
Automated Interpretation of Air Traffic Control

Communication: The Journey from Spoken Words

to a Deeper Understanding of the Meaning

Matthias Kleinert1, Hartmut Helmke1, Shruthi Shetty1, Oliver Ohneiser1, Heiko Ehr1,

Amrutha Prasad2, Petr Motlicek2, Julia Harfmann3

1German Aerospace Center (DLR), Institute of Flight Guidance, Braunschweig, Germany
2Idiap Research Institute, Martigny, Switzerland,

3NATS (Enroute) PLC, Whitely, Fareham, Hampshire, United Kingdom

matthias.kleinert@dlr.de, hartmut.helmke@dlr.de, shruthi.shetty@dlr.de, oliver.ohneiser@dlr.de,

heiko.ehr@dlr.de, amrutha.prasad@idiap.ch, petr.motlicek@idiap.ch, julia.harfmann@nats.co.uk

Abstract—Sophisticated Automatic Speech Recognition

(ASR) technologies have become increasingly popular and are

widely used in all domains over the years. Systems like Google

Assistant, Siri®, Alexa® are integrated into our day-to-day

lives. These systems offer a wide range of possible applications

just by understanding human speech. However, in the Air

Traffic Control (ATC) domain, even the most advanced

simulators can just partially replace expensive pseudo-pilots.

In spite of having a standardized ATC phraseology, it is still a

major challenge to recognize and correctly understand the

communication between air traffic controllers (ATCo) and

pilots. This is because understanding an ATCo-pilot

communication requires more than just transforming speech to

a sequence of words. For most ATC applications, perfectly

recognizing the sequence of words would not be useful, if the

meaning behind the word sequence cannot be correctly

interpreted. Recently, 20 European partners from Air Traffic

Management (ATM) domain have agreed on a common set of

rules, i.e., an ontology on how to transform the spoken words

into ATC instructions that clearly define the meaning of the

words and make them usable for different applications. In this

paper, we present an extension of the mentioned ontology to

make it usable for pilot speech as well. We also show some of

the challenges faced in understanding the meaning of ATCo-

pilot communication and describe our approach of tackling

them. Furthermore, we present an algorithm to transform

words automatically into ontology instructions and describe

the interfaces used to ensure a consistent and reliable

communication of ATC instructions. This interface includes,

besides other information, plausibility values, different

speakers, and ambiguous outputs.

Keywords—air traffic control, ATC command ontology,

command extraction, language understanding, command

recognition rate, JSON

I. INTRODUCTION

Automatic Speech Recognition (ASR) and other related
technologies are being used in a broad variety of
applications. The applications range from recognizing human
speech for documentation purposes to more complex ones
that also require some understanding of human speech, e.g.,
control of home automation via voice with systems such as
Google Assistant or Alexa®. In the field of Air Traffic
Control (ATC), recognition and understanding of
communication between air traffic controller (ATCo) and
pilot has not been addressed in a sophisticated manner yet.
The only application of ASR in this area being already

implemented is a partial replacement of pseudo-pilots
through speech understanding in some simulation exercises
[1]. Even with the standardized ATC phraseology, it is still
considered a major challenge to recognize and understand
the communication between ATCo and pilot as
understanding requires much more than just transforming a
spoken utterance into a sequence of words.

Natural human language offers a lot of possibilities to
express a certain intention with many different words and
ATC communication is no exception to this. Even though
ATC phraseology is standardized, ATCos express the same
command in many different ways using different vocabulary.
This is illustrated in the following list:

• lufthansa three echo romeo make it heading two two
zero degrees left

• echo romeo turn left two two zero degrees

• lufthansa three echo romeo turn left now onto a
heading of two two zero

• three echo romeo turn left now heading two two zero
degrees

• lufthansa three echo romeo heading left of two
twenty

• lufthansa three echo romeo turn further left heading
two two zero degrees

The wording of all sentences is different, but the meaning
is always the same. The aircraft with the callsign DLH3ER
should change its flight direction to a heading of 220
degrees. A human with a certain amount of ATC knowledge
would be able to identify that all the above-mentioned
sentences mean the same. For a machine this is a complex
task and it gets more complex when multiple commands and
lots of different speakers are involved. This means, that for
most ATC applications the recognition of the spoken word
alone would not be useful, if the meaning behind it is
unknown. A transformation of spoken words into meaningful
concepts is required, which maps spoken words to
standardized concepts. This was already achieved by 20
European partners from the Air Traffic Management (ATM)
domain, who defined a common set of rules (ontology). This
ontology (1) defined the important conceptual elements of
ATC voice transmission and (2) allowed a clear
interpretation of the meaning amongst different applications

978-1-6654-3420-1/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
IA

A
 4

0t
h

D
ig

ita
l A

vi
on

ic
s S

ys
te

m
s C

on
fe

re
nc

e
(D

A
SC

) |
 9

78
-1

-6
65

4-
34

20
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
A

SC
52

59
5.

20
21

.9
59

43
87

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

[2]. As per this ontology all the above listed sentences would
result in the abstract concepts “DLH3ER HEADING 220
LEFT”. DLH3ER is the callsign of the addressed aircraft.
HEADING is the command type, 220 is the value of the
command, and LEFT is the qualifier. One can imagine that
for a machine this is a format which can be interpreted more
easily.

ATCo transmissions were the main focus of the initially
presented ontology, but the current SESAR project
HAAWAII [3] recently extended the original ontology to
make it also applicable for voice utterances of pilots. This
does not only enable an interpretation of the meaning of pilot
utterances, it furthermore allows the comparison of ATCo
and pilot transmissions on a conceptual level. Applications
such as read back error detection, which are almost
impossible to accomplish on word level, now seem possible.
The extension of the ontology is presented in section III.

The definition of the ontology is important, but it does
not provide its full benefit until it can be applied and
transformed automatically into a format that can be
exchanged among different systems and applications.
Therefore, this paper also focuses on a technical
implementation of the ontology. This implementation first
covers the automatic transformation of recognized words
from ATCo/pilot voice utterances into ontology-based
concepts. The second part of the implementation describes
the used machine readable JSON (=JavaScript Object
Notation) ontology format, which allows the transmission of
information among all kind of applications and is easy to
expand.

