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Abstract—Sophisticated Automatic Speech Recognition 

(ASR) technologies have become increasingly popular and are 

widely used in all domains over the years. Systems like Google 

Assistant, Siri®, Alexa® are integrated into our day-to-day 

lives. These systems offer a wide range of possible applications 

just by understanding human speech. However, in the Air 

Traffic Control (ATC) domain, even the most advanced 

simulators can just partially replace expensive pseudo-pilots. 

In spite of having a standardized ATC phraseology, it is still a 

major challenge to recognize and correctly understand the 

communication between air traffic controllers (ATCo) and 

pilots. This is because understanding an ATCo-pilot 

communication requires more than just transforming speech to 

a sequence of words. For most ATC applications, perfectly 

recognizing the sequence of words would not be useful, if the 

meaning behind the word sequence cannot be correctly 

interpreted. Recently, 20 European partners from Air Traffic 

Management (ATM) domain have agreed on a common set of 

rules, i.e., an ontology on how to transform the spoken words 

into ATC instructions that clearly define the meaning of the 

words and make them usable for different applications. In this 

paper, we present an extension of the mentioned ontology to 

make it usable for pilot speech as well. We also show some of 

the challenges faced in understanding the meaning of ATCo-

pilot communication and describe our approach of tackling 

them. Furthermore, we present an algorithm to transform 

words automatically into ontology instructions and describe 

the interfaces used to ensure a consistent and reliable 

communication of ATC instructions. This interface includes, 

besides other information, plausibility values, different 

speakers, and ambiguous outputs. 

Keywords—air traffic control, ATC command ontology, 

command extraction, language understanding, command 

recognition rate, JSON 

I. INTRODUCTION 

Automatic Speech Recognition (ASR) and other related 
technologies are being used in a broad variety of 
applications. The applications range from recognizing human 
speech for documentation purposes to more complex ones 
that also require some understanding of human speech, e.g., 
control of home automation via voice with systems such as 
Google Assistant or Alexa®. In the field of Air Traffic 
Control (ATC), recognition and understanding of 
communication between air traffic controller (ATCo) and 
pilot has not been addressed in a sophisticated manner yet. 
The only application of ASR in this area being already 

implemented is a partial replacement of pseudo-pilots 
through speech understanding in some simulation exercises 
[1]. Even with the standardized ATC phraseology, it is still 
considered a major challenge to recognize and understand 
the communication between ATCo and pilot as 
understanding requires much more than just transforming a 
spoken utterance into a sequence of words. 

Natural human language offers a lot of possibilities to 
express a certain intention with many different words and 
ATC communication is no exception to this. Even though 
ATC phraseology is standardized, ATCos express the same 
command in many different ways using different vocabulary. 
This is illustrated in the following list: 

• lufthansa three echo romeo make it heading two two 
zero degrees left 

• echo romeo turn left two two zero degrees 

• lufthansa three echo romeo turn left now onto a 
heading of two two zero 

• three echo romeo turn left now heading two two zero 
degrees 

• lufthansa three echo romeo heading left of two 
twenty 

• lufthansa three echo romeo turn further left heading 
two two zero degrees 

The wording of all sentences is different, but the meaning 
is always the same. The aircraft with the callsign DLH3ER 
should change its flight direction to a heading of 220 
degrees. A human with a certain amount of ATC knowledge 
would be able to identify that all the above-mentioned 
sentences mean the same. For a machine this is a complex 
task and it gets more complex when multiple commands and 
lots of different speakers are involved. This means, that for 
most ATC applications the recognition of the spoken word 
alone would not be useful, if the meaning behind it is 
unknown. A transformation of spoken words into meaningful 
concepts is required, which maps spoken words to 
standardized concepts. This was already achieved by 20 
European partners from the Air Traffic Management (ATM) 
domain, who defined a common set of rules (ontology). This 
ontology (1) defined the important conceptual elements of 
ATC voice transmission and (2) allowed a clear 
interpretation of the meaning amongst different applications 
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[2]. As per this ontology all the above listed sentences would 
result in the abstract concepts “DLH3ER HEADING 220 
LEFT”. DLH3ER is the callsign of the addressed aircraft. 
HEADING is the command type, 220 is the value of the 
command, and LEFT is the qualifier. One can imagine that 
for a machine this is a format which can be interpreted more 
easily. 

ATCo transmissions were the main focus of the initially 
presented ontology, but the current SESAR project 
HAAWAII [3] recently extended the original ontology to 
make it also applicable for voice utterances of pilots. This 
does not only enable an interpretation of the meaning of pilot 
utterances, it furthermore allows the comparison of ATCo 
and pilot transmissions on a conceptual level. Applications 
such as read back error detection, which are almost 
impossible to accomplish on word level, now seem possible. 
The extension of the ontology is presented in section III. 

The definition of the ontology is important, but it does 
not provide its full benefit until it can be applied and 
transformed automatically into a format that can be 
exchanged among different systems and applications. 
Therefore, this paper also focuses on a technical 
implementation of the ontology. This implementation first 
covers the automatic transformation of recognized words 
from ATCo/pilot voice utterances into ontology-based 
concepts. The second part of the implementation describes 
the used machine readable JSON (=JavaScript Object 
Notation) ontology format, which allows the transmission of 
information among all kind of applications and is easy to 
expand.  

In the next section, we present related work. Section III 
shows the extension of the original ontology for ATC voice 
communication. In section IV the algorithm to transform the 
spoken words into ontology concepts is shown in more 
detail. The machine readable JSON format for the ontology 
is presented with examples in section V. Section VI and 
section VII show the experimental setup and results, which 
proves the capability of the automatic ontology 
transformation. We conclude the paper in section VIII and 
give an outlook on future work. 

II. RELATED WORK 

The ontology for ATC instructions, first introduced by 
the CWP HMI project [2] is not final yet, which means that 
updates/changes are still expected. The projects STARFiSH 
[4] and “HMI Interaction Modes for Airport Tower” [5] 
expand the ontology with respect to ATC ground and tower 
commands including remote tower operations. The projects 
“HMI Interaction modes for approach control” [6] and 
HAAWAII [3] also include pilot utterances as well as 
enroute and oceanic traffic. Furthermore, HAAWAII uses 
ASR to predict ATCo workload. Therefore, greetings – it is 
yet to be investigated whether they are more likely to be 
omitted or elongated in high workload situations – are 
important and introduced to the ontology as well.  

