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Abstract—Speech technology plays an important role in our
everyday life. Among others, speech is used for human-computer
interaction, for instance for information retrieval and on-line
shopping. In the case of an unwritten language, however, speech
technology is unfortunately difficult to create, because it cannot
be created by the standard combination of pre-trained speech-
to-text and text-to-speech subsystems. The research presented in
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this article takes the first steps towards speech technology for
unwritten languages. Specifically, the aim of this work was 1) to
learn speech-to-meaning representations without using text as an
intermediate representation, and 2) to test the sufficiency of the
learned representations to regenerate speech or translated text, or
to retrieve images that depict the meaning of an utterance in an
unwritten language. The results suggest that building systems that
go directly from speech-to-meaning and from meaning-to-speech,
bypassing the need for text, is possible.

Index Terms—Speech processing, automatic speech recognition,
unsupervised learning, speech synthesis, image retrieval.

I. INTRODUCTION

S PEECH-ENABLED DEVICES are all around us, e.g., all
smart phones are speech-enabled, as are the smart speakers

in our homes. Such devices are crucial when one can only
communicate via voice, e.g., when one’s eyes and/or hands are
busy or disabled, or when one cannot type a query in the native
language because the language does not have an orthography or
does not use it in a consistent fashion. These languages are typi-
cally referred to as unwritten languages. However, for only about
1% of the world languages the minimum amount of transcribed
speech training data that is needed to develop automatic speech
recognition (ASR) technology is available [1], [41]. Languages
lacking such resources are typically referred to as ‘low-resource
languages’, and include, by definition, all unwritten languages.
Consequently, millions of people in the world are not able to
use speech-enabled devices in their native language. They thus
cannot use the same services and applications as persons who
speak a language for which such technology is developed, or
they are forced to speak in another language.

Much progress in speech-to-text (i.e., ASR) and text-to-
speech (i.e., speech synthesis) technology has been driven by
the speech-to-text conversion paradigm (e.g., [37]). In this
paradigm, all aspects of the speech signal that cannot be con-
verted to text (personality, prosody, performance, emotion, di-
alect and sociolect, reverberation, environment, etc.) are treated
as sources of undesirable variability, and compensated using
feature and model normalization methods, for the purpose of
focusing energy on a clear and solvable task. To that end, acous-
tic models of speech sounds are created which are statistical
representations of each sound (or phone), in principle devoid of
all aspects that cannot be converted to text. Until about 2015,

2329-9290 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brno University of Technology. Downloaded on March 03,2021 at 13:28:35 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0693-8852
https://orcid.org/0000-0001-8820-8831
https://orcid.org/0000-0002-5631-2893
https://orcid.org/0000-0002-6663-8600
https://orcid.org/0000-0002-5562-8386
mailto:o.e.scharenborg@tudelft.nl
mailto:laurent.besacier@imag.fr
mailto:awb@cs.cmu.edu
mailto:fmetze@cs.cmu.edu
mailto:gneubig@cs.cmu.edu
mailto:spalaska@andrew.cmu.edu
mailto:philip.arthur30@gmail.com
mailto:francesco.ciannella@gmail.com
mailto:jhasegaw@illinois.edu
mailto:lwang114@illinois.edu
mailto:sebastian.stueker@kit.edu
mailto:m.mueller@kit.edu
mailto:godard@penalty -@M limsi.fr
mailto:lucas.ondel@gmail.com
mailto:fdsyen@gmail.com
mailto:elin_larsen1@hotmail.fr
mailto:riadrachid3@gmail.com
mailto:emmanuel.dupoux@gmail.com
mailto:d.merkx@let.ru.nl


SCHARENBORG et al.: SPEECH TECHNOLOGY FOR UNWRITTEN LANGUAGES 965

the majority of speech-to-text systems required a pronunciation
lexicon, and lexicon-based speech-to-text systems still dominate
the field. In lexicon-based speech-to-text systems, words (the
intended output) typically are modeled as sequences of acoustic
models of phones [19], [38], [54]. In text-to-speech systems,
the lexicon determines the order of context-dependent phone
models, and the context-dependent phone models specify the
process by which the acoustic signal is generated [67], [68].
Recent end-to-end deep neural networks usually bypass phones,
in order to convert audio input directly into text output [10],
[22], [62]. Both phone-based and end-to-end systems, however,
for both speech-to-text and text-to-speech conversion, require
text: it is necessary to train the statistical model and/or neural
network using a large (sometimes very large) database of audio
files with matched text transcriptions.

In the case of an unwritten language, text cannot be used,
and the speech-to-text and text-to-speech technology thus needs
to be modified. Methods for doing so may be guided by early
work on speech understanding, when text was considered to be
a stepping stone on the path between speech and meaning [47].
Training a speech-to-meaning system is difficult, because few
training corpora exist that include utterances matched to explicit
semantic parse structures; the experiences reported in [32] sug-
gest that such corpora are expensive to create. On the other hand,
a semantic parse is not the only way to communicate the meaning
of an utterance.

Ogden and Richards [51] defined meaning to be a three-part
relationship between a reference (a “thought” or cognitive con-
struct), a referent (a physical object which is an “adequate”
referent of the reference), and a symbol (a physical sign which
is defined, in some linguistic system, to be “true” if and only
if it connects to an existing cognitive reference in the mind of
the speaker or writer). In their model, the reference is never
physically observable, because it exists only in the mind of the
speaker. Communication between two humans takes place by
the use of symbols (speech signals or written symbols), possibly
with the help of gestures pointing to adequate referents (physical
objects or pictures). Consider the model of semantics shown in
Fig. 1. In this model, the reference (the logical propositional
form of an utterance’s meaning) is unknown, but instead, we
have two different symbols (a spoken utterance in one language,
and a text translation in another language) and one referent (an
image considered by at least one transcriber to be an adequate
depiction), all linked to the same reference. Suppose we have a
corpus in which some utterances are matched to translations in
another (written) language, some to images, and some to both;
can we learn a representation of the meaning of the sentence that
is sufficient to regenerate speech, a translation, and/or retrieve
an image from a database?