In the next section, we present related work. Section III
shows the extension of the original ontology for ATC voice
communication. In section IV the algorithm to transform the
spoken words into ontology concepts is shown in more
detail. The machine readable JSON format for the ontology
is presented with examples in section V. Section VI and
section VII show the experimental setup and results, which
proves the capability of the automatic ontology
transformation. We conclude the paper in section VIII and
give an outlook on future work.

II. RELATED WORK

The ontology for ATC instructions, first introduced by
the CWP HMI project [2] is not final yet, which means that
updates/changes are still expected. The projects STARFiSH
[4] and “HMI Interaction Modes for Airport Tower” [5]
expand the ontology with respect to ATC ground and tower
commands including remote tower operations. The projects
“HMI Interaction modes for approach control” [6] and
HAAWAII [3] also include pilot utterances as well as
enroute and oceanic traffic. Furthermore, HAAWAII uses
ASR to predict ATCo workload. Therefore, greetings – it is
yet to be investigated whether they are more likely to be
omitted or elongated in high workload situations – are
important and introduced to the ontology as well.

One of the first publicly available corpora with
transcribed speech recordings for the ATC domain was the
ATCOSIM corpus, which was funded by Eurocontrol [7].
Our transcription rules for writing down the utterances word
by word are very similar, but in addition to [7] we propose
also rules for the annotation. Nguyen and Holone [8], [9]
proposed 10 classes to replace word sequences with their

corresponding class label, e.g., callsign, unit-name, fix,
number. Johnson et al. [10] proposed a keyword and value
representation in JSON format [11], where keywords could
be Callsign, ToFix, FlightLevel, Altimeter, etc.

In the AcListanct® project [12], Saarland University and
DLR created an ontology which consists of the four elements
callsign, command type, command value, and unit [13], [14].
Similar to ATCOSIM the ATCO2 project aims to develop a
unique platform allowing to collect, organize, and pre-
process air traffic control (voice communication) data from
different airspaces [15].

The HAAWAII project addresses readback error
detection [3]. The communication feedback loop defines that
ATCos transmit verbal ATC instructions via radiotelephony,
whose safety-related parts need to be read back by pilots.
ATCos need to hear back pilot readbacks and correct the
readback in case of errors [16]. A hearback error is a
readback error which is undetected by the ATCo and is left
uncorrected.

Fortunately, communication errors, which include
readback and hearback errors occur very seldomly in ATC.
Depending on the definition of an error and the analyzed
airspace, the occurrence of errors in ATC communication
varies between less than 1% and up to 7% [17], [18], [19],
[20]. Some transmissions even containing multiple errors
[21]. NASA aviation safety reporting system reports blame
communication errors being at least contributing to 80% of
incidents or accidents [22]. EUROCONTROL assumes that
miscommunication is the reason for roughly 30% of
incidents [23]. These numbers and references clearly show
that the content of communication between ATCos and pilots
is of utmost importance for the safety of air traffic resulting
in the importance of automatic understanding of ATCo pilot
communication, i.e., not just recognizing the spoken words,
but really addressing the semantic level.

III. MEANING OF THE SPOKEN WORDS

This section presents the ontology originally defined in
the SESAR PJ.16-04 CWP HMI project together with the
extension for pilot speech from the current SESAR
HAAWAII project. Fig. 1 presents the general structure of
the different elements in the ontology. The highest
conceptual element in this definition is an instruction and
according to the ontology rules a voice utterance can consist
of either one or multiple instructions. Fig. 1 depicts the
structure of an instruction and shows that an instruction
consists of a callsign, a command, and optional conditions. A
command always has a type, which determines, how many
values are allowed. Optional fields are unit (e.g., FL, ft, kt),
qualifier (e.g., LESS, OR_BELOW, LEFT), speaker (PILOT
or empty), and reason (REQUEST, REPORTING or empty).

The first element of an instruction is always the callsign
(or NO_CALLSIGN), independent of where in the speech
utterance it is pronounced. Even though the callsign is
usually said only once in a voice utterance, on the conceptual
ontology level it is specified to be repeated in front of every
instruction in case the speaker uses multiple commands. The
ontology also defines how to use contextual information on
active aircraft in the working area. So, if in an utterance a
callsign is shortened by leaving out some numbers, letters or
the airline designator, the complete callsign is always
represented on the instruction level, if possible. For example,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

if only “air france three delta” is said or recognized in the
context where no AFR3D exists, but AFR123D exists, the
callsign should be automatically corrected to AFR123D on
ontology level. This compensates for misrecognitions on
word level and deals with commonly used abbreviations for
callsigns in ATC. In case a callsign cannot be determined or
was not said at all, the special keyword “NO_CALLSIGN” is
used.

The other ontology elements from Fig. 1 are now

explained in more detail via real world examples from

different airspaces and airports. An example from approach

traffic could be:

speed bird six nine six victor keep speed one six zero

knots until four miles final

As per ontology, this would result in “BAW696V

MAINTAIN SPEED 160 kt UNTIL 4 NM FINAL”. The

type of this command is “MAINTAIN SPEED”, so a type

can consist of one or two words, but not more. The value is

“160” and the unit in this case is “kt”. The last four elements

after “kt” are the conditional clearance with the conjunction

“UNTIL” and the requirement “4 NM FINAL”.

A ground-based example from the tower area could be:

lufthansa four nine nine taxi to alfa five eight via lima

and november eight

This would result in two instructions “DLH499 TAXI

TO STAND_A58” and “DLH499 TAXI VIA L N8”. As

described before the callsign is present in every instruction

even though it was said only once. Furthermore, the

command type “TAXI TO” can have by definition only one

value (“STAND_A58”). The definition of the “TAXI VIA”

command also allows multiple values, in this case “L” and

“N8”. Here, the knowledge of “alfa five eight” being a stand

and “lima november eight” being taxiways should be known

beforehand. For this purpose, the ontology defines a

configuration file, which specifies special word sequences

and their mapping to values in the ontology. With this

solution it is possible that “alfa five eight” is mapped to

“STAND_A58” even though it is not known from the

recognized words that this word sequence belongs to a

parking stand.