One of the first publicly available corpora with 
transcribed speech recordings for the ATC domain was the 
ATCOSIM corpus, which was funded by Eurocontrol [7]. 
Our transcription rules for writing down the utterances word 
by word are very similar, but in addition to [7] we propose 
also rules for the annotation. Nguyen and Holone [8], [9] 
proposed 10 classes to replace word sequences with their 

corresponding class label, e.g., callsign, unit-name, fix, 
number. Johnson et al. [10] proposed a keyword and value 
representation in JSON format [11], where keywords could 
be Callsign, ToFix, FlightLevel, Altimeter, etc.  

In the AcListanct® project [12], Saarland University and 
DLR created an ontology which consists of the four elements 
callsign, command type, command value, and unit [13], [14]. 
Similar to ATCOSIM the ATCO2 project aims to develop a 
unique platform allowing to collect, organize, and pre-
process air traffic control (voice communication) data from 
different airspaces [15]. 

The HAAWAII project addresses readback error 
detection [3]. The communication feedback loop defines that 
ATCos transmit verbal ATC instructions via radiotelephony, 
whose safety-related parts need to be read back by pilots. 
ATCos need to hear back pilot readbacks and correct the 
readback in case of errors [16]. A hearback error is a 
readback error which is undetected by the ATCo and is left 
uncorrected. 

Fortunately, communication errors, which include 
readback and hearback errors occur very seldomly in ATC. 
Depending on the definition of an error and the analyzed 
airspace, the occurrence of errors in ATC communication 
varies between less than 1% and up to 7% [17], [18], [19], 
[20]. Some transmissions even containing multiple errors 
[21]. NASA aviation safety reporting system reports blame 
communication errors being at least contributing to 80% of 
incidents or accidents [22]. EUROCONTROL assumes that 
miscommunication is the reason for roughly 30% of 
incidents [23]. These numbers and references clearly show 
that the content of communication between ATCos and pilots 
is of utmost importance for the safety of air traffic resulting 
in the importance of automatic understanding of ATCo pilot 
communication, i.e., not just recognizing the spoken words, 
but really addressing the semantic level. 

III. MEANING OF THE SPOKEN WORDS 

This section presents the ontology originally defined in 
the SESAR PJ.16-04 CWP HMI project together with the 
extension for pilot speech from the current SESAR 
HAAWAII project. Fig. 1 presents the general structure of  
the different elements in the ontology. The highest 
conceptual element in this definition is an instruction and 
according to the ontology rules a voice utterance can consist 
of either one or multiple instructions. Fig. 1 depicts the 
structure of an instruction and shows that an instruction 
consists of a callsign, a command, and optional conditions. A 
command always has a type, which determines, how many 
values are allowed. Optional fields are unit (e.g., FL, ft, kt), 
qualifier (e.g., LESS, OR_BELOW, LEFT), speaker (PILOT 
or empty), and reason (REQUEST, REPORTING or empty).  

The first element of an instruction is always the callsign 
(or NO_CALLSIGN), independent of where in the speech 
utterance it is pronounced. Even though the callsign is 
usually said only once in a voice utterance, on the conceptual 
ontology level it is specified to be repeated in front of every 
instruction in case the speaker uses multiple commands. The 
ontology also defines how to use contextual information on 
active aircraft in the working area. So, if in an utterance a 
callsign is shortened by leaving out some numbers, letters or 
the airline designator, the complete callsign is always 
represented on the instruction level, if possible. For example, 
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if only “air france three delta” is said or recognized in the 
context where no AFR3D exists, but AFR123D exists, the 
callsign should be automatically corrected to AFR123D on 
ontology level. This compensates for misrecognitions on 
word level and deals with commonly used abbreviations for 
callsigns in ATC. In case a callsign cannot be determined or 
was not said at all, the special keyword “NO_CALLSIGN” is 
used.  

The other ontology elements from Fig. 1 are now 

explained in more detail via real world examples from 

different airspaces and airports. An example from approach 

traffic could be:  

speed bird six nine six victor keep speed one six zero 

knots until four miles final 

As per ontology, this would result in “BAW696V 

MAINTAIN SPEED 160 kt UNTIL 4 NM FINAL”. The 

type of this command is “MAINTAIN SPEED”, so a type 

can consist of one or two words, but not more. The value is 

“160” and the unit in this case is “kt”. The last four elements 

after “kt” are the conditional clearance with the conjunction 

“UNTIL” and the requirement “4 NM FINAL”.  

A ground-based example from the tower area could be: 

lufthansa four nine nine taxi to alfa five eight via lima 

and november eight 

This would result in two instructions “DLH499 TAXI 

TO STAND_A58” and “DLH499 TAXI VIA L N8”. As 

described before the callsign is present in every instruction 

even though it was said only once. Furthermore, the 

command type “TAXI TO” can have by definition only one 

value (“STAND_A58”). The definition of the “TAXI VIA” 

command also allows multiple values, in this case “L” and 

“N8”. Here, the knowledge of “alfa five eight” being a stand 

and “lima november eight” being taxiways should be known 

beforehand. For this purpose, the ontology defines a 

configuration file, which specifies special word sequences 

and their mapping to values in the ontology. With this 

solution it is possible that “alfa five eight” is mapped to 

“STAND_A58” even though it is not known from the 

recognized words that this word sequence belongs to a 

parking stand.  

Instruction

Command Condition(s)

Type Value(s) Unit Qualifier
Conjunction +

Requirement
ReasonSpeaker

Callsign

 
Fig. 1 Elements of an instruction consisting of a callsign, a command, 

and condition(s). 

To demonstrate the ontology extension of HAAWAII we 

make it a bit more complex and look at a communication 

between ATCo and pilot. The following example is taken 

from enroute traffic:  

Pilot: reykjavik control [NE Icelandic] godan dag [/NE] 

iceair six eight lima passing level one nine zero climbing 

two nine zero  

ATCo: [unk] six eight lima reykjavik control [NE 

Icelandic] godan dag [/NE] identified climb to flight level 

three seven zero  

The communication starts with the pilot and the 

transcription/recognition contains some special markings 

such as “[NE]” (meaning “Non-English”) or “[unk]” 

(meaning “unknown”). The updated ontology specifies that 

text parts of the transcription which are identified as non-

English have to be enclosed within “[NE] [/NE]” tags. 