To answer this question, we present three speech technology
applications that might be useful in an unwritten language situa-
tion. The first task is end-to-end (E2E) speech-to-translation. In
this task, a translation is created from raw speech of an unwritten
language into a textual transcription of another language without
any intermediate transcription [5], [72]. This technology is at-
tractive for language documentation, where corpora are created
and used consisting of audio recordings in the language being

Fig. 1. A model of semantics for speech technology development in an unwrit-
ten language. The speech signal (bottom of the figure) has some propositional
content which is unknown and not directly observable (represented by the open
circle in the center of the figure). Instead of directly observing the propositional
meaning of the utterance, it is possible to observe its translation to another
language (top right, i.e., in Japanese), or to observe an image depicting the
meaning of the utterance (top left).

documented (the unwritten, source language) aligned with their
translations in another (written) language, without a transcript
in the source language [1], [7]. The second task is speech-to-
image retrieval. Speech-to-image retrieval is a relatively new
task [2], [23], [27], in which images and speech are mapped
to the same embedding space, and an image is retrieved from
an image database using spoken captions. While doing so, the
system uses multi-modal input to discover speech units in an
unsupervised manner. In a way, this is similar to how children
acquire their first language. Children learn a first language
using different modalities including the visual modality and
the auditory modality. Learning can then occur in both a su-
pervised way (e.g., a caretaker saying “There is a ball” while
simultaneously and explicitly showing a ball to the child) and
in an unsupervised manner (i.e., without explicit referents or
explicitly turning the child’s attention to an object, e.g., by
talking about a ball without pointing at it). This technology is
attractive for, e.g., online shopping. A user might be interested
in buying a coat, and ask for images of coats. The third task is
image-to-speech. Image-to-speech is a new speech technology
task [28], [29], which is similar to automatic image captioning,
but can reach people whose language does not have a natural
or easily used written form. An image-to-speech system should
generate a spoken description of an image directly, without first
generating text. This technology could be interesting for social
media applications. Particularly in situations where the receiver
of an image is not able to look at a screen, e.g., while driving a
car. The speech-to-image and speech-to-translation tasks bypass
the need for traditional phone-based acoustic models trained on
large databases of speech, and instead map the speech directly
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to the image or translation. The image-to-speech application
creates “acoustic models” by automatically discovering speech
units from the speech stream. All three systems use a common
encoder-decoder architecture, in which the sequence of inputs is
encoded to a latent semantic space, permuted along the time axis
using a neural attention mechanism, then decoded into a different
modality. Note that all three experiments use similar methods
to compute the semantic encoding, but the encoding weights
are separately optimized for each application. The possibility of
sharing a single encoding between experiments was not explored
in this paper, but could be the subject of future research.

The remainder of this paper describes the systems that learn
an underlying semantic representation in order to regenerate the
speech signal, or its text translation, or to retrieve an image
that depicts the same propositional content from a database.
Section II describes relevant background. Section III describes
the Deep Neural Network (DNN) architectures used for all
experimental and baseline systems. Section IV describes the
databases used for the experiments, and the methods used to
train and test the speech-to-translation, speech-to-image, and
image-to-speech systems. Section V gives experimental results,
Section VI is discussion, and Section VII concludes.

II. BACKGROUND

Algorithms for speech-to-translation generation, image-to-
speech generation, and speech-to-image retrieval have previ-
ously been published separately by a number of different au-
thors. To the best of our knowledge, this is the first paper seeking
to develop a unified framework for the generation of all three
types of speech technology for unwritten languages.1

Speech-to-translation for unwritten languages was first pro-
posed in [6]; E2E neural machine translation methods for this
task were first described in [5], [16]. The 2018 International
Workshop on Spoken Language Translation (IWSLT) was the
first international competition that evaluated systems based on
E2E speech-to-text translation performance, without separately
evaluating text transcription in the source language [50]. Most
participants in the IWSLT competition still relied on separately
trained speech recognition and machine translation subsystems
(“pipelined systems”), but at least two papers described neural
machine translation systems trained E2E from speech in the
source language to text in the target language [15], [35]. The E2E
systems were however outperformed by the pipelined system:
[35] reported BLEU scores of 14.87 for the pipelined system,
and of 4.44 for the E2E system; although transfer learning from
the pipelined to the E2E system improved its BLEU from 4.44 to
6.71. The transfer learning idea was further developed in [4] by
first training a speech recognizer in a written language (English

1Note, a summary and initial results of this work were presented in [59]
also available in the HAL repository: [Online]. Available: https://hal.archives-
ouvertes.fr/hal-01709578/document. The current paper provides more details
on the experimental setups of the experiments, including more details on the
used Deep Neural Network architectures and algorithms and rationales for the
experiments. Moreover, new results are presented for the image2speech task and
the speech2image task for which we report the currently best results compared
to results reported in the literature. Additionally, new baseline results are added
for the image2speech task compared to [28], [29].

or French), then transferring the parameters of the trained speech
encoder to the input side of a speech-to-translation system for an
unwritten language (Spanish or Mboshi). Significant improve-
ments (of 11.60 BLEU) were also obtained by fine-tuning the
E2E system using cleaned subsets of the training data [15].

The image-to-speech generation task was proposed in [28],
[29], and consists of the automatic generation of a spoken
description of an input image. The methods are similar to those of
image captioning, but with speech instead of text outputs. Image
captioning was first defined to be the task of generating keywords
to match an image [55]. The task of generating keywords from
an image led to alternate definitions using text summarization
techniques [58] and image-to-text retrieval techniques [33].
End-to-end neural image captioning (using text), using an output
LSTM whose context vectors are attention-weighted summaries
of convolutional inputs, was first proposed in [75].