Instruction

Command Condition(s)

Type Value(s) Unit Qualifier
Conjunction +

Requirement
ReasonSpeaker

Callsign

Fig. 1 Elements of an instruction consisting of a callsign, a command,

and condition(s).

To demonstrate the ontology extension of HAAWAII we

make it a bit more complex and look at a communication

between ATCo and pilot. The following example is taken

from enroute traffic:

Pilot: reykjavik control [NE Icelandic] godan dag [/NE]

iceair six eight lima passing level one nine zero climbing

two nine zero

ATCo: [unk] six eight lima reykjavik control [NE

Icelandic] godan dag [/NE] identified climb to flight level

three seven zero

The communication starts with the pilot and the

transcription/recognition contains some special markings

such as “[NE]” (meaning “Non-English”) or “[unk]”

(meaning “unknown”). The updated ontology specifies that

text parts of the transcription which are identified as non-

English have to be enclosed within “[NE] [/NE]” tags.

Furthermore, if it is possible to identify the language

spoken, this information also needs to be mentioned, e.g.,

“Icelandic”. The above utterance results in the following

ontology instructions:

ICE68L PILOT STATION REYK_RADAR

ICE68L PILOT GREETING

ICE68L PILOT REPORTING ALTITUDE 190 FL

ICE68L PILOT REPORTING CLIMB 290 none

ICE68L STATION REYK_RADAR

ICE68L GREETING

ICE68L INIT_RESPONSE

ICE68L CLIMB 370 FL

The new speaker field is only used, if the speaker is not

the ATCo to ensure compatibility with the original ontology

version. Also shown here, in cases where a report or a

clearance does not contain a unit, the ontology captures this

information with a “none” in the unit field. This is visible in

the given example for the “CLIMB” command which is

once transformed with “FL” and once with “none”. The

reason field also belongs to the HAAWAII extension of the

ontology and is only used for pilots. “REPORTING” as

shown in the example indicates that something is being

reported instead of being requested. This information for

example becomes important for the decision if a readback is

required or not. The decision regarding a command(s) being

a report, a request or a readback is not always easy. The

utterance “descending flight level two five zero” from a

pilot for example can be an altitude readback or a report.

Both “ICE68L PILOT REPORTING DESCEND 250 FL”

and “ICE68L PILOT DESCEND 250 FL” are, therefore,

possible. One could easily determine which one is correct by

looking into the previous utterances. The ontology

definition, however, requires considering only the current

utterance for creating the instructions. Not all words from

recognitions are mapped to elements from the ontology. For

example, the utterance “okay we check thanks air canada

eight five four” results in “ACA854 NO_CONCEPT”.

There can be two reasons for this, either the spoken words

are not important in the context of ATC communication or

there is no fitting element yet to cover the words. The

second option is a hint for possible extensions of the

ontology. However, NO_CONCEPT is only presented in the

ontology format if no other command can be extracted from

the words. The utterance “okay we check thanks air canada

eight five four descend three thousand feet” would,

therefore result in “ACA854 DESCEND 3000 ft”. An

implementation of the ontology from DLR already exists,

which includes an automatic extraction (command

recognition) from word sequences to the ontology concepts.

The next section describes how this extraction is done.

IV. FROM WORDS TO MEANING WITH ONTOLOGY

The basic Command Extraction algorithm was already
presented in 2020 [24]. It tries to identify patterns occurring
in ATCo and pilot utterances. It consists of three steps on a
broader perspective, which are callsign extraction, command
extractions using keyword sequences, and extraction of

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

commands from known ATC Concepts and unrecognized
words from the utterance. The following Fig. 2 illustrates the
complete command extraction algorithm:

01 Extract Predicted Callsign from transcription;

02 while (NOT end of utterance reached)

03 {

04 Extract command when matching keyword sequence found;

05 if (value, unit, qualifier ... could be extracted)

06 {

07 Add command to extracted commands;

08 }

09 }

10 while (NOT end of utterance reached)

11 {

12 Find ATC concept in unclassified words;

13 if (unit, qualifier ... could be extracted)

14 {

15 Add command to extracted commands;

16 }

17 Find command hints in unclassified words;

18 if (value, unit, qualifier ... could be extracted)

19 {

20 Add command to extracted commands;

21 }

22 }

23 while (NOT end of utterance reached)

24 {

25 Find first or further callsigns in unmatched words;

26 }

27 Find commands from unclassified numbers

Fig. 2 Callsign and Command Extraction Algorithm.

The algorithm has already been explained with examples
in [24]. The last line is newly added, which tries to find
commands by extracting commands from sheer numbers,
which are currently not mapped to any command.

This could be best explained by using an example of a
pilot utterance: “one hundred left heading one two zero speed
bird five zero two papa”. First the callsign “BAW502P” is
extracted in line 1. Lines 4-9 then extract “PILOT HEADING
120 LEFT”. After this, nothing is further extracted until line
26.

TABLE I shows the status of command extraction, when
line 27 of the algorithm is reached.

TABLE I. ANNOTATIONS FOR ONE SPEAKER

 one hundred left heading one two zero speed bird five zero two papa
unkn unkn qual type valu valu valu csgn csgn csgn csgn csgn csgn

Here, we see that the words “one” and “hundred” are
classified as “unkn” (unknown), which means that they are
still unrecognized. This could be a speed, a heading, an
altitude in feet or a flight level, a frequency, a mach number,
a QNH value or a squawk code. However, out of these valid
candidates for a value of 100 are speed, flight level and
heading, because 100 does not fit all the other types. Altitude
values in feet are usually between 1,500 and 10,000, and
QNH values between 950 and 1080 etc. Depending on the
airport and the aircraft type and its position, a speed of 100
knots can also be excluded. Speed advisories are usually
above 150 knots, even in final approach. Nevertheless, “one
hundred” could mean a flight level or a heading. In either
case, “one zero zero” is preferred by the ICAO phraseology.

