics 2 8 2+8
files 256 15,648 15,904
env clean; room 3 room4 clean; room 3,4
noise — N N,B, T N,B, T
Eval.  spkrs 44; 56 96 100
set utts 186; 70 336 592
mics -2 11 2+ 11
files 186; 140 11,066 11,392

10, 11, and 12 — were recording simultaneously. Positions and
types of individual microphones are available in [12] and on the
VOIiCES website”.

Based on the fact that the same content was recorded by
eight microphones, we decided to randomly group 4 micro-
phones. This grouping always resulted in the creation of 2 ad-
hoc microphone arrays. Thus, the original 4,005,888 trials were
reduced to 1,001,472 trials as 8 original trials were reduced to 2
(enrollment recordings remained unchanged). Overall, 996,448
trials are impostor and 5,024 are the target ones.

Evaluation test set

As well as in the set of development test recordings, every utter-
ance is uttered by only one speaker. The minimum of utterances
per speaker is 1, the maximum is 9 and the average is 3.5. Ev-
ery utterance was recorded with babble and television distractor
in the background as well as without any noise (note that the
music noise was not used). Eleven microphones — 4, 6, 8, 9, 10,
11,12, 16, 17, 18, and 19 — were recording simultaneously.

In order to keep the number of microphones in created ad-
hoc arrays consistent with the development set, we randomly
selected two pairs of 4 microphones. The last array consists of
3 remaining microphones and 1 microphone randomly selected
out of the already used ones. Therefore, 3,607,516 original tri-
als were reduced to 983,868. Overall, 973,929 trials are impos-
tor and 9,939 are the target ones.

Multichannel training data

Our training corpus is based on a complete set of recordings
from room 1 and room 2. This set is part of the first VOICES
release. We did not use any files from the second release for
training because it contains recordings from room 3 and room 4
and we did not want to provide models with acoustic conditions
that are present in the evaluation data during training. Because
the development data constitute a subset of the first release, we
filtered them out not to train models on them. We also removed
files where we found an inconsistency in lengths of source Lib-
riSpeech and retransmitted recordings which would cause prob-
lems in training. In the following step, recordings were grouped
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to quartets based on speaker identity, chapter, segment, room,
and distractor type ensuring that all four microphones recorded
the same content. Microphones in microphone arrays were cho-
sen randomly to enhance diversity of the set. The resulting
training dataset consists of 57,800 examples (arrays compris-
ing four microphones) spanning voices of 200 speakers. They
are fully overlapped with speakers in the development set. The
average duration of utterances is more than 15 seconds.

Unfortunately, this dataset has some drawbacks. It is simi-
lar to the development set in terms of speakers and acoustic con-
ditions. It can also comprise the same content recorded by dif-
ferent microphones. This was tolerated for the sake of a larger
set of data. Due to the mentioned disadvantages, results ob-
tained on the development set should be treated carefully.

3. Multichannel speaker verification with
beamforming

As discussed before, various approaches to multichannel SV
have been proposed (including multichannel pre-processing or
end-to-end models), and there are others yet to come. This pa-
per aims at the utilization of the VOiCES dataset for training
and evaluation and discovering its limits rather than at the pro-
posal of a new multichannel SV approach.

One of the downsides of the corpus is its size and limited
number of speakers. Therefore, it is hardly usable for state-
of-the-art embedding extractor training. Instead, we will use
the VOICES data to train only pre-processing models which
will output single-channel audio used by downstream embed-
ding extractor. Specifically, we will examine training of neural
networks that are used to estimate statistics for beamforming
(spatial filtering).

3.1. X-vector extractor and speaker verification backend

In order to perform SV, we follow the standard approach em-
ploying a neural network embedding extractor followed by a
PLDA backend [3].

X-vector extractor [1] is used to estimate single fixed-length
embedding for every utterance of arbitrary length. We adopt a
deeper architecture proposed in [21]. 30-dimensional MFCC
features extracted from a single-channel audio are fed to 9 lay-
ers of TDNN/DNN - a frame-level part of the network. The
resulting context is 11 frames to each side of the central frame.
The frame-level block is followed by mean and standard devi-
ation computation. The segment level part consists of 2 fully-
connected layers followed by a layer with softmax to perform
speaker classification.