While the speech-to-translation and image-to-speech tasks
described in this paper are both generation tasks: the output (text
or speech, respectively) is generated by a neural network, to our
knowledge, no similar generation network has yet been proposed
for the speech-to-image task. Instead, experiments in this paper
are based on the speech-to-image retrieval paradigm, in which
spoken input is used to search for an image in a predefined
large image database [23]. During training, the speech-to-image
system is presented with (image,speech) pairs, where the speech
signal consisted of spoken descriptions of the image. The speech
and images are then projected into the same “semantic” space.
The DNN then learns to associate portions of the speech signal
with the corresponding regions in the image. For instance, take
a stretch of speech containing the words “A nice tree in an open
field” (please note, in this paradigm there are no transcriptions
available but for ease of reading the acoustic signal is written out
in words here, see Fig. 1) and an image of a tree in a grassy field.
If the sound of the word “tree” is associated with similar visible
objects in a large enough number of training images, the DNN
then learns to associate the portion of the acoustic signal which
corresponds to “tree” with the region in the image that contains
the “tree,” and as such is able to learn word-like units and use
these learned units to retrieve the image during testing (i.e., im-
age retrieval) [27]. The semantic embedding of input sentences
can be further improved by acquiring tri-modal training data,
in which each image is paired with a spoken description in one
language and a text description in another language; the retrieval
system is then trained to compute a sentence embedding that is
invariant across the three modalities [24].

III. ARCHITECTURE

We assume that all three modalities (speech, translated text,
and images) can be projected into a common semantic embed-
ding space using convolutional and recurrent encoder networks,
and can then be regenerated from the semantic space using
decoder networks. We assume that text input is presented in the
form of a one-hot embedding. Speech is presented as a sequence
of mel-frequency cepstral coefficient (MFCC) vectors. Images
are pre-encoded using a very deep convolutional neural network,
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Fig. 2. Proposed neural architecture. Separate encoder and decoder networks
are trained for each of the three modalities. The figure shows the speech encoder
(a pyramidal LSTM), and decoders (LSTMs with attention-weighted input
context vectors) that would generate an image output or a translated text ouput.

with weights pre-trained for the ImageNet image classifica-
tion task, e.g., using the VGG16 [63] implementation of [20].
In order to convert the image into a sequence of vectors appro-
priate for encoding by a recurrent neural network, the penulti-
mate feature map of the ImageNet classifier is converted into
a two-dimensional array of sub-images (overlapping regions of
40× 40 pixels each), which is then read in raster-scan order,
one row after another, in order to form a one-dimensional
pseudo-temporal sequence. These assumptions are satisfied by
the architecture shown in Fig. 2.

Let X = [�x1, . . . , �xTX
] be a sequence of TX MFCC vectors

representing the speech utterance, let Y = [�y1, . . . , �yTY
] be a

sequence of TY one-hot vectors representing the translated text,
and let Z = [�z1, . . . , �zTZ

] be a sequence of feature vectors
representing overlapping sub-images in raster-scan order. The
problem of speech-to-translation generation, then, is to learn
a function fY X that minimizes a loss function L(Y, fY X(X)).
The problem of image-to-speech generation is to learn a function
fXZ that minimizes a similar loss function, L(X, fXZ(Z)).
The problem of speech-to-image retrieval (or image-to-speech
retrieval) is to learn embedding functions gX(X) and gZ(Z)
in order to minimize a pair-wise loss function between correct
retrieval results, L(gX(X), gZ(Z)).

The architecture shown in Fig. 2 represents the speech-to-
translation task, fY X , as the composition of a speech encoder
gX and a text decoder hY . Likewise, the image-to-speech task,
fXZ , is the composition of gZ and hX , thus

fY X(X) = hY (gX(X)), and fXZ(Z) = hX(gZ(Z)) (1)

The speech encoder, gX , is modeled as a pyramidal bidirectional
long-short term memory network (pyramidal biLSTM): a bi-
LSTM with three hidden layers, in which the input to each layer
is the concatenation of two consecutive state vectors from the
layer below (thus each layer has half as many frames as the layer
below it). The speech-to-image retrieval system uses as its image
encoder, gZ , a pre-trained deep convolutional neural net. The
image-to-speech generation system uses the same pre-trained

convolutional network, followed by a three-layer pyramidal
biLSTM. For image coding purposes, the input to the biLSTM is
created by scanning the last convolutional layer in raster-scan or-
der, i.e., left-to-right, top-to-bottom. For example, in the VGG16
encoder [20], [63] used in our image-to-speech experiments and
our initial speech-to-image experiments, the last convolutional
layer has 512 channels, each of which is 14× 14, therefore �zt
is a 512-dimensional vector, and TZ = 14× 14 = 196.

For purposes of more detailed exposition, consider the image-
to-speech system, fXZ(Z) = hX(gZ(Z)). The encoder is a
pyramidal biLSTM with three hidden layers, and with each layer
downsampled by a factor of two relative to the preceding layer.
For example, �el,t, the tth LSTM state vector at level l of the
network, is computed from the preceding time step (�el,t−1) and
the preceding level (�el−1,2t−1 and �el−1,2t):

�el,t = γ (�el,t−1, �el−1,2t−1, �el−1,2t) (2)

The output is a sequence of encoder state vectors at theLth level,

gZ(Z) = [�eL,1, . . . , �eL,DZ
] , (3)

where DZ = TZ2
−L is the number of state vectors in the Lth

level of the encoder.
The speech decoder, hX , has two parts. In the first part of

the decoder, the embedding sequence gZ(Z) is converted into
a sequence of monophone labels by an LSTM. In the second
part of the decoder, the monophone sequence is converted into a
sequence of MFCC vectors (for more details, please see Section
IV.C.4), X = [�x1, . . . , �xTX

], by a random forest regression al-
gorithm. The first part of the decoder is an LSTM, whose inputs
are attention-weighted context vectors, �ci, computed from the
encoder state vectors as