We use the heuristic to compare with the extracted
commands from the previous utterance, in order to determine
the command type for a value of 100.

Extracting commands from pilot utterances as in the
example is not an easy task. The reason for this is that pilots
most often deviate from the ICAO phraseology and tend to
use short forms while communicating with the ATCo.
However, we can benefit from the knowledge, that the
example utterance is a pilot readback, which means that there
exists a previous utterance from the ATCo for this callsign.
The command extraction model should also correctly
recognize the value 100 and determine if it is a HEADING
or an ALTITUDE command or both. If both command types
with a value of 100 are returned, then the extraction is
aborted, because it would be ambiguous. Otherwise, we
extract either a HEADING or an ALTITUDE command with
the value of 100. It should also be noted that for an altitude
value, the ATCo command could also be a CLIMB,
DESCEND, STOP_DESCEND or STOP_CLIMB
command. In all cases, pilots could just read back “one
hundred”, which is not recommended by the ICAO
phraseology.

In the above example, this ambiguity regarding which
command the value belongs to can be resolved only if the
extracted commands for the corresponding ATCo utterance
contains it as shown in the example ATCo annotation below.

• “BAW502P HEADING 120 LEFT” and

• “BAW502P DESCEND 100 FL”.

Section VII describes the results when line 27 of the
algorithm is used and when not used.

V. TECHINCAL ONTOLOGY IMPLEMENTATION

The SESAR solution PJ.16-04-ASR has defined an

ontology for transcription and annotation of ATCo-pilot

communication, which is extended by several European

ASR projects defined in the related work section. The

resulting sequences of spoken words and the corresponding

ATC concepts are easily readable by human experts, which

eased the agreement on a common ontology within PJ.16-04

solution. It is, however, much more difficult for a computer

to extract and interpret consistently from regular text

sequences, what is a callsign, a command type, a qualifier

etc. Therefore, the next logical step is to extend the ontology

with a format to ease automatic interpretation. This section

presents a machine-readable format based on JSON, which

is used by HAAWAII, STARFiSH, PJ.10-97-ASR and

PJ.10-96-ASR projects. The JSON format consists of key-

value pairs. The keys are always enclosed in quotations

marks, whereas the values could be strings, numbers or the

Boolean values true and false. The used JSON formats are

explained for different use cases by examples in the

following subsections.

A. JSON format for the transcriptions

The example in TABLE II shows the output of Speech-

to-Text transformation, i.e., the transcription or recognition,

in JSON format. It contains at least the name of the wave

file with the corresponding voice recording and the

sequence of words of the spoken utterance in the agreed

format.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

TABLE II. SPEECH-TO-TEXT OUTPUT – MINIMAL VERSION

{

 "filename": "2020-11-20__13-03-13-24.wav",
 "speaker" : "ATCo",

 "abstraction_layer_word_sequence":

 "oscar tango whiskey you may leave [NE Austrian] servus [/NE]"
}

This format is used to encode both the output of manual

transcriptions and the output of automatic speech-to-text

transformation. Additional keys include systemtimetick,

speaker (see table above), sender, filename. We subsume

the example from TABLE II by the definition in TABLE III.

The content of FILE_DESC is shown by example in

TABLE II and can also contain the additional keys

mentioned above. The non-terminal UTTERANCE is

detailed more in the next example in TABLE IV.

TABLE III. SPEECH-TO-TEXT OUTPUT – FORMAL DEFINTION

{

 FILE_DESC
 "abstraction_layer_word_sequence": UTTERANCE

}

The first example in TABLE II contains a simple

utterance where only one speaker was recorded. But speaker

recordings could also contain utterances belonging to

multiple speakers consisting for example of a pilot

reporting, an ATCo responding and another pilot calling in

like shown in TABLE IV. The description below the table

shows the definition of the format in form of a context free

grammar.

TABLE IV. UTTERANCE FROM ATCO AND PILOT

{

"abstraction_layer_word_sequence": [
 { "recog_speaker": "Pilot1", "recog_utter":

 "tarom three four one x-ray fully established at seven miles" },

 { "recog_speaker": "ATCo", "recog_utter":
 "tarom three four one x-ray …”},

 { "recog_speaker": "Pilot2", "recog_utter": "good morning" }

]
}

UTTERANCE = WORD_SEQ | WORD_SEQ_ARR

WORD_SEQ_ARR = [SPK_WORDS, SPK_WORDS* …]
SPK_WORDS = {"recog_speaker": SPK, "recog_utter": WORD_SEQ}

SPK = “ATCo” | “Pilot” | “Pilot1”, “Pilot2” …

In the above description, “|” means “or”, the asterix

symbol “*“ means zero or more times, i.e.,

WORD_SEQ_ARR consists of at least one instance of

SPK_WORDS, but could also exist of two or more

instances. The WORD_SEQ either just consists of a

sequence of words enclosed in quotation marks or could

even contain plausibility values like shown in TABLE V.

TABLE V. UTTERANCE WITH PLAUSIBILITY VALUES

{ "recog_utter": [

 {"v": "tarom", "p": "0.85"},
 {"v": "three four one", "p": "0.4"},

 {"v": "x-ray", "p": "0.25" }

] }

WORD_SEQ = “WORD WORD* “ | WORDS_PLAUS_ARR

WORDS_PLAUS_ARR = [VAL_PLAUS, VAL_PLAUS* …] |

 WORDS_PLAUS_SEQ | WORDS_PLAUS_SEQ*
VAL_PLAUS = {"v": “WORD WORD*”, "p": PLAUS}

PLAUS = -1 | 0.0, …. 1.0

“PLAUS” could take a value of -1, meaning that

plausibility is not defined by the given implementation, or a

value between 0.0 and 1.0. The higher the plausibility value,

the more certain the Speech-to-Text recognition is that the

corresponding word sequence is correct. This has the

consequence that alternative word sequence outputs must

also be possible as shown in TABLE VI.

