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Abstract

This paper describes BUT’s efforts in the development of the
system for the CHiME-6 challenge with far-field dinner party
recordings [1]. Our experiments are on both diarization and
speech recognition parts of the system. For diarization, we em-
ploy the VBx framework which uses Bayesian hidden Markov
model with eigenvoice priors on x-vectors. For acoustic mod-
eling, we explore using different subsets of data for training,
different neural network architectures, discriminative training,
more robust i-vectors, and semi-supervised training on Vox-
Celeb data. Besides, we perform experiments with a neural
network-based language model, exploring how to overcome the
small size of the text corpus and incorporate across-segment
context. When fusing our best systems, we achieve 41.21% /
42.55% WER on Track 1, for development and evaluation re-
spectively, and 55.15% / 69.04% on Track 2, for development
and evaluation respectively. Aside from techniques used in our
final submitted systems, we also describe our efforts in end-to-
end diarization and end-to-end speech recognition.

1. Introduction

CHiME-6 challenge [1] is a continuation of a series of CHiME
challenges in automatic speech recognition (ASR) in difficult
environments. It uses the dataset recorded for CHIiME-5 [2]
with new array synchronization and updated task definitions.
The dataset consists of recordings of dinner parties in real
homes. The parties were recorded with 6 distant, 4-channel mi-
crophone arrays. The main difficulties of the dataset are spon-
taneity of speech, high overlap ratio, and the presence of back-
ground noise.

For CHiME-6 challenge, two tasks were defined. In Track
1, the task is speech recognition of the distant microphone
recordings. For this task, the oracle segmentation was provided
and no external data were allowed to be used. In Track 2, the
task is analogous, but no segmentation is provided, thus diariza-
tion needs to be performed. To make the diarization task feasi-
ble, Track 2 allowed the use of VoxCeleb [3, 4] data. Besides,
both tracks were split into Category A and Category B, where
Category A is restricted to hybrid ASR systems with baseline
language model, while Category B covers everything else.

In this paper, we summarize the contributions of Brno Uni-
versity of Technology for the challenge. We focused mainly on
diarization, acoustic modeling and language modeling.

*Equal contribution.
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2. Contributions

In this section, we describe both the methods used for the final
submitted systems (in 2.1, 2.2, 2.3, 2.4) and additional experi-
ments with end-to-end approaches (2.5, 2.6).

2.1. Diarization

For Track 2, we based our diarization on agglomerative hier-
archical clustering (AHC) of x-vectors, followed by another x-
vector clustering based on Bayesian hidden Markov model and
variational Bayes inference (VBx'). This approach was suc-
cessfully applied to the Second DIHARD Challenge [5, 6, 7]
and we adapted it to comply with the rules of the CHiME-6
challenge in terms of allowed augmentations for training the x-
vector extractor. We used the speech activity detection (SAD),
x-vector extractor and probabilistic linear discriminant analy-
sis (PLDA) modules from the baseline recipe [8, 9]. Moreover,
we used only the enhanced recording from kinect U06 as in
the baseline recipe. However, we extracted the x-vectors ev-
ery 0.25 s instead of 0.75 s for having seen improvements previ-
ously [7].

Due to the high number of x-vectors to cluster, we used a
two-step AHC: we divided the x-vectors from the whole record-
ing into smaller groups accounting for several minutes, clus-
tered each one individually and finally performed clustering
with all the clusters to obtain four final clusters.

With a similar configuration but using a final threshold that
allows for underclustering, we obtained the AHC-based initial-
ization for VBx which was in turn run until convergence [7].

We further refined the diarization by a three-step proce-
dure: First, we provided the speaker labels from the first VBx
diarization to guided source separation (GSS) [10] to obtain
four recordings where each speaker is enhanced in one of them.
Then we ran the VBx diarization on each of the enhanced
recordings and finally, we pooled the labels corresponding to
the respective enhanced speakers to produce the final diariza-
tion. Note that it is possible for some of the segments that are
speech according to the SAD labels not to have any speaker as-
signed, we assigned to them the speaker from the original VBx
output as depicted in Figure 1.