�ci =

DZ∑

t=1

ait�eL,t, (4)

where ait is the attention weight connecting the ith decoder state
vector, �si, to the tth encoder time-step, �eL,t, and is computed by
a two-layer feedforward neural net α(�si−1, �eL,t) as

ait =
expα(�si−1, �eL,t)∑DZ

τ=1 expα(�si−1, �eL,τ )
. (5)

The decoder state vectors are generated by a single LSTM layer,
β, as

�si = β (�si−1,�ci, ŷi−1) (6)

The probability of the monophone j being computed as the ith

output symbol, Pr(mi = j), is computed using a softmax layer,
in which the LSTM state vector �si and context vector, �ci, are
concatenated, multiplied by a weight vector �wj , and normalized
so that the output is a probability mass function:

Pr(mi = j|m1, . . . ,mi−1, Z) =
exp([�sTi ,�c

T
i ]�wj)∑

k exp([�s
T
i ,�c

T
i ]�wk)

(7)

Since the state vector �si is a function of all preceding output
symbols [ŷ1, . . . , ŷi−1], it is possible that a high-probability
output in any given frame might lead to low-probability outputs
in future frames; to ameliorate this problem, we used a Viterbi
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beam search with a beamwidth of 20. The resulting monophone
sequence is used as input to a random forest in order to compute
both the duration of each monphone, and the sequence of MFCC
vectors X = [�x1, . . . , �xTX

].
The image-to-speech neural network components are trained

to minimize the cross-entropy between the generated mono-
phone sequence and the reference monophone sequence. The
random forest is trained, using the FestVox algorithm [8], to
minimize mean cepstral distortion between the reference MFCC
and the MFCC generated by the random forest from the reference
monophone sequence. The speech-to-translation neural network
is trained to minimize cross-entropy between the softmax out-
put probabilities Pr(ŷi = j) (as in Eq. (7), but computing the
probability of an output word ŷi, rather than the probability of
an output monophone mi) and the reference translated word
sequence Y = [�y1, . . . , �yTY

]:

L (Y, fY X(X)) = −
TY∑

i=1

ln Pr(ŷi = �yi|ŷ1, . . . , ŷi−1, X) (8)

The speech-to-image retrieval task requires us to measure the
similarity between the embedding of any particular speech
sequence, gX(X), and the corresponding image sequence, Z.
Speech-to-image retrieval experiments were tested using LSTM
encoders for both speech and image, but in the end, the best-
performing system used a fully-connected image encoder, which
we will denote γZ(Z), rather than the LSTM image encoder
gZ(Z) described in Eq. (3). The fully-connected LSTM encoder
first performs 2× 2 max-pooling in each of the 512 channels
of the last convolutional layer, in order to create a tensor of
size 7× 7× 512; this tensor is then flattened into a vector of
length 7× 7× 512 = 25088, and transformed through three
fully-connected layers to create a vector γZ(Z) with 1024
dimensions. In some experiments, the image embedding γZ(Z)
was computed from the same VGG-based CNN features as
the image-to-speech system; in the most successful experi-
ments, it was computed, instead, from a different pre-trained
CNN (Resnet-152 [31]). In both cases, the speech encoder is a
bidirectional recurrent neural network (RNN) with architecture
similar to that described in Eq. (3); early experiments used the
same three-layer pyramidal biLSTM as the speech-to-translation
system, but the most successful experiments used, instead, a
network with one convolutional layer followed by a bidirectional
GRU. In either case, the state vectors of the speech RNN, �eL,t,
were combined using attention weights, aZt, computed as a
measure of the similarity between the speech state vector and the
fixed-length image embedding vector γZ(Z), in order to create
a context vector �cZX :

�cZX =

TX∑

t=1

aZt�eL,t (9)

aZt =
expα(γZ(Z), �eL,t)∑DX

τ=1 expα(γZ(Z), �eL,τ )
(10)

where α() is a two-layer fully-connected feedforward network
with the same architecture as the α() network in Eq. (5). For any
particular speech signal, the speech-to-image system returns the

image that maximizes the cosine similarity measure cos(X,Z),
defined to be

cos (X,Z) =
�cTZXγZ(Z)

‖�cZX‖ · ‖γZ(Z)‖ (11)

The network weights are then trained using a bi-modal triplet
loss. The bi-modal triplet loss was defined by [23] to be similar to
a standard triplet loss [11], but with incorrect exemplarsX ′ �= X
and Z ′ �= Z drawn uniformly at random for both the speech and
image modalities. The loss is then computed as the sum, over all
correct pairs (X,Z) in the minibatchB, of the clipped difference
between similarities of the incorrect and correct pairs:

L=
∑

(X,Z),(X,′Z ′)∈B

(
max(0, cos (X,Z ′)−cos (X,Z)+1)

+max(0, cos (Z,X ′)−cos (Z,X)+1)

)

(12)

IV. EXPERIMENTAL SET-UP

Fig. 1 suggests a three-part model of semantics, in which
the meaning of an utterance (its cognitive representation) is
unknown, but is indicated by a text translation and by an image
referent. In order to test the model, it is necessary to acquire
training and test data, and to define training and test evaluation
criteria.

A complete test of Fig. 1 requires data in which each utterance
is matched to a text translation, and to an image. Such data exist
in no unwritten language, therefore some type of proxy dataset
is necessary. Two types of proxy datasets are used in this paper: a
proxy dataset containing all three modalities, but with speech in
a language that is not truly unwritten (FlickR-real), and a proxy
dataset containing only two modalities (speech and translation),
with speech in a language that is truly unwritten (Mboshi).

First, the FlickR-real speech database is a tri-modal (speech,
translated text, images) corpus, but the speech is in a language
that is not truly unwritten nor a low-resource language (English).
The images in this dataset were selected through user queries
for specific objects and actions from the FlickR photo sharing
website [33]. Each image contains five descriptions in natural
language which were collected using a crowdsourcing platform
(Amazon Mechanical Turk; AMT) [33]. AMT was also used
by [23] to obtain 40 K spoken versions of the captions. These
are made available online.2 We augmented this corpus in two
ways. First, the database was made tri-modal by adding Japanese
translations (Google MT [73]) for all 40 K captions, as well
as Japanese tokenization. Second, we generated monophone
transcriptions of all English speech files: original text prompts
were converted to monophone sequences using CMUdict [42],
after which the original text prompts were discarded, and not
used for any further purpose. Other than the monophone tran-
scriptions, no other English-language resources were used; thus,
apart from the monophone transcriptions, English was treated
as an unwritten language.