TABLE VI. SPEECH-TO-TEXT ALTERNATIVES WITH PLAUSIBILITIES

{

"recog_utter": [

 {"wordsProb": [{"v": "lufthansa", "p": "0.8"}]},
 {"wordsProb": [{"v": "papa", "p": "0.85"}, {"v": "tango", "p": "0.6"}]},

 {"wordsProb": [{"v": "buy", "p": "0.8"}, {"v": "bye", "p": "0.1"}]}
]

}

WORDS_PLAUS_SEQ = {"wordsProb": WORDS_PLAUS_ARR}

Here, the Speech-to-Text recognition has returned four

different outputs “lufthansa papa buy”, “lufthansa tango

buy”, “lufthansa papa bye”, and “lufthansa tango bye” with

different plausibilites.

The contents of TABLE V could also be written as

shown in table TABLE VII. Here, we just have one word

sequence “tarom three four one x-ray”, but with different

plausibilities for each of the word sequences.

TABLE VII. ONE ALTERNATIVE WITH PLAUSIBILITIES

{ "recog_utter": [

 {"wordsProb": [{"v": "tarom", "p": "0.85"}]},

 {"wordsProb": [{"v": "three four one", "p": "0.4"}]},
 {"wordsProb": [{"v": "x-ray", "p": "0.25"}]}

] }

B. JSON format for the annotations

In addition to the format for Speech-to-Text recognitions

a JSON based format for ontology instructions (annotations)

is defined as well. TABLE VIII contains a simple example

for this definition with the annotations for just one speaker.

TABLE VIII. ANNOTATIONS FOR ONE SPEAKER

{

"filename": "2020-11-20__10-39-13-08.wav",

 "commands": [
 {"csgn": "BRU880", "type": "CONTACT",

 "valu": "BRATISLAVA_RADAR"},

 {"csgn": "BRU880", "type": "CONTACT_FREQUENCY",
 "valu": "134.475"},

 {"csgn": "BRU880", "type": "FAREWELL"}
]

}

ANNO_FILE = FILE_DESC ALL_CMDS

ALL_CMDS = CMDS1 | CMDS_MULT_SP
CMDS1 = "commands": [KEYW_SEQ, KEYW_SEQ,*]

CMDS_MULT_SP = "abstraction_layer_ontology_command":

 [SP_CMDS SP_CMDS*]
SP_CMDS = { "speaker": SPK, CMD1 }

KEYW_SEQ = KEYW_VALUE, KEYW_VALUE*

KEYW_VALUE = KEYW VALUE
VALUE = “value” |VAL_PLAUS_A

VAL_PLAUS_A = {"v": “value”, "p": PLAUS}

KEYW = "csgn" | "reas" | "type" | "valu" | "unit" | "qual" | "cond"
SPK, FILE_DESC, PLAUS already defined in subsection V.A

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

TABLE IX illustrates an example containing the initial

call of the pilot and the resulting ATCo commands, in which

the VALUE of DIRECT_TO command contains a

plausibility value.

TABLE IX. ANNOTATIONS FOR MULTIPLE SPEAKERS

"abstraction_layer_ontology_command": [{

 "speaker": "Pilot",

 "commands": [
 {"csgn": "GAC435F", "reas": "REPORTING", "type": "DESCEND",

 "valu": "170", "unit": "none"},

 {"csgn": "GAC435F", "reas": "REPORTING", "type": "DIRECT_TO",
 "valu": "WW973", "qual": "none"}

]}, {

 "speaker": "ATCO",
 "commands": [

 {"csgn": "GAC435F", "type": "DIRECT_TO", "qual": "none",

 {"v": " WW972", "p": "0.8"}},
 {"csgn": "GAC435F", "type": "NO_SPEED_RESTRICTIONS"}

]}

]

C. JSON format for transcriptions and annotations and

multiple hypotheses

In some cases, like for unsupervised learning, it makes

sense to have a format which contains the output of the

transcription and the corresponding annotations. TABLE X

shows an example for this scenario.

TABLE X. TRANSCRIPTION, CLASSIFICATION, AND ANNOTATION

{

"filename": "2020-11-20__09-39-35-34.wav",
"abstraction_layer_word_sequence": [

 { "recog_speaker": "ATCO", "recog_utter":

 "seven two five contact graz on one one nine three bye bye” }
],

"abstraction_layer_classific_seq": [

 { "recog_speaker": "ATCO", "recog_utter":
 "csgn csgn csgn type valu unkn vare vare vare vare type type” }

],
"commands": [

 {"csgn": "IGA725", "type": "CONTACT", "valu": "GRAZ_RADAR"},

 {"csgn": "IGA725", "type": … "valu": "119.300"},
 {"csgn": "IGA725", "type": "FAREWELL"}

]

}

TRANS_ANNO_FILE = FILE_DESC TRANS_CL_ANNO
TRANS_CL_ANNO = TRANS_ANNO | TRANS_CLAS_ANNO

TRANS_ANNO = TRANS ALL_CMDS

TRANS_CLAS_ANNO = TRANS CLAS ALL_CMDS
TRANS = "abstraction_layer_word_sequence": UTTERANCE

CLAS = "abstraction_layer_classific_seq": CLASSIFICATION

FILE_DESC, UTTERANCE already defined in subsection V.A,
ALL_CMDS already defined in subsection V.B.

CLASSIFICATION represents the classification of the

UTTERANCE. It contains exactly one classification type

for each word in the transcription. Allowed words here are

the same set of words as defined for KEYW (defined in

subsection V.B), and. “vare” (value rest), “grtg” (greeting),

“spea” (speaker) and “unkn” (unknown).

The output of the automatic annotation is not always

unique as shown by the examples in the previous sections.

We have already shown alternative output on transcription

level.