Furthermore, if it is possible to identify the language 

spoken, this information also needs to be mentioned, e.g., 

“Icelandic”. The above utterance results in the following 

ontology instructions:  

ICE68L PILOT   STATION REYK_RADAR   

ICE68L PILOT   GREETING   

ICE68L PILOT   REPORTING ALTITUDE 190 FL  

ICE68L PILOT   REPORTING CLIMB 290 none 

 

ICE68L               STATION REYK_RADAR  

ICE68L               GREETING 

ICE68L               INIT_RESPONSE 

ICE68L               CLIMB 370 FL 

The new speaker field is only used, if the speaker is not 

the ATCo to ensure compatibility with the original ontology 

version. Also shown here, in cases where a report or a 

clearance does not contain a unit, the ontology captures this 

information with a “none” in the unit field. This is visible in 

the given example for the “CLIMB” command which is 

once transformed with “FL” and once with “none”. The 

reason field also belongs to the HAAWAII extension of the 

ontology and is only used for pilots. “REPORTING” as 

shown in the example indicates that something is being 

reported instead of being requested. This information for 

example becomes important for the decision if a readback is 

required or not. The decision regarding a command(s) being 

a report, a request or a readback is not always easy. The 

utterance “descending flight level two five zero” from a 

pilot for example can be an altitude readback or a report. 

Both “ICE68L PILOT REPORTING DESCEND 250 FL” 

and “ICE68L PILOT DESCEND 250 FL” are, therefore, 

possible. One could easily determine which one is correct by 

looking into the previous utterances. The ontology 

definition, however, requires considering only the current 

utterance for creating the instructions. Not all words from 

recognitions are mapped to elements from the ontology. For 

example, the utterance “okay we check thanks air canada 

eight five four” results in “ACA854 NO_CONCEPT”. 

There can be two reasons for this, either the spoken words 

are not important in the context of ATC communication or 

there is no fitting element yet to cover the words. The 

second option is a hint for possible extensions of the 

ontology. However, NO_CONCEPT is only presented in the 

ontology format if no other command can be extracted from 

the words. The utterance “okay we check thanks air canada 

eight five four descend three thousand feet” would, 

therefore result in “ACA854 DESCEND 3000 ft”. An 

implementation of the ontology from DLR already exists, 

which includes an automatic extraction (command 

recognition) from word sequences to the ontology concepts. 

The next section describes how this extraction is done.  

IV. FROM WORDS TO MEANING WITH ONTOLOGY 

The basic Command Extraction algorithm was already 
presented in 2020 [24]. It tries to identify patterns occurring 
in ATCo and pilot utterances. It consists of three steps on a 
broader perspective, which are callsign extraction, command 
extractions using keyword sequences, and extraction of 
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commands from known ATC Concepts and unrecognized 
words from the utterance. The following Fig. 2 illustrates the 
complete command extraction algorithm: 

01 Extract Predicted Callsign from transcription; 

02  while (NOT end of utterance reached) 

03 { 

04      Extract command when matching keyword sequence found; 

05      if (value, unit, qualifier ... could be extracted) 

06      { 

07         Add command to extracted commands; 

08      } 

09 } 

10 while (NOT end of utterance reached) 

11 { 

12     Find ATC concept in unclassified words; 

13     if (unit, qualifier ... could be extracted) 

14     { 

15         Add command to extracted commands; 

16     } 

17     Find command hints in unclassified words; 

18     if (value, unit, qualifier ... could be extracted) 

19     { 

20         Add command to extracted commands; 

21     } 

22  } 

23 while (NOT end of utterance reached) 

24 { 

25     Find first or further callsigns in unmatched words; 

26 } 

27 Find commands from unclassified numbers 

Fig. 2 Callsign and Command Extraction Algorithm. 

The algorithm has already been explained with examples 
in [24]. The last line is newly added, which tries to find 
commands by extracting commands from sheer numbers, 
which are currently not mapped to any command. 

This could be best explained by using an example of a 
pilot utterance: “one hundred left heading one two zero speed 
bird five zero two papa”. First the callsign “BAW502P” is 
extracted in line 1. Lines 4-9 then extract “PILOT HEADING 
120 LEFT”. After this, nothing is further extracted until line 
26. 

TABLE I shows the status of command extraction, when 
line 27 of the algorithm is reached. 

TABLE I.  ANNOTATIONS FOR ONE SPEAKER 

 one hundred left heading one two zero speed bird five zero two papa 
unkn     unkn  qual      type valu  valu   valu   csgn csgn  csgn csgn csgn csgn 

 

Here, we see that the words “one” and “hundred” are 
classified as “unkn” (unknown), which means that they are 
still unrecognized. This could be a speed, a heading, an 
altitude in feet or a flight level, a frequency, a mach number, 
a QNH value or a squawk code. However, out of these valid 
candidates for a value of 100 are speed, flight level and 
heading, because 100 does not fit all the other types. Altitude 
values in feet are usually between 1,500 and 10,000, and 
QNH values between 950 and 1080 etc. Depending on the 
airport and the aircraft type and its position, a speed of 100 
knots can also be excluded. Speed advisories are usually 
above 150 knots, even in final approach. Nevertheless, “one 
hundred” could mean a flight level or a heading. In either 
case, “one zero zero” is preferred by the ICAO phraseology. 

We use the heuristic to compare with the extracted 
commands from the previous utterance, in order to determine 
the command type for a value of 100.  

Extracting commands from pilot utterances as in the 
example is not an easy task. The reason for this is that pilots 
most often deviate from the ICAO phraseology and tend to 
use short forms while communicating with the ATCo. 
However, we can benefit from the knowledge, that the 
example utterance is a pilot readback, which means that there 
exists a previous utterance from the ATCo for this callsign. 
The command extraction model should also correctly 
recognize the value 100 and determine if it is a HEADING 
or an ALTITUDE command or both. If both command types 
with a value of 100 are returned, then the extraction is 
aborted, because it would be ambiguous. Otherwise, we 
extract either a HEADING or an ALTITUDE command with 
the value of 100. It should also be noted that for an altitude 
value, the ATCo command could also be a CLIMB, 
DESCEND, STOP_DESCEND or STOP_CLIMB 
command. In all cases, pilots could just read back “one 
hundred”, which is not recommended by the ICAO 
phraseology. 