2[Online]. Available: https://groups.csail.mit.edu/sls/downloads/flickraudio/
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TABLE I
OVERVIEW OF THE DATABASES

The second proxy dataset used a truly unwritten language
(Mboshi), but contained only two of our target modalities
(speech and translation). Mboshi is a Bantu language (Bantu
C25) of Congo-Brazzaville [1], [64]. Mboshi was chosen as a
test language because Mboshi utterances and their paired French
translations were available to us through the BULB project [1].
The Mboshi corpus [21] was collected using a real language
documentation scenario, using ligaikuma,3 a recording appli-
cation for language documentation [7]. The Mboshi corpus is a
multilingual corpus consisting of 5 K speech utterances (approx-
imately 4 hours of speech) in Mboshi with hand-checked French
text translations. Additionally, the corpus contains linguists’
monophone transcriptions (in a non-standard graphemic form
which was designed, by the linguists who used it, to represent
the phonology of the language) [1], [21]. The corpus is aug-
mented with automatic forced-alignments between the Mboshi
speech and the linguists’ monophone transcriptions [13]. The
corpus and forced alignments are made available to the research
community.4 Monophone transcriptions of the Mboshi corpus
were used in order to train and test translations from Mboshi
speech to Mboshi monophone sequences, but were not used for
the translation of Mboshi speech to French text (see below).

Table I gives an overview of the characteristics of the multi-
modal datasets, which were used in the experiments.

The neural architecture shown in Fig. 2 was trained using the
XNMT [17], [48] architecture, and tested in three applications:
speech-to-translation sequence generation, speech-to-image re-
trieval, and image-to-speech sequence generation.

A. Speech-to-Translation

We built end-to-end speech-to-translation systems with
the neural sequence-to-sequence machine translation toolkit
XNMT [17], [48] on the FlickR-real (English-to-Japanese) and
Mboshi corpora (Mboshi-to-French). The speech-to-translation
systems were based on the neural machine translation function-
ality [3], [39], [49], [65] of XNMT.

The speech encoder for the speech-to-translation experiments
(Fig. 3) takes in a sequence of speech feature vectors, and con-
verts them into a format conducive for translation. The encoder
used a bi-directional pyramidal LSTM. The first layer observes
speech features computed by a convolutional neural network
applied over MFCCs inputs.

The decoder, shown in Fig. 4, is an LSTM that generates
either word or character outputs. Word-output systems always
exhibited lower BLEU scores (both word-based BLEU and

3[Online]. Available: http://lig-aikuma.imag.fr
4It is made available for free from ELRA at: [Online]. Available:

http://catalogue.elra.info/en-us/repository/browse/ELRA-S0396/; it can also be
retrieved online at: [Online]. Available: https://github.com/besacier/mboshi-
french-parallel-corpus

Fig. 3. The encoder architecture for the speech-to-translation experiments
was a three-layer bi-directional pyramidal LSTM, observing speech features
computed by a one-layer convolutional network over the top of MFCCs.

Fig. 4. The decoder architecture for speech-to-translation experiments was a
one-layer LSTM generating characters as output (word outputs were also tested,
but were not as successful).

character-based BLEU), therefore results will only be reported
for systems that generated character outputs. The decoder is a
uni-directional LSTM, observing context vectors ci that are gen-
erated by the attention-weighted combination of input encoder
vectors. Each LSTM cell also observed the previous frame’s
LSTM cell, and a one-hot vector specifying the identity of the
character generated in the previous frame.

The encoder and decoder are combined to generate an out-
put sentence character-by-character in a probabilistic fashion,
given the spoken input sentence. During training, the model’s
parameters are updated using stochastic gradient descent on the
cross-entropy loss computed from the training corpus; training
stops when cross-entropy of an independent validation set stops
decreasing.
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B. Speech-to-Image

The speech-to-image retrieval system was implemented in Py-
Torch. Image referents are not available for the Mboshi corpus,
therefore speech-to-image experiments were only performed
using FlickR-real. The training set consisted of 6000 training
images, 1000 test, and 1000 validation images. When an image
is part of the training or validation corpus, all of its spoken
captions are used, thus the FlickR-real training corpus included
30,000 audio-image pairs (6000 distinct images).

The model used a pretrained ResNet-152 [31] with the top
layer removed to encode the images. These features were then
fed into a fully connected layer with 1024 units. The speech was
encoded using a 1 d convolutional layer with stride 2, width 6 and
64 output channels on the MFCCs. The resulting features were
fed into a GRU with 1024 hidden units and finally a vectorial self-
attention layer [12]. The resulting embeddings were normalized
to have unit L2 norm, and used a similarity score based on cosine
similarity (Eq. (11)) between the image and speech embeddings
to perform the retrieval task.

Two types of acoustic features were compared: 1) MFCCs
(baseline features), similar to [23] but with added speaker-
dependent mean-variance normalization on the features before
zero-padding/truncation. We used 10 ms skip step and 25 ms
window for the spectrogram and 40 filters; 2) Multilingual
Bottleneck features (MBN) [18]. The MBN were taken from
the hidden layer of a neural network trained on multiple source
languages in order to learn a multilingual feature space more
generally applicable to all languages. The MBN features are
extracted at a 10 ms rate from a 80-dimensional bottleneck
layer of a feed-forward neural network trained to classify the
senones of multiple languages. The neural network was trained
on 17 languages [18]; none of them English. Although the MBN
feature is supervised, it does not require any text transcription
of the target language.