TABLE XI. TWO HYPOTHESES WITH DIFFERENT SPEAKERS

{"filename": "2020-11-20__09-39-35-34.wav",

"hypotheses": [{
 "abstraction_layer_word_sequence":

 "Pilot: good morning ... ATCO: qatari seven zero ...",

 "abstraction_layer_ontology_command": [{
 "speaker": "Pilot",

 "commands": [{"csgn": "DLH123",

 "type": {"v": "NO_CONCEPT", "p": "0.5"} }
]},

{

 "speaker": "ATCO",
 "commands": [{"csgn": "QTR703A", "type": "ALTITUDE"…}]

 }] },

{
 "abstraction_layer_word_sequence":

 "qatari seven zero three alfa correct seven thousand",

 "abstraction_layer_classific_seq":
 "csgn csgn csgn csgn valu type valu valu",

 "abstraction_layer_ontology_command": [{

 "speaker": "ATCO",
 "commands": [{"csgn": "QTR70", "type": "INFORMATION",

 "sndt": "ATIS","valu": "A" }]

 }]
 }]

}

VI. EXPERIMENTAL SETUP

Experiments to demonstrate the current capabilities of the
current automatic command extraction (see section IV) were
conducted. The dataset used to conduct the experiment was
obtained from the HAAWAII project for London airspace
(from NATS air navigation service provider). The data from
the London airspace consists of the TMA South sector and
the Heathrow approach sector. The dataset comprised of
1,216 commands from 746 utterances, composed of both
ATCo and pilot speakers. The number of commands in each
utterance ranged between 1 and 7.

The quality of command extraction is evaluated by
comparing the automatically extracted annotations to the
gold annotations. Gold annotations refer to the annotations
which are manually verified and corrected by a human
expert. The metrics used to evaluate the quality of the
extracted annotations are: recognition rate (RecR), error rate
(ErrR), and rejection rate (RejR). The recognition rate
(RecR) is defined as the number of correctly recognized
commands divided by the total number of actually given
commands. Error rate (ErrR) is the percentage of wrongly
extracted commands, i.e., the number of commands extracted
wrongly divided by the total number of commands actually
given. Rejection rate (RejR) is the percentage of gold
annotations which are not extracted. A wrong command
extraction is considered as a rejection, if for a given gold
annotation (i) nothing is extracted, or (ii) command type
NO_CONCEPT is extracted, or (iii) the correct command
type is extracted, but with the callsign NO_CALLSIGN and
this differs from the given gold annotation.

For a given speech utterance, each instruction (see
Fig. 1) is treated as one big word. The Levenshtein
distance between the gold annotation and the results of
command extraction is then calculated, which returns the
number of substitutions (subs), insertions (ins), and deletions
(del). TABLE XII gives an overview about the different
metrics and illustrates an example how they are calculated.
In the table #gold defines the total number of commands in
the gold annotation. #match defines the number of matches,
which is #gold – subs – del.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

TABLE XII. METRIC DEFINITION

Metric Calculation

Command Recognition

Rate (RecR)
RecR = #matches / #gold

Command Recognition

Error Rate (ErrR)
ErrR = (subs + ins) / #gold

Command Rejection Rate

(RejR)
RejR = del / #gold

Callsign Recognition Rate

(CaR)

Same as RecR but only for

callsigns without

instructions

Callsign Recognition Error

Rate (CaE)

Same as ErrR, but only for

callsigns without

instructions

Callsign Rejection Rate

(CaRj)

Same as RejR, but only for

callsigns without

instructions
If the command extraction results in different callsigns, the calculation
is done for each callsign. See example below, which also illustrates that

the sum of RecR, ErrR, and RejR can exceed 100%.

Example

Gold Annotation Command Extraction

AFR123 INIT_RESPONSE

AFR123 TURN LEFT

AUA1AB SPEED 140 kt
DLH123_NO_CONCEPT

AFR123 DIRECT_TO OKG none
AFR123 INIT_RESPONSE

AFR123 TURN RIGHT

AUA1AB NO_CONCEPT
DLH123 NO_CONCEPT

Result:

RecR = 2/4 = 50%

(green)

ErrR = 2 / 4 = 50%

(purple)

RejR =1/4 = 25%

(yellow)

If the results of command extraction contain either

NO_CONCEPT or NO_CALLSIGN, these substitutions and
insertions are always calculated as deletions, i.e., these
extractions contribute to the rejection rate and not to the error
rate (as shown in the example in TABLE XII).

TABLE XIII. EXAMPLE OF METRIC CALCULATION WITH INIT_RESPONSE

AND SPEED COMMANDS SWITCHED OFF

Gold Annotation Command Extraction

AFR123 TURN LEFT

AUA1AB NO_CONCEPT

DLH123 NO_CONCEPT

AFR123 DIRECT_TO OKG none
AFR123 TURN RIGHT

AUA1AB NO_CONCEPT

DLH123 NO_CONCEPT

AFR123 INIT_RESPONSE is mapped to AFR123 NO_CONCEPT.

However, both gold annotation and command extraction contain

another command for AFR123. NO_CONCEPT is only added, if it
is the only command, which is the case for AUA1AB with SPEED

mapped to NO_CONCEPT.

Result:

RecR = 2/3 =
67% (green)

ErrR = 2/3 = 67%
(purple)

RejR = 0 = 0%
(yellow)

For calculation of the callsign rates CaR, CaE, and CaRj we

just compare the callsigns from the gold annotation with the

callsigns of the automatic extraction. For each utterance we

consider the callsign only once, except when multiple

callsigns are annotated or extracted. For the example in

TABLE XII, this results in the three annotated and extracted

callsigns AFR123, AUA1AB, and DLH123. As the

ontology is still evolving, the annotations and extractions for

different data sets are based on different versions of the

ontology. In most cases, new ontology versions introduce

new command types. The metric calculation has to take this

into account so that older data sets can also be reused. If

some command types were not considered in the gold

annotation or by the extraction (set via a configuration file),

these command types are deleted from both the annotation

and from the extraction. Following the deletions, if the set of

extracted annotations for a callsign is empty, the command

type NO_CONCEPT is added for this callsign instead. If

INIT_RESPONSE and SPEED command types are not

supported for the above example from the metric definition

this would lead to the following result as shown in TABLE

XIII.

VII. RESULTS

The results of command extraction for both ATCo and
pilot utterances for the manually verified directories are
shown below in TABLE XIV.