In the above example, this ambiguity regarding which 
command the value belongs to can be resolved only if the 
extracted commands for the corresponding ATCo utterance 
contains it as shown in the example ATCo annotation below.  

• “BAW502P HEADING 120 LEFT” and 

• “BAW502P DESCEND 100 FL”. 

Section VII describes the results when line 27 of the 
algorithm is used and when not used. 

V. TECHINCAL ONTOLOGY IMPLEMENTATION 

The SESAR solution PJ.16-04-ASR has defined an 

ontology for transcription and annotation of ATCo-pilot 

communication, which is extended by several European 

ASR projects defined in the related work section. The 

resulting sequences of spoken words and the corresponding 

ATC concepts are easily readable by human experts, which 

eased the agreement on a common ontology within PJ.16-04 

solution. It is, however, much more difficult for a computer 

to extract and interpret consistently from regular text 

sequences, what is a callsign, a command type, a qualifier 

etc. Therefore, the next logical step is to extend the ontology 

with a format to ease automatic interpretation. This section 

presents a machine-readable format based on JSON, which 

is used by HAAWAII, STARFiSH, PJ.10-97-ASR and 

PJ.10-96-ASR projects. The JSON format consists of key-

value pairs. The keys are always enclosed in quotations 

marks, whereas the values could be strings, numbers or the 

Boolean values true and false. The used JSON formats are 

explained for different use cases by examples in the 

following subsections. 

A. JSON format for the transcriptions 

The example in TABLE II shows the output of Speech-

to-Text transformation, i.e., the transcription or recognition, 

in JSON format. It contains at least the name of the wave 

file with the corresponding voice recording and the 

sequence of words of the spoken utterance in the agreed 

format.  
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TABLE II.  SPEECH-TO-TEXT OUTPUT – MINIMAL VERSION 

{ 

     "filename": "2020-11-20__13-03-13-24.wav", 
     "speaker" : "ATCo", 

     "abstraction_layer_word_sequence":  

            "oscar tango whiskey you may leave [NE Austrian] servus [/NE]" 
} 

 

This format is used to encode both the output of manual 

transcriptions and the output of automatic speech-to-text 

transformation. Additional keys include systemtimetick, 

speaker (see table above), sender, filename. We subsume 

the example from TABLE II by the definition in TABLE III.  

The content of FILE_DESC is shown by example in 

TABLE II and can also contain the additional keys 

mentioned above. The non-terminal UTTERANCE is 

detailed more in the next example in TABLE IV.  

TABLE III.  SPEECH-TO-TEXT OUTPUT – FORMAL DEFINTION 

{ 

     FILE_DESC 
     "abstraction_layer_word_sequence": UTTERANCE 

} 

 

The first example in TABLE II contains a simple 

utterance where only one speaker was recorded. But speaker 

recordings could also contain utterances belonging to 

multiple speakers consisting for example of a pilot 

reporting, an ATCo responding and another pilot calling in 

like shown in TABLE IV. The description below the table 

shows the definition of the format in form of a context free 

grammar. 

TABLE IV.  UTTERANCE FROM ATCO AND PILOT  

{ 

"abstraction_layer_word_sequence":  [ 
      { "recog_speaker": "Pilot1", "recog_utter":  

             "tarom three four one x-ray fully established at seven miles" }, 

      { "recog_speaker": "ATCo", "recog_utter":  
                                "tarom three four one x-ray …”}, 

      { "recog_speaker": "Pilot2", "recog_utter":   "good morning" } 

 ] 
} 

UTTERANCE = WORD_SEQ | WORD_SEQ_ARR 

WORD_SEQ_ARR = [ SPK_WORDS, SPK_WORDS* …] 
SPK_WORDS = {"recog_speaker": SPK, "recog_utter": WORD_SEQ} 

SPK = “ATCo” | “Pilot” | “Pilot1”, “Pilot2” … 

 

In the above description, “|” means “or”, the asterix 

symbol “*“ means zero or more times, i.e., 

WORD_SEQ_ARR consists of at least one instance of 

SPK_WORDS, but could also exist of two or more 

instances. The WORD_SEQ either just consists of a 

sequence of words enclosed in quotation marks or could 

even contain plausibility values like shown in TABLE V.  

TABLE V.  UTTERANCE WITH PLAUSIBILITY VALUES  

{ "recog_utter":  [   

    {"v": "tarom", "p": "0.85"},    
    {"v": "three four one", "p": "0.4"},   

    {"v": "x-ray", "p": "0.25" }  

   ] } 

WORD_SEQ = “WORD WORD* “ | WORDS_PLAUS_ARR 

WORDS_PLAUS_ARR = [ VAL_PLAUS, VAL_PLAUS* …] | 

 WORDS_PLAUS_SEQ  |  WORDS_PLAUS_SEQ* 
VAL_PLAUS = {"v": “WORD WORD*”, "p": PLAUS} 

PLAUS = -1 | 0.0, …. 1.0 

 

“PLAUS” could take a value of -1, meaning that 

plausibility is not defined by the given implementation, or a 

value between 0.0 and 1.0. The higher the plausibility value, 

the more certain the Speech-to-Text recognition is that the 

corresponding word sequence is correct. This has the 

consequence that alternative word sequence outputs must 

also be possible as shown in TABLE VI.  

TABLE VI.  SPEECH-TO-TEXT ALTERNATIVES WITH PLAUSIBILITIES 

{ 

"recog_utter":  [   

   {"wordsProb": [ {"v": "lufthansa", "p": "0.8"} ]},  
   {"wordsProb": [ {"v": "papa", "p": "0.85"}, {"v": "tango", "p": "0.6"} ]},  

    {"wordsProb": [ {"v": "buy", "p": "0.8"}, {"v": "bye", "p": "0.1"} ]} 
   ] 

} 

WORDS_PLAUS_SEQ = {"wordsProb": WORDS_PLAUS_ARR} 

 

Here, the Speech-to-Text recognition has returned four 

different outputs “lufthansa papa buy”, “lufthansa tango 

buy”, “lufthansa papa bye”, and “lufthansa tango bye” with 

different plausibilites. 