The performance of the methods is summarized in Table 1.
The baseline approach used x-vectors extracted every 0.75 s and
a single step of AHC to produce the diarization output.

Uhttps://github.com/BUTSpeechFIT/VBx
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Figure 1: Label handling with GSS outputs.

Table 1: Comparison of different diarization methods in terms
of Diarization Error Rate (DER) and Jaccard error rate (JER).

Development Evaluation

DER JER DER JER
Baseline 63.42 70.83 6820 72.54
2-step AHC 60.21 6521 71.84 71.80
VBx 51.67 5320 75.11 7177
VBxon GSS® 51.44 4845 8057 66.33

2.2. Enhancement

For the speech enhancement module, we have used the GSS
method provided by the baseline. We applied the enhancement
also on training data, using the oracle segmentation, and added
the data to our training set for both Track 1 and Track 2 (re-
ferred to as enhanced in Section 2.3). In Track 2, we used
the segmentation estimated by VBx diarization as guidance for
GSS. For estimation of the masks, we used 40 seconds context
on each side and the beamforming filters were estimated and
applied every 5 seconds. Table 2 summarizes how the diariza-
tion and enhancement affect the automatic speech recognition
(ASR) performance in Track 2. Results are obtained with the
system corresponding to the first row in Table 4. Note that there
is a slight inconsistency between these results caused by a dif-
ferent setting of decoding.

Table 2: Impact of diarization and enhancement on the ASR
performance on development set in Track 2. Column Diariza-
tion refers to the diarization used for ASR. We always used VBx
diarization for guidance in GSS.

Diarization Enhancement WER [%]
VBx BeamformlIt 734
VBx GSS 62.9
VBx on GSS  GSS 59.6

2.3. Acoustic model

We explored the impact of different subsets of training data on
the performance of the acoustic model. The first combination
consisted of the left microphone from worn data with all far-
field data enhanced by GSS (Worn (L) + enhanced). Secondly,
we used both worn microphones with enhanced data as in [11]
(Worn (S) + enhanced). We further enlarged this dataset by
adding worn data augmented with artificial room impulse re-
sponses [12] (+ WornRVB). The final combination used worn

2In SO1 we obtained five speakers so we slightly decreased VBX’s
F 4 for that recording since we know that would allow for less speakers.
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data from both microphones, enhanced data by GSS and a sub-
set of 250k non-overlapped parts of far-field data (+250k non-
overlapped). With all subsets, we applied speed perturbation
and data cleaning as in the baseline.

Table 3 compares the results of these combinations. In-
creasing the amount of data by adding more microphones was
beneficial. Reverberation and adding far-field data still im-
proves the performance. However, we decided to use Worn (S)
+ enhanced combination in other experiments, since the size of
this combination was relatively small, while the improvement
was similar compared to the larger combinations.

In all experiments in this section, the acoustic model was
based on a convolutional time-delay neural network with semi-
orthogonal factorization (CNN-TDNN¥) [13]. The baseline en-
hancement is used for Track 1 and GSS enhancement and VBx
on GSS diarization is used for Track 2.

Table 3: Comparison of WER [%] on the development set when
training the acoustic model with different data.