TABLE XIV. COMMAND EXTRACTION RESULTS

Directories #Utterances # Cmds RecR ErrR RejR

DAY1 - SECTOR1

(ATCo)
217 330 97.3% 0.9% 1.8%

DAY1 - SECTOR1

(PILOT)
229 363 94.8% 1.1% 4.4%

DAY2 - SECTOR2

(ATCo)
128 226 96.5% 0% 3.5%

DAY2 - SECTOR2
(PILOT)

172 297 93.9% 0.3% 5.7%

All 746 1216 95.6% 0.6% 3.8%

From TABLE XIV we observe that the recognition rates

are better and the error rates are lower for ATCo utterances
as compared to pilot utterances. This is because ATCos are
observed to adhere to the standard ATC phraseology more
often than pilots. Pilots, on the other hand tend to use short
phrases while reading back to the ATCos. Many times, pilots
just read back numerical command values without
mentioning the command type. For example, in the given
pilot’s readback utterance - “one zero zero speed bird four
seven five”, “one zero zero” is the command value, which is
a valid value for ALTITUDE, HEADING, or SPEED
commands and the word “speed” belonging to callsign does
help to reduce ambiguity.

TABLE XV illustrates the evaluation results when
commands with just the numerical command value specified
in the utterance are not extracted by our command extraction,
i.e., line 27 in the algorithm shown in Fig. 2 would be
missing. Whenever there is a difference to the rates presented
in TABLE XIV the second number in the cell shows in bold
which rate was achieved before.

TABLE XV. COMMAND EXTRACTION RESULTS WHEN SHEER

NUMERICAL VALUES ARE NOT EXTRACTED

Directories #Utterances # Cmds RecR ErrR RejR

DAY1 - SECTOR1
(ATCo)

217 330 97.3% 0.9% 1.8%

DAY1 - SECTOR1

(PILOT)
229 363

91.5%

94.8%
1.1%

7.7%

4.4%

DAY2 - SECTOR2

(ATCo)
128 226 96.5% 0% 3.5%

DAY2 - SECTOR2

(PILOT)
172 297

90.9%

93.9%
0.3%

8.6%

5.7%

All 746 1216
94.1%

95.6%
0.6%

5.5%

3.8%
The second number shows the result from TABLE XIV, when there is a difference.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

It is important to note that extraction of commands when
just the numerical command values are specified is
implemented for just pilot utterances. The reason for this is,
in addition to clearances, ATCos also give information
regarding traffic and other miscellaneous information which
contain numerical values. These values should not be
wrongly extracted as command types. For example, in the
utterance - “easy eight two nine golf passing nine zero i can
give you a turn north”, the ATCo implies that he/she would
give a TURN NORTH clearance once the aircraft passes an
altitude of FL 90. The ATCo does not currently give any
clearance here. The heuristic to extracting full commands
from just numbers could wrongly extract value 90 as an
ALTITUDE command. Moreover, ATCos seldomly use
sheer numbers to give command clearances. Hence the
minimal improvement in the recognition rates does not
justify the increase in the error rates for ATCos.

From TABLE XV we observe that by not extracting
commands using just their numerical values, the recognition
rates go down significantly from 94.8% to 91.5% and 93.9%
to 90.9% for the pilot utterances of DAY1 SECTOR1 and
DAY2 SECTOR2, respectively. On the other hand, the error
rates remain the same for both directories, which is why it
works well in improving the overall quality of command
extraction.

Using context information, i.e., using the surveillance
data to predict, which callsigns are possible, also
significantly improves the quality of command extraction.
TABLE XVI shows the results of command extraction
without using the callsigns from context. The second number
in the cell is again a repetition of the numbers in TABLE
XIV.

TABLE XVI. COMMAND EXTRACTION RESULTS WHEN CONTEXT

INFORMATION IS NOT USED

Directories #Utterances # Cmds RecR ErrR RejR

DAY1 - SECTOR1

(ATCo)
217 330

79.4%

97.3%

7.9%

0.9%

13.3%

1.8%

DAY1 - SECTOR1

(PILOT)
229 363

72.7%

94.8%

11.8%

1.1%

16.8%

4.4%

DAY2 - SECTOR2

(ATCo)
128 226

81.9%

96.5%

13.7%

0%

4.4%

3.5%

DAY2 - SECTOR2

(PILOT)
172 297

72.1%

93.9%

16.5%

0.3%

16.5%

5.7%

All 746 1216
76.5%

95.6%

12.5%

0.6%

12.8%

3.8%
The second number shows the result from TABLE XIV, when there is a difference.

From TABLE XIV and TABLE XVI, we observe that the
recognition rates fall drastically when context information is
not used to extract callsigns. There is an overall decrease in
the recognition rates from 95.6% to 76.5%. Moreover, error
rates also increase significantly from 0.6% to 12.5% when
context information is not used by the command extraction
model. This is because both ATCos and pilots most often do
not specify full callsign in their utterances. For example,
BAW515 would not always be said as “speed bird five one
five”, but “speed bird one five” or “five one five” could also
be said quite commonly. Using context information not only
decreases the error rates but also improves recognition rates,
not just on callsign extraction level but also on the command
level.

VIII. CONCLUSION AND OUTLOOK

Understanding ATC speech communications is so much

more than just transforming speech into text. The ontology

for ATC instructions shows that it is possible to put the

content of such communications in a more standardized

format.

This paper presented an extension of the original

ontology, which makes it also usable for pilot utterances and

therefore allows much more complex applications, which

require a comparison between ATCo and pilot instructions.

The here presented algorithm classifies each word of a text

sequence, transforms the text into an ontology conform

instruction and presents also a plausibility measurement to

report the reliability of certain extracted elements. The

defined JSON format allows a consistent exchange

concerning Speech-to-Text transformation, ontology

information or both together between different systems and

applications. The format is by definition machine readable

and easy to expand with additional key-value pairs while

ensuring compatibility with old data.