The contents of TABLE V could also be written as 

shown in table TABLE VII. Here, we just have one word 

sequence “tarom three four one x-ray”, but with different 

plausibilities for each of the word sequences. 

TABLE VII.  ONE ALTERNATIVE WITH PLAUSIBILITIES 

{ "recog_utter":  [   

   {"wordsProb": [ {"v": "tarom", "p": "0.85"} ]},  

   {"wordsProb": [ {"v": "three four one", "p": "0.4"}]},  
    {"wordsProb": [ {"v": "x-ray", "p": "0.25"}]} 

 ] } 

 

B. JSON format for the annotations 

In addition to the format for Speech-to-Text recognitions 

a JSON based format for ontology instructions (annotations) 

is defined as well. TABLE VIII contains a simple example 

for this definition with the annotations for just one speaker. 

TABLE VIII.  ANNOTATIONS FOR ONE SPEAKER 

{ 

"filename": "2020-11-20__10-39-13-08.wav",  

   "commands": [ 
      {"csgn": "BRU880", "type": "CONTACT",  

 "valu": "BRATISLAVA_RADAR"}, 

      {"csgn": "BRU880", "type": "CONTACT_FREQUENCY",  
 "valu": "134.475"}, 

      {"csgn": "BRU880", "type": "FAREWELL"} 
   ] 

} 

ANNO_FILE = FILE_DESC  ALL_CMDS 

ALL_CMDS = CMDS1  |   CMDS_MULT_SP 
CMDS1 =    "commands": [ KEYW_SEQ, KEYW_SEQ,* ] 

CMDS_MULT_SP = "abstraction_layer_ontology_command":  

             [SP_CMDS   SP_CMDS*] 
SP_CMDS  = { "speaker": SPK, CMD1 } 

KEYW_SEQ = KEYW_VALUE,  KEYW_VALUE* 

KEYW_VALUE = KEYW    VALUE 
VALUE = “value” |VAL_PLAUS_A  

VAL_PLAUS_A = {"v": “value”, "p": PLAUS} 

KEYW = "csgn" | "reas" | "type" | "valu" | "unit" | "qual" | "cond"   
SPK, FILE_DESC, PLAUS already defined in subsection V.A 
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TABLE IX illustrates an example containing the initial 

call of the pilot and the resulting ATCo commands, in which 

the VALUE of DIRECT_TO command contains a 

plausibility value. 

TABLE IX.  ANNOTATIONS FOR MULTIPLE SPEAKERS 

"abstraction_layer_ontology_command":  [  { 

   "speaker": "Pilot",  

   "commands": [ 
      {"csgn": "GAC435F", "reas": "REPORTING", "type": "DESCEND", 

  "valu": "170", "unit": "none"}, 

      {"csgn": "GAC435F", "reas": "REPORTING", "type": "DIRECT_TO", 
  "valu": "WW973", "qual": "none"} 

   ]},    { 

   "speaker": "ATCO",  
   "commands": [ 

      {"csgn": "GAC435F", "type": "DIRECT_TO", "qual": "none",  

 {"v": " WW972", "p": "0.8"}}, 
      {"csgn": "GAC435F", "type": "NO_SPEED_RESTRICTIONS"} 

  ]} 

] 

 

C. JSON format for transcriptions and annotations and 

multiple hypotheses 

In some cases, like for unsupervised learning, it makes 

sense to have a format which contains the output of the 

transcription and the corresponding annotations. TABLE X 

shows an example for this scenario. 

TABLE X.  TRANSCRIPTION, CLASSIFICATION, AND ANNOTATION 

{ 

"filename": "2020-11-20__09-39-35-34.wav",  
"abstraction_layer_word_sequence":  [ 

   { "recog_speaker": "ATCO", "recog_utter": 

  "seven two five contact graz on one one nine three bye bye” } 
   ], 

"abstraction_layer_classific_seq":  [ 

      { "recog_speaker": "ATCO", "recog_utter":   
 "csgn csgn csgn type valu unkn vare vare vare vare type type” } 

   ], 
"commands": [ 

   {"csgn": "IGA725", "type": "CONTACT", "valu": "GRAZ_RADAR"}, 

   {"csgn": "IGA725", "type": … "valu": "119.300"}, 
   {"csgn": "IGA725", "type": "FAREWELL"} 

   ] 

} 

TRANS_ANNO_FILE = FILE_DESC  TRANS_CL_ANNO 
TRANS_CL_ANNO  = TRANS_ANNO | TRANS_CLAS_ANNO 

TRANS_ANNO = TRANS   ALL_CMDS 

TRANS_CLAS_ANNO = TRANS  CLAS  ALL_CMDS 
TRANS =  "abstraction_layer_word_sequence": UTTERANCE 

CLAS =  "abstraction_layer_classific_seq": CLASSIFICATION 

FILE_DESC, UTTERANCE already defined in subsection V.A, 
ALL_CMDS already defined in subsection V.B. 

 

CLASSIFICATION represents the classification of the 

UTTERANCE. It contains exactly one classification type 

for each word in the transcription. Allowed words here are 

the same set of words as defined for KEYW (defined in 

subsection V.B), and. “vare” (value rest), “grtg” (greeting), 

“spea” (speaker) and “unkn” (unknown). 

The output of the automatic annotation is not always 

unique as shown by the examples in the previous sections. 

We have already shown alternative output on transcription 

level. 

TABLE XI.  TWO HYPOTHESES WITH DIFFERENT SPEAKERS 

{"filename": "2020-11-20__09-39-35-34.wav",  

"hypotheses": [{ 
    "abstraction_layer_word_sequence":  

 "Pilot: good morning ... ATCO: qatari seven zero ...", 

   "abstraction_layer_ontology_command": [{ 
        "speaker": "Pilot", 

        "commands": [{"csgn": "DLH123",  

 "type": {"v": "NO_CONCEPT", "p": "0.5"}  } 
                          ]},  

{ 

        "speaker": "ATCO", 
        "commands": [{"csgn": "QTR703A", "type": "ALTITUDE"…}] 

  } ]   }, 

{ 
   "abstraction_layer_word_sequence":  

 "qatari seven zero three alfa correct seven thousand", 

  "abstraction_layer_classific_seq":  
 "csgn csgn csgn csgn valu type valu valu",  

   "abstraction_layer_ontology_command": [{ 

           "speaker": "ATCO", 
           "commands": [{"csgn": "QTR70", "type": "INFORMATION", 

                                     "sndt": "ATIS","valu": "A" }] 

           }] 
   }] 

} 

VI. EXPERIMENTAL SETUP 

Experiments to demonstrate the current capabilities of the 
current automatic command extraction (see section IV) were 
conducted. The dataset used to conduct the experiment was 
obtained from the HAAWAII project for London airspace 
(from NATS air navigation service provider). The data from 
the London airspace consists of the TMA South sector and 
the Heathrow approach sector. The dataset comprised of 
1,216 commands from 746 utterances, composed of both 
ATCo and pilot speakers. The number of commands in each 
utterance ranged between 1 and 7. 