The x-vector extractor was trained on 1.2 million speech
segments from 7,146 speakers from the VoxCeleb 1 and 2 de-
velopment sets plus additional 5 million segments obtained with
data augmentation. All training segments were 200 frames long.
The model was evaluated on the original trials of the VOiCES
challenge — model 14 in [22].

PLDA backend involves two pre-processing steps: the x-
vector dimension is reduced from 512 to 250 by LDA, length-
normalization of embeddings is applied. For the backend train-
ing, we concatenated all segments from each session of the Vox-
Celeb 1 and 2 development data. Including augmentations, this
resulted in 830K files.
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Figure 1: GEV beamformer with integrated neural network.
Green blocks represent trainable parts, blue ones are fixed.
Computation flow is displayed for one frequency bin. M stands
for the number of channels (4 in our case). ®nn and P x x
represent noise and speech power spectral density matrices,
respectively. ®nn is decomposed by means of Cholesky de-
composition such that 8Ny = LLY, Eigenvalue (EV) solver
computes a principal eigenvector'y of the input matrix. Trans-
formed principal eigenvector corresponds to a principal eigen-
vector of a generalized eigenvalue (GEV) problem and is used
as a weight vector for beamforming.

3.2. Beamforming frontend

Beamforming producing a single-channel spatially-focused au-
dio is used as a pre-processing step for the x-vector extractor.
As our baseline, we will use a fixed beamformer that requires
no training, and therefore, does not use the VOIiCES training
data. Specifically, we will use the weighted delay-and-sum
beamformer implemented by the Beamformlt tool [23].

The Beamformlt baseline will be compared with an adap-
tive generalized eigenvalue (GEV) beamformer [18] which es-
timates beamforming weights using the statistics of the input
data. In [17], Heymann et al. proposed estimation of these
statistics (power spectral density (PSD) matrices) by using neu-
ral networks. However, this approach cannot be followed di-
rectly with the VOICES training dataset as this method requires
the knowledge of the exact decomposition into the additive
noise and clean audio.

The full processing chain of the GEV beamformer, along
with neural network estimation, is displayed in Figure 1. Mask
estimating NN share weights, and each of them processes one
channel (magnitude STFT representation). They predict two
masks with values between zero and one according to the preva-



lence of noise or speech. Masks are subsequently mean-pooled
and applied to STFT representation of recordings to mask out
speech or noise while computing PSD matrices. The two PSD
matrices are fed to a generalized eigenvalue solver, and the prin-
cipal eigenvector is used as a beamformer weight vector.

Optimization of masks

The original NN-supported GEV work [17] suggested training
the mask estimating NN directly by minimizing binary cross-
entropy between outputs and ideal binary masks (IBMs), i.e.
optimization of outputs of green blocks in Figure 1. However,
in order to compute IBMs, knowledge of speech and additive
noise is required. Hence, simulated data is required for training
and the VOICES training dataset cannot be directly used. We,
therefore, prepared a simulated dataset comprising the same
amount of data and equivalent utterances. We created data re-
sembling the real ones by means of room simulation (image
source method) and positional noise source addition. Original
LibriSpeech recordings were used as inputs to the simulation.
Reverberation time RT60 was drawn uniformly from the inter-
val [0.3, 0.9] s. Shop, crowd, library, office, a real fan, and street
noises were selected from the Freesound library® and added
with SNRs from 3 dB to 20dB.

It might be worth exploring variable simulation parameters
along with various types of noise. However, this would require
extensive experimentation. In real applications, it is not possible
to expect certain types of noise, therefore, increased variability
in training data is usually beneficial to enhance robustness. This
is one of the reasons why we opted for diverse training data in
terms of acoustic conditions.