C. Image-to-Speech

The image-to-speech pipeline [29] consists of four types of
standard open-source software toolkits: 1) an image embedder
VGG16 visual object recognizer which converts each image into
a sequence of image feature vectors, 2) a speech segmenter that
discovers discrete phone-like speech segments in the unwritten
language, 3) an image-to-segment transducer that learns, and
then implements, the mapping from image feature vectors into
speech segment labels, and 4) a segment-to-speech transducer
that learns, and then implements, the mapping from speech
segment labels into speech signals. Training data (for the image-
to-segment and segment-to-speech transducers) and testing data
(for all four components) were drawn from FlickR-real. Each
image has five associated speech files, and their associated
segment transcriptions. The image-to-segment transducer was
trained in order to minimize its average loss, averaged across
all five of the segment transcriptions for each training image.
The segment-to-speech transducer was separately trained to
replicate the segment-to-speech mappings for all training pairs.
The FlickR-real training corpus included 6000 images, asso-
ciated with 30,000 speech files. The validation set consisted

of 1000 validation images, associated with 4000 speech files,
while a further 1000 images (4000 speech files) were used for
testing.

1) Image Embedder: The image embedder was implemented
using part of a pre-trained VGG16 object recognizer: the Ten-
sorFlow re-implementation, by [20], of the best single network
solution [63] in the Imagenet Large Scale Visual Recognition
Challenge 2014 Sub-task 2a, “Classification+localization with
provided training data,”, which is a 13-layer convolutional neural
network trained using the 14 million images of ImageNet [14].

2) Speech Segmenter: Speech segments are monophones, or
monophone-like units. Two different systems were tested. First,
English-language monophone transcriptions of the FlickR-real
corpus were generated from the distributed text prompts (the
text prompts were then discarded, and not used for any other
purpose). Since English is the language of both the audio and
the phone transcripts, these phone transcriptions could be called
same-language phone transcripts.

Second, in the cross-language definition of units ap-
proach [60], [61], a DNN was trained on a high-resource
language, Dutch, which was subsequently mapped to English
(of the FlickR-real database). Although Dutch and English are
both Germanic languages, their phoneme inventories differ. The
number of Dutch phonemes in the Spoken Dutch corpus (Corpus
Gesproken Nederlands, CGN,5 [53]) that was used for this task is
42, while the number of English phonemes in the FlickR dataset
was 45. Eleven Dutch phonemes are not present in English and
their corresponding vectors were removed from the soft-max
layer. Fifteen English phonemes do not exist in Dutch. Nine of
these are diphthongs or affricates which can each be constructed
from a sequence of two Dutch phonemes. Six English phonemes,
however, need to be created which is done through a linear
extrapolation between two (or three) vectors in the soft-max
layer corresponding to two (or three depending on the English
phoneme which needs to be created) existing Dutch acoustic
units (D; see for the mapping [60]). The Dutch vectors that are
used to initialize the new English acoustic feature vectors are
chosen manually on the basis of their linguistic similarity to
the English phonemes which need to be created, e.g., to create
English /ae/, an initial vector is created by extrapolating between
Dutch /a/ and Dutch /ε/ using:

�Vφ,E = �Vφ,D1 + α(�Vφ,D2 − �Vφ,D3), (13)

where �Vφ,E is the vector of the missing English phone φ,E that
needs to be created, �Vφ,Dx are the vectors of the Dutch phones
φ,Dx in the soft-max layer that are used to create the vector for
the missing English phoneφ,E. Among the three Dutch phones,
D1 refers to the phone which is used as the starting point from
which to extrapolate the missing English phone, and D2 and
D3 refer to the Dutch phones whose displacement is used as an
approximation of the displacement between the Dutch starting

5The CGN is a corpus of almost 9 M words of Dutch spoken in the Netherlands
and in Flanders (Belgium) in over 14 different speech styles, ranging from formal
to informal. For the experiments reported here, we only used the read speech
material from the Netherlands, which amounts to 551,624 words for a total
duration of approximately 64 hours of speech.
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vector and the English vector that should be created.α is a factor
corresponding to the approximation of the displacement of �Vφ,E

from �Vφ,D1 and was set manually.
Subsequently, the DNN trained on Dutch but with output

vectors adapted to English is used to decode the FlickR-real
English data, creating so-called ‘self-labels’. The thus-obtained
self-labels of the English data are used to retrain the Dutch DNN
towards English. The DNN is then iteratively retrained with the
English self-labels.

3) Image-to-Segment Transducer: The mapping from im-
age features to segment sequences (same-language phones or
cross-language phones) is learned, and then implemented dur-
ing test time, using a sequence-to-sequence neural network
implemented in XNMT. The image-to-segment model learned
by XNMT is a sequence-to-sequence model, composed of an
encoder, an attender, and a decoder. The encoder has three
128-dimensional bidirectional LSTM hidden layers: the input of
each layer is the concatenation of two sequential outputs from the
previous layer, so that the time scale decreases by a factor of two
with each layer. The input to the encoder are the image feature
vectors created by the VGG16 object recognizer. The attender is
a two-layer perceptron. For each combination of an input LSTM
state vector and an output LSTM state vector (128 dimensions
each), the attender uses a two-layer perceptron (one hidden layer
of 128 nodes) to compute a similarity score. The decoder has one
hidden layer, which is a 128-dimensional unidirectional LSTM.
The output layer of the decoder is a softmax where each output
node is a speech unit in the unwritten language. The number of
output nodes is equal to the size of the speech unit vocabulary
in the unwritten language. The output of XNMT is a sequence
of discrete speech units, e.g., monophones.