The quality of command extraction is evaluated by 
comparing the automatically extracted annotations to the 
gold annotations. Gold annotations refer to the annotations 
which are manually verified and corrected by a human 
expert. The metrics used to evaluate the quality of the 
extracted annotations are: recognition rate (RecR), error rate 
(ErrR), and rejection rate (RejR). The recognition rate 
(RecR) is defined as the number of correctly recognized 
commands divided by the total number of actually given 
commands. Error rate (ErrR) is the percentage of wrongly 
extracted commands, i.e., the number of commands extracted 
wrongly divided by the total number of commands actually 
given. Rejection rate (RejR) is the percentage of gold 
annotations which are not extracted. A wrong command 
extraction is considered as a rejection, if for a given gold 
annotation (i) nothing is extracted, or (ii) command type 
NO_CONCEPT is extracted, or (iii) the correct command 
type is extracted, but with the callsign NO_CALLSIGN and 
this differs from the given gold annotation. 

For a given speech utterance, each instruction (see 
Fig. 1) is treated as one big word. The Levenshtein 
distance between the gold annotation and the results of 
command extraction is then calculated, which returns the 
number of substitutions (subs), insertions (ins), and deletions 
(del). TABLE XII gives an overview about the different 
metrics and illustrates an example how they are calculated. 
In the table #gold defines the total number of commands in 
the gold annotation. #match defines the number of matches, 
which is #gold – subs – del. 
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TABLE XII.  METRIC DEFINITION 

Metric Calculation 

Command Recognition 

Rate (RecR) 
RecR = #matches / #gold 

Command Recognition 

Error Rate (ErrR) 
ErrR = (subs + ins) / #gold 

Command Rejection Rate 

(RejR) 
RejR = del / #gold 

Callsign Recognition Rate 

(CaR) 

Same as RecR but only for 

callsigns without 

instructions 

Callsign Recognition Error 

Rate (CaE) 

Same as ErrR, but only for 

callsigns without 

instructions 

Callsign Rejection Rate 

(CaRj) 

Same as RejR, but only for 

callsigns without 

instructions 
If the command extraction results in different callsigns, the calculation 
is done for each callsign. See example below, which also illustrates that 

the sum of RecR, ErrR, and RejR can exceed 100%. 

Example 

Gold Annotation Command Extraction 

 
AFR123 INIT_RESPONSE 

AFR123 TURN LEFT 

AUA1AB SPEED 140 kt 
DLH123_NO_CONCEPT 

AFR123 DIRECT_TO OKG none 
AFR123 INIT_RESPONSE 

AFR123 TURN RIGHT 

AUA1AB NO_CONCEPT 
DLH123 NO_CONCEPT 

Result:  

RecR = 2/4 = 50% 

(green) 

ErrR = 2 / 4 = 50% 

(purple) 

RejR =1/4 = 25% 

(yellow) 

 
If the results of command extraction contain either 

NO_CONCEPT or NO_CALLSIGN, these substitutions and 
insertions are always calculated as deletions, i.e., these 
extractions contribute to the rejection rate and not to the error 
rate (as shown in the example in TABLE XII). 

TABLE XIII.  EXAMPLE OF METRIC CALCULATION WITH INIT_RESPONSE 

AND SPEED COMMANDS SWITCHED OFF 

Gold Annotation Command Extraction 

 
AFR123 TURN LEFT 

AUA1AB NO_CONCEPT 

DLH123 NO_CONCEPT 

AFR123 DIRECT_TO OKG none 
AFR123 TURN RIGHT  

AUA1AB NO_CONCEPT 

DLH123 NO_CONCEPT 

AFR123 INIT_RESPONSE is mapped to AFR123 NO_CONCEPT. 

However, both gold annotation and command extraction contain 

another command for AFR123. NO_CONCEPT is only added, if it 
is the only command, which is the case for AUA1AB with SPEED 

mapped to NO_CONCEPT. 

Result:  

RecR = 2/3 = 
67% (green) 

ErrR = 2/3 = 67% 
(purple) 

RejR = 0 = 0% 
(yellow) 

 

For calculation of the callsign rates CaR, CaE, and CaRj we 

just compare the callsigns from the gold annotation with the 

callsigns of the automatic extraction. For each utterance we 

consider the callsign only once, except when multiple 

callsigns are annotated or extracted. For the example in 

TABLE XII, this results in the three annotated and extracted 

callsigns AFR123, AUA1AB, and DLH123. As the 

ontology is still evolving, the annotations and extractions for 

different data sets are based on different versions of the 

ontology. In most cases, new ontology versions introduce 

new command types. The metric calculation has to take this 

into account so that older data sets can also be reused. If 

some command types were not considered in the gold 

annotation or by the extraction (set via a configuration file), 

these command types are deleted from both the annotation 

and from the extraction. Following the deletions, if the set of 

extracted annotations for a callsign is empty, the command 

type NO_CONCEPT is added for this callsign instead. If 

INIT_RESPONSE and SPEED command types are not 

supported for the above example from the metric definition 

this would lead to the following result as shown in TABLE 

XIII.  

VII. RESULTS 

The results of command extraction for both ATCo and 
pilot utterances for the manually verified directories are 
shown below in  TABLE XIV.  