Optimization of a beamformer output

We have recently proposed a solution to backpropagation
through generalized eigenvalue decomposition by turning it to
standard eigenvalue decomposition through Cholesky decom-
position [24]. Block diagram of this approach is also displayed
in Figure 1 and we refer an interested reader to [24] for details.
This representation allows the generalized eigenvalue solver to
be an integral part of the model that updates the weights of
a mask estimating NN optimizing directly the output of the
beamformer. Here the objective function is mean squared error
(MSE) between magnitude spectra of clean speech and beam-
former output.

It is convenient that this approach can be compared with the
mask optimization since the network remains unchanged and
the only difference is the way of training. Another benefit is that
simulated data are no longer required and the VOiCES training
corpus can be already used because it also contains source Lib-
riSpeech recordings.

We use the following architecture for both NN-supported
beamformers. The first layer that is supposed to capture tem-
poral dependencies is an LSTM with 513 units. It is followed
by two linear layers, each of which comprises 513 neurons with
a sigmoid activation function. Finally, the last layer is divided
into 2 branches of 513 neurons and sigmoid activation func-
tions. A dropout of 50% is used during training.

4. Experiments

All the presented results are expressed in terms of equal error
rate (EER [%]) and minimum detection cost (Cge¢) as defined

3http://www.freesound.org
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for the VOICES challenge in [19] (the prior probability of a
target trial Piq, is set to 0.01).

4.1. Comparison of beamformers and training datasets

In this subsection, we compare the same beamformer utilizing
the same neural network. As mentioned before, the difference is
in the training procedure, where only the approach optimizing
beamformer output can rely only on the VOiICES data without
the need for simulation. For brevity, we will refer to the models
as BCE-model and MSE-model according to the loss function
that is being optimized during mask estimator training.

As per results on the development dataset in Table 2, the
BCE-model reaches better performance than the MSE-model.
This suggests the superiority of the mask optimizing approach.
Training data for the MSE-model comprises the same speak-
ers and the same acoustic conditions (rooms, noise types) as
the development data. On the other hand, there is an overlap
only in terms of speakers (as the rooms are simulated) regard-
ing the training and development set for the BCE-model. We
did not constrain the room simulation to model only the same
rooms and microphone positions resembling those used when
recording the VOICES corpus. Despite the similarity of data
associated with MSE-model, its performance is worse than that
of BCE-model. We hypothesize that it is a more difficult task
for the neural network to figure out that its outputs should mask
out speech and noise only by optimizing MSE. However, direct
mask optimization of BCE-model fits the underlying mathemat-
ical formulation of the GEV beamformer better.

Results on the development and evaluation datasets sug-
gest that BCE-model generalizes better than MSE-model be-
cause relative performance degradation is more pronounced for
MSE-model. We assume that this is where the diversity of the
training data comes into play. Although BCE-model is trained
on simulated data, they are more varied which can positively
affect generalization. However, recordings for the MSE-model
training come only from 12 microphones. Even though we ran-
domly shuffle microphones while creating microphone arrays,
variability is still limited®.

In order to empirically support our assumption, we decided
to augment the MSE-model training data to enlarge the vari-
ability and make the training more difficult. We decided to use
a straightforward approach that resembles SpecAugment [25]
for multiple reasons. It is possible to perform this type of aug-
mentation online on a GPU, which would be complex for online
augmentation by reverberation. By generating new training ex-
amples online, there is no requirement for additional storage
space as in the case of offline augmentation. Also, no other
external data is required and training of MSE-model can com-
pletely rely on the VOICES dataset. Moreover, it was shown
to be comparable to a standard augmentation by noise and re-
verberation in the context of SV [26]. We used only mask-
ing, no warping was applied. The difference between our ap-
proach and the original proposal is that we performed masking
in magnitude STFT domain rather than in the mel-filter-bank
domain. We started by applying a mild augmentation and grad-
ually made it more aggressive. It turned out that harsher mask-
ing improves generalization as performance on the evaluation
set gets better (especially for MSE-model). In the experiments

4Note that restricting the simulation of the BCE-model training data
to take into account only the rooms from the VOICES dataset and the
same microphone positions would result in even greater limitation of
variability. Mask estimator processes channels separately and permuta-
tion of arrays would not have any effect.