The first results presented from the experiments for

command extraction show already a quite impressive

performance for ATCo and pilot utterances. With error rates

for ATCos from 0% to 0.9% and 0.3% to 1.1% for pilots the

algorithm can be considered quite reliable. Nevertheless, the

approach still has to be tested on bigger and different data

sets and improvements are still expected in the future as

multiple projects which are working on the command

extraction algorithm are still running. With improving

recognition and error performances on ontology level

complex applications seem to become possible. The

abstraction of ATC communications allows a comparison of

ATCo and pilot utterances and enables applications such as

readback error detection to improve safety in the future.

ACKNOWLEDGMENT

Three projects of SESAR2020 industrial research and
exploratory research have received funding from the SESAR
Joint Undertaking under the European Union’s grant
agreement No. 734141, 874464, 874470 and 884287. The
projects are named PJ.16-04-W1 (CWP HMI), PJ.10-96-W2
(HMI Interaction modes for Approach control), PJ.05-97-W2
(HMI Interaction Modes for Airport Tower), and HAAWAII
(exploratory research). The project STARFiSH is funded by
the German Federal Ministry of Education and Research.

REFERENCES

[1] C. Hamel, D. Kotick, and M. Layton, “Microcomputer System

Integration for Air Control Training.”, Special Report SR89-01,

Naval Training Systems Center, Orlando, FL, USA, 1989.
[2] H. Helmke, M. Slotty, M. Poiger, D.F. Herrer, O. Ohneiser et al.,

“Ontology for transcription of ATC speech commands of SESAR

2020 solution PJ.16-04,” IEEE/AIAA 37th Digital Avionics Systems
Conference (DASC), London, United Kingdom, 2018.

[3] HAAWAII homepage: www.haawaii-project.de, Highly Automatic

Air Traffic Controller Workstation with Artificial Intelligence
Integration, n.d.

[4] STARFiSH, research project funded by the German Federal Ministry

of Education and Research, see for further information
https://www.softwaresysteme.pt-dlr.de/de/ki-in-der-praxis.php, in

German, n.d.

[5] PJ.05-97-W2 SESAR2020 funded industrial research projects under
the European Union’s grant agreement 874464, see for further

information https://www.remote-tower.eu/wp/?page_id=888, and

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

https://www.remote-tower.eu/wp/?p=824 and

https://www.sesarju.eu/index.php/projects/DTT, n.d.
[6] PJ.10-96-W2: SESAR2020 funded industrial research projects under

the European Union’s grant agreement 874470,

https://cordis.europa.eu/programme/id/H2020_SESAR-IR-VLD-
WAVE2-10-2019/de, n.d.

[7] K. Hofbauer and St. Petrik, “ATCoSIM Air Traffic Control

Simulation Speech Corpus,” Technical Report, May 2008, TR TUG-
SPSC-2007-11.

[8] V.N. Nguyen, and H. Holone, “N-best list re-ranking using syntactic

score: A solution for improving speech recognition accuracy in Air
Traffic Control,” 16th Int. Conf. on Control, Automation and Systems

(ICCAS 2016), Gyeongju, Korea, 2016, pp. 1309–1314.

[9] V.N. Nguyen and H. Holone, “N-best list re-ranking using syntactic
relatedness and syntactic score: An approach for improving speech

recognition accuracy in Air Traffic Control,” 16th Int. Conf. on

Control, Automation and Systems (ICCAS 2016), Gyeongju, Korea,
2016, pp. 1315–1319.

[10] D.R. Johnson, V.I. Nenov, and G. Espinoza, “Automatic speech

semantic recognition and verification in Air Traffic Control,”
IEEE/AIAA, 32rd Digital Avionics Systems Conference (DASC),

East Syracuse, NY, USA, 2016.

[11] http://www.json.org, JSON = JavaScript Object Notation, n.d
[12] AcListant homepage: www.AcListant.de, AcListant = Active

Listening Assistant, n.d.

[13] A. Schmidt, “Integrating situational context information into an
online ASR system for Air Traffic Control,” Master Thesis, Saarland

University (UdS), 2014.
[14] Y. Oualil, M. Schulder, H. Helmke, A. Schmidt, and D. Klakow,

“Real-time integration of dynamic context information for improving

automatic speech recognition,” Interspeech, Dresden, Germany, 2015.

[15] ATCO2 project homepage: https://www.atco2.org/ ATCO2 =

Automatic collection and processing of voice data from air-traffic
communications, n.d.

[16] Flight Safety Foundation, FSF ALAR Briefing Note, 2.3 – Pilot-

Controller Communication,” 2000.
[17] K. Cardosi, “An analysis of En Route Controller-Pilot Voice

Communications,”, Tech. Rep. DOT/FAA/RD-93-11, 1993.

[18] K. Cardosi, “An Analysis of Tower (Local) Controller-Pilot Voice
Communications,“ Tech. Rep. DOT/FAA/RD-94/15, 1994.

[19] S. Chen, H. Kopald, R.S. Chong, Y.-J. Wei, and Z. Levonian, “Read

Back Error Detection using Automatic Speech Recognition”, Twelfth
USA/Europe Air Traffic Management Research and Development

Seminar (ATMS2017), Seattle, WA, USA, 2017.

[20] G. van Es, “Air-ground communication safety study: an analysis of
pilot-controller occurrences,” EUROCONTROL, 2004.

[21] O.V. Prinzo, “The computation and effects of air traffic control

message complexity and message length on pilot readback
performance,” in Proceedings of Measuring Behavior 2008, 6th

International Conference on Methods and Techniques in Behavioral

Research, Maastricht, The Netherlands, 2008.
[22] Airbus, “Flight Operations Briefing Notes, human Performance,

Effective Pilot / Controller Communications,” 2004.

[23] A. Isaac, “Effective Communication in the Aviation Environment:
Work in Progress,” Hindsight, 5, pp. 31–34, 2007.

[24] H. Helmke, M. Kleinert, O. Ohneiser, H. Ehr, S. Shetty, “Machine

Learning of Air Traffic Controller Command Extraction Models for
Speech Recognition Applications,” IEEE/AIAA 39th Digital

Avionics Systems Conference (DASC), Hosted virtually, 2020.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on December 10,2021 at 14:21:19 UTC from IEEE Xplore. Restrictions apply.