TABLE XIV.  COMMAND EXTRACTION RESULTS 

Directories #Utterances # Cmds RecR ErrR RejR 

DAY1 - SECTOR1 

(ATCo) 
217 330 97.3% 0.9% 1.8% 

DAY1 - SECTOR1 

(PILOT) 
229 363 94.8% 1.1% 4.4% 

DAY2 - SECTOR2 

(ATCo) 
128 226 96.5% 0% 3.5% 

DAY2 - SECTOR2 
(PILOT) 

172 297 93.9% 0.3% 5.7% 

All 746 1216 95.6% 0.6% 3.8% 

 
From TABLE XIV we observe that the recognition rates 

are better and the error rates are lower for ATCo utterances 
as compared to pilot utterances. This is because ATCos are 
observed to adhere to the standard ATC phraseology more 
often than pilots. Pilots, on the other hand tend to use short 
phrases while reading back to the ATCos. Many times, pilots 
just read back numerical command values without 
mentioning the command type. For example, in the given 
pilot’s readback utterance - “one zero zero speed bird four 
seven five”, “one zero zero” is the command value, which is 
a valid value for ALTITUDE, HEADING, or SPEED 
commands and the word “speed” belonging to callsign does 
help to reduce ambiguity.  

TABLE XV illustrates the evaluation results when 
commands with just the numerical command value specified 
in the utterance are not extracted by our command extraction, 
i.e., line 27 in the algorithm shown in Fig. 2 would be 
missing. Whenever there is a difference to the rates presented 
in TABLE XIV the second number in the cell shows in bold 
which rate was achieved before.  

TABLE XV.  COMMAND EXTRACTION RESULTS WHEN SHEER 

NUMERICAL VALUES ARE NOT EXTRACTED 

Directories #Utterances # Cmds RecR ErrR RejR 

DAY1 - SECTOR1 
(ATCo) 

217 330 97.3% 0.9% 1.8% 

DAY1 - SECTOR1 

(PILOT) 
229 363 

91.5% 

94.8% 
1.1% 

7.7% 

4.4% 

DAY2 - SECTOR2 

(ATCo) 
128 226 96.5% 0% 3.5% 

DAY2 - SECTOR2 

(PILOT) 
172 297 

90.9% 

93.9% 
0.3% 

8.6% 

5.7% 

All 746 1216 
94.1% 

95.6% 
0.6% 

5.5% 

3.8% 
The second number shows the result from TABLE XIV, when there is a difference. 
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It is important to note that extraction of commands when 
just the numerical command values are specified is 
implemented for just pilot utterances. The reason for this is, 
in addition to clearances, ATCos also give information 
regarding traffic and other miscellaneous information which 
contain numerical values. These values should not be 
wrongly extracted as command types. For example, in the 
utterance - “easy eight two nine golf passing nine zero i can 
give you a turn north”, the ATCo implies that he/she would 
give a TURN NORTH clearance once the aircraft passes an 
altitude of FL 90. The ATCo does not currently give any 
clearance here. The heuristic to extracting full commands 
from just numbers could wrongly extract value 90 as an 
ALTITUDE command. Moreover, ATCos seldomly use 
sheer numbers to give command clearances. Hence the 
minimal improvement in the recognition rates does not 
justify the increase in the error rates for ATCos.  

From TABLE XV we observe that by not extracting 
commands using just their numerical values, the recognition 
rates go down significantly from 94.8% to 91.5% and 93.9% 
to 90.9% for the pilot utterances of DAY1 SECTOR1 and 
DAY2 SECTOR2, respectively. On the other hand, the error 
rates remain the same for both directories, which is why it 
works well in improving the overall quality of command 
extraction. 

Using context information, i.e., using the surveillance 
data to predict, which callsigns are possible, also 
significantly improves the quality of command extraction. 
TABLE XVI shows the results of command extraction 
without using the callsigns from context. The second number 
in the cell is again a repetition of the numbers in TABLE 
XIV.  

TABLE XVI.  COMMAND EXTRACTION RESULTS WHEN CONTEXT 

INFORMATION IS NOT USED 

Directories #Utterances # Cmds RecR ErrR RejR 

DAY1 - SECTOR1 

(ATCo) 
217 330 

79.4% 

97.3% 

7.9% 

0.9% 

13.3% 

1.8% 

DAY1 - SECTOR1 

(PILOT) 
229 363 

72.7% 

94.8% 

11.8% 

1.1% 

16.8% 

4.4% 

DAY2 - SECTOR2 

(ATCo) 
128 226 

81.9% 

96.5% 

13.7% 

0% 

4.4% 

3.5% 

DAY2 - SECTOR2 

(PILOT) 
172 297 

72.1% 

93.9% 

16.5% 

0.3% 

16.5% 

5.7% 

All 746 1216 
76.5% 

95.6% 

12.5% 

0.6% 

12.8% 

3.8% 
The second number shows the result from TABLE XIV, when there is a difference. 

 

From TABLE XIV and TABLE XVI, we observe that the 
recognition rates fall drastically when context information is 
not used to extract callsigns. There is an overall decrease in 
the recognition rates from 95.6% to 76.5%. Moreover, error 
rates also increase significantly from 0.6% to 12.5% when 
context information is not used by the command extraction 
model. This is because both ATCos and pilots most often do 
not specify full callsign in their utterances. For example, 
BAW515 would not always be said as “speed bird five one 
five”, but “speed bird one five” or “five one five” could also 
be said quite commonly. Using context information not only 
decreases the error rates but also improves recognition rates, 
not just on callsign extraction level but also on the command 
level.  

VIII. CONCLUSION AND OUTLOOK 

Understanding ATC speech communications is so much 

more than just transforming speech into text. The ontology 

for ATC instructions shows that it is possible to put the 

content of such communications in a more standardized 

format. 

This paper presented an extension of the original 

ontology, which makes it also usable for pilot utterances and 

therefore allows much more complex applications, which 

require a comparison between ATCo and pilot instructions. 

The here presented algorithm classifies each word of a text 

sequence, transforms the text into an ontology conform 

instruction and presents also a plausibility measurement to 

report the reliability of certain extracted elements. The 

defined JSON format allows a consistent exchange 

concerning Speech-to-Text transformation, ontology 

information or both together between different systems and 

applications. The format is by definition machine readable 

and easy to expand with additional key-value pairs while 

ensuring compatibility with old data. 