4) Segment-to-Speech-Transducer: The mapping from seg-
ment sequences to speech signals is learned, and then imple-
mented during test time, using a random forest regression al-
gorithm implemented in Clustergen [8]. The Clustergen speech
synthesis algorithm differs from most other speech synthesis
algorithms in that there is no predetermined set of speech units,
and there is no explicit dynamic model. Instead, every frame in
the training database is viewed as an independent exemplar of a
mapping from discrete inputs to continuous outputs. A machine
learning algorithm (e.g., regression tree [8] or random forest [9])
is applied to learn the mapping. The mapping is refined, during
training, by resynthesizing each speech signal from the learned
units, and then aligning the synthetic and original speech wave-
forms [45]. Clustergen works well with small corpora because it
treats each frame of the training corpus as a training example. It
is able to generate intelligible synthetic voices from these small
training corpora using an arbitrary discrete labeling of the corpus
that need not include any traditional type of phoneme [46], which
makes it suitable for our low-resource scenario.

V. RESULTS

A. Speech-to-Translation

Four speech-to-translation systems were trained, two same-
language and two cross-language systems using two different

TABLE II
SPEECH-TO-TRANSLATION RESULTS (CHARACTER BLEU SCORE, %) FOR THE

FLICKR-REAL AND MBOSHI CORPORA. VAL = VALIDATION SET, TEST =
EVALUATION TEST SET

TABLE III
SPEECH-TO-IMAGE RETRIEVAL RESULTS (RECALL@N IN %) FOR THE

TESTED INPUT SPEECH FEATURES

input languages: English (using audio from the FlickR-real
corpus), and Mboshi (using audio from the Mboshi corpus). For
each spoken language, two different text outputs were computed:
text output in the same language (English or Mboshi), and text
output in a different language (English to Japanese, Mboshi to
French). Resulting character BLEU scores (average recall ac-
curacy of character 1-gram through 5-gram sequences [56]) are
shown in Table II. Word-level BLEU scores were not calculated,
because they are essentially zero: there are very few complete
and correct words in the generated output. Note, other papers
have also reported very low BLEU scores for this task; the high-
est reported word-level BLEU score for the Mboshi-to-French
corpus, of which we are aware, is only 7.1% [4].

As Table II shows, the character BLEU scores for English-
to-Japanese were significantly higher than those for Mboshi-to-
French. Interestingly, the BLEU scores for the same language
English-English task were lower than those for the English-
Japanese translation task.

B. Speech-to-Image

Table III shows the results for the two features for the speech-
to-image task evaluated in terms of Recall@N. For reference, the
best results in the literature to date on the same data set, i.e., those
by Alishani and colleagues [2], are added to Table III. As the
results clearly show, both the MBN and MFCC based models
show state-of-the-art results. The MBN features are superior
to the MFCC features, with an improvement of 1.9% absolute
for R@1 which increased to 10.7% absolute for R@10 on the
previous best results by [2].

C. Image-to-Speech

The image-to-speech system was trained using either same-
language phone transcriptions (generated from the English-
language prompts distributed with FlickR-real) or cross-
language phone transcriptioning (generated by a Dutch ASR,
mapped to English phones using a knowledge-based cross-
language mapping). The Phone Error Rate (PER) of the cross-
language recognizer prior to retraining was 72.59%, which is
comparable to the phone error rates (PER) of cross-language
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TABLE IV
IMAGE-TO-SPEECH RESULTS (PHONE-LEVEL BLEU SCORES AND PHONE

ERROR RATES (PER (%)) ON THE VAL(IDATION) AND TEST SETS OF THE

SAME-LANGUAGE AND CROSS-LANGUAGE IMAGE-TO-SEGMENT TRANSDUCERS

ASR systems (e.g., [30] reports PER ranging from 59.83% to
87.81% for 6 test languages). Re-training the system, using the
self-labelling approach, yielded a small (i.e., less than 1% abso-
lute) though significant improvement after the first iteration [60].

The image-to-speech results were computed by generating
one spoken image caption from each image. This spoken image
caption consisted of the segment sequence produced by the
image-to-segment transducer, and the resulting speech signal
generated by the segment-to-speech transducer. Each test image
is matched with the five reference spoken descriptions. The
segments generated by the image-to-segment transducer are
evaluated using multi-reference BLEU [56]. A similar multi-
reference PER is also reported, being the average across all
utterances of the minimum, across all five references, of the
PER comparing the hypothesis to the reference. The resulting
multi-reference PER and BLEU scores are listed in Table IV.
Two other scores are also reported: chance and human. Chance
is computed by generating a hypothesis exactly the same length
as the shortest reference hypothesis, but made up entirely of
the most common phone (/n/): the resulting PER is 81.5%.
Human BLEU and PER are computed by scoring the human
transcriptions against one another: each human transcription
was converted to a phone string, and its multi-reference PER
and BLEU were computed with respect to the other four human
transcriptions. Word-level BLEU scores were not computed,
because 1) an unwritten language does not have the concept of
a written word; 2) the image-to-speech network has no concept
of “words” in the output language.

As Table IV shows, the BLEU scores for the cross-language
system are worse than those of the same-language system.
The PER scores for the cross-language and same-language
image-to-segment transducers are similar though also quite poor.
However, as the PER and BLEU scores of the human transcribers
show, the task is difficult.

Any two languages will differ in their phoneme set (see [44].
Future research will have to show whether using a different
combination of languages yields better results. Initial results on
Dutch-to-Mboshi [61] show comparable classification results as
Dutch-to-English.

VI. DISCUSSION

This paper investigated whether it is possible to learn speech-
to-meaning representations without using text as an interme-
diate representation, and to test the sufficiency of the learned
representations to regenerate speech or translated text, or to
retrieve images that depict the meaning of an utterance in an
unwritten language. The here-presented results suggest that

Fig. 5. Speech-to-translation examples from Mboshi to French. Hyp indicates
the hypothesised character sequence in French; Ref indicates the ground truth
character sequence French translation; # indicates word boundary.

spoken language human-computer interaction may be possible
in an unwritten language. Three types of systems are described:
speech-to-translation generation, speech-to-image retrieval, and
image-to-speech generation. All three systems use similar neural
sequence-to-sequence architectures, and, in fact, re-use many of
the same software components.