Table 2: Speaker verification results of a single-channel system
(on original VOICES trial set) and multichannel systems (on our
modified trial set). Performance is displayed in terms of equal
error rate (EER [%]) and minimum detection cost Cgey.

Dev. set Eval. set

Method EER Cae: EER Cle
Single-channel 203 0261 551 0459
Beamformlt 1.73 0221 5.11 0.494
BCE-model 1.56 0.195 415 0418
& SpecAugment 1.65 0.197 4.05 0415
& removed mic 12 1.65 0.196 3.86 0.408

& removed mics 6,12 1.72  0.195 3.62 0.398
MSE-model 1.81 0.196 5.11 0514
& SpecAugment 1.82 0205 4.52 0476
& removed mic 12 1.77 0207 439 0469

& removed mics 6,12 1.51 0.201 428 0.466

(presented in Table2), 2 frequency and 2 time masks were indi-
vidually applied to all channels. Each time mask covers at most
5% of frames and the maximum range of frequency bins cov-
ered by each frequency mask is 15%. Based on our observation
of the behavior on the evaluation set, it is reasonable to expect
that we are not yet finished with tuning our SpecAugment pa-
rameters.

4.2. Microphone analysis

Motivated by a desire to identify poorly performing micro-
phones that can, in turn, degrade the overall performance of the
microphone array, a per-microphone analysis was performed.
During these experiments, we used a single-channel x-vector
extractor. For reference, the performance of the single-channel
SV system on a complete set of the VOiICES trials is in Table 2
(the first row).

The original VOiICES development trial list was split into
8 parts, and the evaluation list to 11 parts corresponding to in-
dividual microphones. Each part contains the same enrollment
recordings. The test recordings differ only in terms of micro-
phone. Results of the analysis are in Table 3, where each part of
the original trial list is denoted by the number of the correspond-
ing microphone. Not surprisingly, microphones that are close to
a loudspeaker (2, 4) provide the best results. Even though mi-
crophone 8 is located behind the loudspeaker, its proximity to
the source ensures good performance. On the other hand, by far
the worst-performing microphone is 12 which is placed on the
wall and fully obstructed. The second worst microphone (6) is
the omnidirectional condenser lavalier one placed far from the
source.

In agreement with our aim, we removed the worst-
performing microphone (12) from microphone arrays of both
development and evaluation trial sets. In order to preserve the
same number of trials as before removal, we made use of the
fact that each enrolment recording is paired with 8 or 11 test
recordings captured by different microphones in the original
VOICES trial definition. In our multichannel trial list we, there-
fore, removed microphone 12 from arrays and replaced it by
a random microphone from a different array that recorded the
same content. We followed the same procedure when removing
two worst-performing microphones — 6, 12. As per evaluation
results in Table 2, the negative effect of poor microphones in mi-
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Figure 2: Normalized DCF as a function of a logit of target
speaker probability Piq, for MSE-model and BCE-model both
with SpecAugment.

crophone arrays is clear. The BCE-trained model seems to be
more prone to bad signals, as the overall performance improves
more than for MSE-model after the removal of microphones 6
and 12. This may be attributed to a bad estimation of masks
in conditions not seen in training (such as an obstructed micro-
phone). The MSE-model training data include such situations.

4.3. Analysis with DCF plots

In the Figure 2, we analyze performance of two beamforming
methods based on optimization of spectral masks (BCE) and on
optimizing the output of the beamformer (MSE). We can ob-
serve that the performance of both methods is similar on the
development set, while on the evaluation set, the BCE-model
is consistently better across a wide range of operating points.
We speculate that with MSE-model, we are still overtrained on
the development set as we reach similar performance as BCE-
model and at the same time we can observe large gains from
data augmentation (see Table 2), while for BCE-model the ef-
fect of data augmentation is negligible. In our future work, we
will certainly fine-tune the parameters of SpecAugment to find
the limits of the method on this dataset. We can also observe
that the selected DCF operating point sits reliably on the right
side of the DR30 point (Doddington’s rule of 30 [27]) which
means that the measured results are statistically significant even
with the substantially decreased amount of trials in the modified
trial set.