The first results presented from the experiments for 

command extraction show already a quite impressive 

performance for ATCo and pilot utterances. With error rates 

for ATCos from 0% to 0.9% and 0.3% to 1.1% for pilots the 

algorithm can be considered quite reliable. Nevertheless, the 

approach still has to be tested on bigger and different data 

sets and improvements are still expected in the future as 

multiple projects which are working on the command 

extraction algorithm are still running. With improving 

recognition and error performances on ontology level 

complex applications seem to become possible. The 

abstraction of ATC communications allows a comparison of 

ATCo and pilot utterances and enables applications such as 

readback error detection to improve safety in the future. 

ACKNOWLEDGMENT 

Three projects of SESAR2020 industrial research and 
exploratory research have received funding from the SESAR 
Joint Undertaking under the European Union’s grant 
agreement No. 734141, 874464, 874470 and 884287. The 
projects are named PJ.16-04-W1 (CWP HMI), PJ.10-96-W2 
(HMI Interaction modes for Approach control), PJ.05-97-W2 
(HMI Interaction Modes for Airport Tower), and HAAWAII 
(exploratory research). The project STARFiSH is funded by 
the German Federal Ministry of Education and Research. 

REFERENCES 

[1] C. Hamel, D. Kotick, and M. Layton, “Microcomputer System 

Integration for Air Control Training.”, Special Report SR89-01, 

Naval Training Systems Center, Orlando, FL, USA, 1989. 
[2] H. Helmke, M. Slotty, M. Poiger, D.F. Herrer, O. Ohneiser et al., 

“Ontology for transcription of ATC speech commands of SESAR 

2020 solution PJ.16-04,” IEEE/AIAA 37th Digital Avionics Systems 
Conference (DASC), London, United Kingdom, 2018. 

[3] HAAWAII homepage: www.haawaii-project.de, Highly Automatic 

Air Traffic Controller Workstation with Artificial Intelligence 
Integration, n.d. 

[4] STARFiSH, research project funded by the German Federal Ministry 

of Education and Research, see for further information 
https://www.softwaresysteme.pt-dlr.de/de/ki-in-der-praxis.php, in 

German, n.d. 

[5] PJ.05-97-W2 SESAR2020 funded industrial research projects under 
the European Union’s grant agreement 874464, see for further 

information https://www.remote-tower.eu/wp/?page_id=888, and 

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore.  Restrictions apply. 



https://www.remote-tower.eu/wp/?p=824 and 

https://www.sesarju.eu/index.php/projects/DTT, n.d. 
[6] PJ.10-96-W2: SESAR2020 funded industrial research projects under 

the European Union’s grant agreement 874470, 

https://cordis.europa.eu/programme/id/H2020_SESAR-IR-VLD-
WAVE2-10-2019/de, n.d. 

[7] K. Hofbauer and St. Petrik, “ATCoSIM Air Traffic Control 

Simulation Speech Corpus,” Technical Report, May 2008, TR TUG-
SPSC-2007-11. 

[8] V.N.  Nguyen, and H.  Holone, “N-best list re-ranking using syntactic 

score: A solution for improving speech recognition accuracy in Air 
Traffic Control,” 16th Int. Conf. on Control, Automation and Systems 

(ICCAS 2016), Gyeongju, Korea, 2016, pp. 1309–1314. 

[9] V.N. Nguyen and H. Holone, “N-best list re-ranking using syntactic 
relatedness and syntactic score: An approach for improving speech 

recognition accuracy in Air Traffic Control,” 16th Int. Conf. on 

Control, Automation and Systems (ICCAS 2016), Gyeongju, Korea, 
2016, pp. 1315–1319. 

[10] D.R.  Johnson, V.I.  Nenov, and G.  Espinoza, “Automatic speech 

semantic recognition and verification in Air Traffic Control,” 
IEEE/AIAA, 32rd Digital Avionics Systems Conference (DASC), 

East Syracuse, NY, USA, 2016. 

[11] http://www.json.org, JSON = JavaScript Object Notation, n.d 
[12] AcListant homepage: www.AcListant.de, AcListant = Active 

Listening Assistant, n.d. 

[13] A. Schmidt, “Integrating situational context information into an 
online ASR system for Air Traffic Control,” Master Thesis, Saarland 

University (UdS), 2014. 
[14] Y. Oualil, M. Schulder, H. Helmke, A. Schmidt, and D. Klakow, 

“Real-time integration of dynamic context information for improving 

automatic speech recognition,” Interspeech, Dresden, Germany, 2015. 

[15] ATCO2 project homepage: https://www.atco2.org/ ATCO2 = 

Automatic collection and processing of voice data from air-traffic 
communications, n.d. 

[16] Flight Safety Foundation, FSF ALAR Briefing Note, 2.3 – Pilot-

Controller Communication,” 2000. 
[17] K. Cardosi, “An analysis of En Route Controller-Pilot Voice 

Communications,”, Tech. Rep. DOT/FAA/RD-93-11, 1993. 

[18] K. Cardosi, “An Analysis of Tower (Local) Controller-Pilot Voice 
Communications,“ Tech. Rep.  DOT/FAA/RD-94/15, 1994. 

[19] S. Chen, H. Kopald, R.S. Chong, Y.-J. Wei, and Z. Levonian, “Read 

Back Error Detection using Automatic Speech Recognition”, Twelfth 
USA/Europe Air Traffic Management Research and Development 

Seminar (ATMS2017), Seattle, WA, USA, 2017. 

[20] G. van Es, “Air-ground communication safety study: an analysis of 
pilot-controller occurrences,” EUROCONTROL, 2004. 

[21] O.V. Prinzo, “The computation and effects of air traffic control 

message complexity and message length on pilot readback 
performance,” in Proceedings of Measuring Behavior 2008, 6th 

International Conference on Methods and Techniques in Behavioral 

Research, Maastricht, The Netherlands, 2008. 
[22] Airbus, “Flight Operations Briefing Notes, human Performance, 

Effective Pilot / Controller Communications,” 2004. 

[23] A. Isaac, “Effective Communication in the Aviation Environment: 
Work in Progress,” Hindsight, 5, pp. 31–34, 2007. 

[24] H. Helmke, M. Kleinert, O. Ohneiser, H. Ehr, S. Shetty, “Machine 

Learning of Air Traffic Controller Command Extraction Models for 
Speech Recognition Applications,” IEEE/AIAA 39th Digital 

Avionics Systems Conference (DASC), Hosted virtually, 2020. 
 
 

 

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore.  Restrictions apply. 