The speech-to-image retrieval results in Table III are better
than the previously published state of the art. Accuracy of our
speech-to-translation system (Table II) is worse than the state of
the art. Previous papers have reported word-level BLEU scores
of up to 7.1 [4] for this task, but it is not clear that small changes
in a very small BLEU score adequately characterize differences
in the utility of the system for an unwritten language. At this very
early stage in technology development for unwritten languages,
it may be that analysis of individual examples is the most useful
way to characterize areas for future research.

Consider, for example, Fig. 5, which shows two examples
generated by the speech-to-translation system from Mboshi to
French. Both the hypothesised and ground truth French character
sequences are shown. The first example is relatively good: it
only misses part of the end of the sentence. The second example
shows that the model has difficulty translating a full sentence
and diverges to an unconditional language model (unrelated to
the source).

Similarly, consider Fig. 6, which shows three examples gener-
ated by our image-to-speech system from the validation subset
of the FlickR-real corpus, and one image from the evaluation
subset. For each image, four transcriptions are shown: two of the
five available reference transcriptions (Ref; to give the reader a
feeling for the differences among reference transcriptions), the
transcription generated by the same-language image-to-speech
system (Network), and the transliterations into words (done by
hand). The phoneme transcriptions consist of ARPABET phones
of [40]. The PER of 70.4% for the same-language system (and
71.7% for the cross-language system) seems to be a pretty
high number, until one looks at the examples. The examples
show that the system has captured part of the meaning of each
image, and that the high PER arises primarily because the neural
network chooses to express the meaning of the image using
words that differ from those chosen by the human annotators. In
particular, note that, although the neural network has no explicit
internal representation of words (it simply transduces sub-image
sequences into phone sequences), yet, by copying the statistics
of its training data onto the generated sentences of the test data, it
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Fig. 6. Image examples from the FlickR-real corpus, with for each image, two
of its reference transcriptions, the output of the network and its transliteration
by the same-language system.

is able to generate outputs that take the form of intelligible and
almost-correct image descriptions. In the first two examples,
the phone strings shown can be read as English sentences that
mislabel boys as men (note that the two captions provided by
humans disagree on the gender of the people in the image), but
are otherwise almost plausible descriptions of the images. The
third example shows several ways in which the network can
fail: it has generated a sentence that is syntactically incorrect,
and whose semantic content is only partly correct. The phone
sequence in this image can be interpreted to contain valid English
words, but the transliteration shown here is debatable; since the
neural network has no internal representation of “words,” it is not
clear that transliteration into English words is appropriate in this
case. Although the PER and BLEU scores for the cross-language
system are lower than those for the same-language system, the
results are encouraging.

Due to the lack of text in unwritten languages, standard acous-
tic models cannot be trained for unwritten languages. In order to

train the necessary acoustic models for speech technology in a
low-resource language, including unwritten languages, different
approaches have been proposed, which can be roughly divided
into three strands, each deriving from a different historical
tradition within the speech community. First, there is a strand
of research deriving from self-organizing speech recognizers.
When speech data come without any associated text transcripts,
self-organizing systems must create phone-like units directly
from the raw acoustic signal while assuming no other informa-
tion about the language is available, and using these phone-like
units to build ASR systems (i.e., the zero resource approach;
e.g., [36], [52], [57], [69], [76]). Second, there is a strand of
research using the international phonetic alphabet (IPA) to define
language-independent phone units for speech technology [66].
Importantly, however, different languages have slightly different
productions of each IPA phone (e.g., [34]). Therefore it is neces-
sary to create language-dependent adaptations of each language-
independent base phone, which is done through building ASR
systems using speech data from multiple languages [43], [66],
[70], [71], [74]. The third strand takes its inspiration from the
way hearing children learn language and is exemplified by the
speech-to-image systems described in the Background section:
In addition to the auditory input, hearing children, when learning
a language, also have visual information available which guides
the language learning process. This third strand compensates
the lack of transcribed data with using visual information, from
images, to discover word-like units from the speech signal using
speech-image associations [2], [23], [27]. Here, we propose
to extend or widen this third strand to move beyond going
from speech-to-images, to go from speech-to-meaning and from
meaning-to-speech. We thus add a new semantic dimension
on top of speech and images and that is translated text. We
refer to this approach as “unsupervised multi-modal language
acquisition”.

The goal of the research described in this article was to de-
velop this idea using multi-modal datasets that not only include
images but also include translations in a high-resource language
(Fig. 1). Parallel data between speech from an unwritten lan-
guage and translations of that speech signal in another language
exist, and additional corpora can fairly easily be collected [7],
by field linguists and speech technologists.

Here, the speech-to-meaning and meaning-to-speech ap-
proach has been used to discover word-like units from the speech
signal using speech-image associations [2], [23], [27]. However,
it is possible to push this approach further and searching over
subsets of the audio and image can identify sections of audio
(“words”) that maximally correlate with sections of the image
(“objects”) [26]. Moreover, unsupervised decomposition of the
audio words can be used to deduce phoneme-like units [25].

VII. CONCLUSION

Three speech technology systems were implemented. The re-
sults are encouraging, and suggest that building systems that go
directly from speech-to-meaning and from meaning-to-speech,
bypassing the need for text, is possible.
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This research paves the way for developing speech technology
applications for unwritten languages, although more research
is needed to build viable systems that can be deployed. The
proof-of-concept end-to-end systems we developed were an
image-to-speech system, a speech-to-translation system, and a
speech-to-image retrieval system. One of our systems outper-
formed previously reported baselines: an image retrieval system
that used multilingual bottleneck features beat the best result
reported in the literature for this task.

Speech and language technology systems can be developed
for an unwritten language, in a way that is similar to how
children learn a language. The speech-to-meaning and meaning-
to-speech systems built show that intermediate representations
are not necessary to build speech and language technology.

Important avenues for future research are improving the qual-
ity of the discovered speech, image and translation encodings,
finding the optimal acoustic feature set for the end-to-end sys-
tems, and the development of new evaluation metrics that more
accurately quantify the utility of a speech technology system in
an unwritten language.
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