Track 1  Track 2
1 Worn (L) + enhanced (201 h) 48.94 -
(1) + w/o cleaning (265h) 49.14 -
2 Worn (S) + enhanced (308 h) 47.85 59.29
3  (2) + WornRVB (1047 h) 47.57 59.22
4 (3) + 250k non-overlapped  (1329h) 47.31 59.02

We also explored other approaches for improving the per-
formance of the acoustic model which we present in Table 4.
Firstly, we re-transcribed the training data by basic CNN-
TDNNT{ system and system re-trained on pruned (beam 3) out-
put lattices (full-lattices). Second, we extended the lattice-
free maximum mutual information with state-level minimum
Bayes risk (sSMBR). We also considered incorporating segments
from VoxCeleb [4, 3] data® shorter than 5 seconds for semi-
supervised training. Finally, in order to capture the speaker
movement, we replaced the baseline offline i-vector extraction
by the online version. In doing so, we dropped the baseline
pseudo-speakers and treated each person as a single speaker.
Finally, we estimated a secondary offline i-vectors stream only
on non-overlapped parts to help the system to do speaker sepa-
ration.

Table 4: Improvements of acoustic model using discriminative
training, semi-supervised training on VoxCeleb and 2-stream i-
vectors on the development set in terms of WER [%].

Track 1  Track 2
5 CNN-TDNNf 47.85 59.29
6 (5) + full-lattices 47.54 59.23
7 (5) + sMBR 47.32 58.82
8 (7) + VoxCeleb 46.80 57.92
9 (7) + speaker + online i-vector 46.63 58.46
10 (7) + non-overlapped + online i-vector ~ 46.47 -

3This data was allowed only for Track 2 but we analyzed this ap-

proach on Track 1 too.



2.4. Language model

To improve over the baseline count-based language model,
we have trained an LSTM language model (LSTM-LM) using
BrnoLM toolkit*.

In order to cope with the tiny size of the available training
data, we have combined two regularization techniques during
training: the standard dropout along non-recurrent connections
and random replacement of input tokens. We have obtained the
best results with dropout 0.5 and input corruption rate 0.3.

We rescored 3000-best hypotheses from the ASR lat-
tices, carrying over the hidden state between segments of
each speaker [14]. Table 5 shows the improvements achieved
with model Worn (S) + enhanced + WornRVB + 250k non-
overlapped from Table 3°. The gains were similar with other
acoustic models.

Table 5: Results of rescoring the development set of Track 1
with LSTM-LM consisting of two 650-units layers. Perplexity
is for the each LM separately, WER is in interpolation of the
respective LSTM-LM with the baseline.

Perplexity = WER [%]
baseline 157.7 48.24
+LSTM 152.1 46.94
+ across-segment 136.5 46.61
+ input corruption 131.1 46.08

2.5. Towards end-to-end diarization

We developed some end-to-end diarization systems based on
[15]. The neural network architecture is based on the encoder
from a transformer trained to directly perform diarization. The
network is trained via permutational invariant training (PIT) to
minimize the binary cross entropy. The output of the network
allows overlap and a threshold over the outputs is used to obtain
the final diarization decisions.

In Table 6, we show a summary of the results for different
end-to-end diarization systems on the development set. For the
systems in the first three rows, We used just the channel 1 (CH1)
of the training data, which gave us better performance than us-
ing all of them. We obtained improvements when we deleted
the first minute in the training data, since the introductions from
the speakers were not properly labeled. We also observed that
pretraining the system with simulated data of two speakers cre-
ated from VoxCeleb, and then fine-tuning it to the challenge
training data removing the last layer and increasing the num-
ber of speakers to four, provided further improvements. The
last two rows show the results when fine-tuning with one audio
file per kinect (instead of just channel 1), obtaining the mixed
audio either from the original audio files or after applying the
weighted prediction error (WPE) [16, 17]. Finally, we would
like to point out that results degraded notably when scoring our
systems with the new reference labels (RTTM) provided by the
organizers during the evaluation period®. This might be due to
a mismatch between training annotations and new annotations
provided only for the development set.

“https://github.com/BUTSpeechFIT/BrnoLM

5The corresponding WER there is further improved by MBR decod-
ing.
5The new references were obtained for the development and evalua-
tion sets after using forced alignment in contrast with the original labels
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Table 6: Results of end-to-end diarization DNN on the develop-
ment set of Track 2. Results deleting first minute of recordings
(Yes/No), pre-training the network with VoxCeleb (Yes/No) and
with old and new RTTMs are presented in terms of DER (%).