5. Discussion

Our analysis of the VOICES dataset and trials defined for the
SV track of the VOICES challenge revealed some properties of
the corpus and suitability for multichannel experiments. Results
drawn in this section may be considered as ideas that are worth
taking into consideration while creating multichannel datasets.
For cross-site comparison and healthy competition of mul-
tichannel SV systems, the SV community will greatly bene-
fit from having well designed public sets of development data,
evaluation data, and trial lists. In this study, we adapted the ex-
isiting VOICES dataset originally intended for single-channel
far-field systems and we created a recipe for development and
evaluation of the multichannel SV systems. Even though we



Table 3: Analysis of microphones in terms of SV performance. Bold numbers denote microphone labels defined by the VOICES corpus.
The first line of results represents EERs [%], the second line minimum detection cost C et with omitted leading zero, and the third line
assigns position labels to microphones. Meaning of the shortcuts is as follows: clo — closest to foreground speaker, mid — mid-distance
to foreground speaker; far — farthest to foreground speaker, beh — behind foreground speaker; tbo — partially obstructed (on table), cec
— overhead on ceiling (clear), ceo — overhead on ceiling (fully obstructed),wal — fully obstructed (wall).

Development set Evaluation set
2 4 6 8 9 10 11 12 4 6 8 9 10 11 12 16 17 18 19
143 1.83 215 147 191 203 203 331|238 9.18 254 350 278 471 1424 335 501 208 396
221 251 274 231 248 252 261 314 | 304 616 312 398 343 475 839 367 499 301 484
clo mid far beh tbo cec ceo  wal | mid far beh tbo cec ceo wal - - - -

confirmed that it is indeed suitable for evaluaition purposes, it
still has limitations when considering our scenario. Enrollment
recordings were recorded only with two microphones. There-
fore, potential beamforming could use only two microphones
and the number of trials would reduce even more. To explore
some realistic scenarios in consumer electronics, it would be
useful to have a version of a dataset that could support trial def-
initions comprising multichannel enrollment recordings.

Variability in training data is convenient when designing
robust models. The diversity of the dataset could be enhanced
by incorporating more microphones. For instance, multichan-
nel dataset [28] includes 31 microphones. The drawback of a
huge number of simultaneously recording is a synchronization
of all the channels. It calls for specialized hardware. As far
as microphone arrays are considered, we grouped arbitrary mi-
crophones, so presumably, some sensors in the array are few
meters apart and spatial aliasing may occur. It is also difficult
to describe the properties of such arrays. Therefore, recordings
from compact arrays would be certainly appreciated in a multi-
channel dataset.

We recognize that collecting datasets comprising far-field
speech is difficult, costly, and time-demanding. Obviously, it
cannot be compared with nowadays datasets such as Voxceleb
[29, 30] in terms of the number of speakers and size. It is, there-
fore, difficult to use such a dataset for training of some more
complex models. Therefore, we fully support the continuation
of far-field multichannel data collection.

6. Conclusions

In this work, we have explored the potential of the VOiCES
dataset to support training and evaluation of multichannel SV
systems. We have identified several weak spots such as small
amount of speakers and small variability in the acoustic en-
vironments and channels and we tackled these problems via
data augmentation. In our set of experiments, we have con-
firmed that even with a dataset of this size and with the help of
data augmentation, we can achieve interesting results and carry
out research in the field of multichannel speaker verification.
This was confirmed by successfully training our recently pro-
posed method which directly optimizes the beamformer output
via MSE. This method is especially appealing in the scenarios
like here, when the database is being created by retransmitting
relatively clean source data and recording with various noises
through large number of different microphones.

In the future research, we would like to continue to explore
the limits of data augmentation (and if possible use more data
as well) with the MSE method and surpass the performance of
the method based on ideal binary spectral masks. Eventually
we would like to continue to research a SV-aware (end-to-end)
beamforming as outlined in [24].
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