Data Del  VoxCeleb DER DER
Imin  pretrain  Old RTTMs New RTTMs

CH1 N N 70.3 80.6

CH1 N Y 64.6 73.9

CHI1 Y Y 63.6 71.7

mix Y Y 63.5 71.7

WPE+mix Y Y 62.4 70.9

2.6. Towards end-to-end speech recognition

We have explored end-to-end networks for developing ASR sys-
tems. Our end-to-end ASR systems were LSTM-based encoder-
decoder networks and transformer networks as in [18, 19]. All
the ASR systems were trained with characters as target units and
no external language models were used. 80-dimensional Mel-
filter bank features with deltas and double deltas were used as
features. The models were early stopped using the dev-worn
set, and a beam size of 10 was used when decoding to obtain
the hypotheses.

Table 7: Performances of various end-to-end ASR systems in
terms of WER [%] on the dev-worn data and on the dev-far-
field data.

Model Dev-worn  Dev-far-field
LSTM-Attention 60.19 66.51
Transformer 1 66.06 73.39
Transformer 2 64.66 68.70
Transformer 3 61.60 66.70

Table 7 presents the results for end-to-end models. LSTM-
Attention refers to an LSTM-based encoder-decoder network
with 5 encoder layers and 1 decoder layer with a hidden-layer of
size 320. Each encoder layer comprises a bi-directional LSTM
followed by a linear projection layer. A dropout of 0.3 was used
after each B-LSTM in the encoder layer. The decoder consists
of a unidirectional-LSTM with a dropout of 0.1 and it uses an
additive attention mechanism as in [20]. The model was initially
trained on the worn-data and further trained on far-field data.

All transformer models had the same architecture as de-
scribed in [19] but differ on the training mechanisms. The mod-
els have 12 encoder layers and 6 decoder layers with a hidden-
layer of size 256 and a feed-forward layer of size 2048. They
use 4 attention heads.

Transformer 1 refers to a model trained on the worn data.
This model is further trained on far-field data and we refer to
it as Transformer 2 in the table. Finally, Transformer 3 refers
to a model whose encoder is initially pre-trained with auto-
regressive predictive coding (APC) loss on VoxCeleb data as
described in [21]. The model is further trained on both worn
and far-field.

From the results in Table. 7, the LSTM-Attention model
performs better than the transformer models. APC pre-training

as released in CHiME-5.



on VoxCeleb data improves the performance with respect to
only using CHIiME 6 data. APC pre-training was tried on the
LSTM-Attention network but the model did not converge. The
reasons for this behavior need to be further investigated. The
performance of our end-to-end ASR systems is not on par with
the hybrid-ASR systems presented in Table 4 and for this reason
we present the results separately.

3. Final systems

For the final systems for both Track 1 and Track 2, we used
ROVER [22] fusion over different acoustic models. In all sys-
tems, we used GSS enhancement of test data, and for Track 2,
VBx on GSS diarization.

For Track 1, we fused 8 systems: (3) +(4) + (5) + (6) + (7) +
(9) + (10) (in Tables 3 and 4) + CNN-TDNNf system trained on
Worn (S) + enhanced + 250k non-overlapped with full-lattices.

For Track 2, we fused 7 systems: (3) + (4) + (5) + (6) + (7) +
(8) + (9) (in Tables 3 and 4). The final results in the submission
format prescribed by the challenge are in Tables 8 and 9.

Table 8: Final results on Track 1, Categories A and B.

Development WER  Evaluation WER

42.75 44.34
41.21 42.55

Category A
Category B

Table 9: Final results on Track 2, Categories A and B.

Development Evaluation
DER JER WER DER JER WER
Category A 55.60 69.17
Category B 5144 4845 5515 80.57 66.33 69.04
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