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Abstract
In this paper, we explore several data augmentation strategies
for training of language models for speech recognition. We
compare augmentation based on global error statistics with
one based on unigram statistics of ASR errors and with label-
smoothing and its sampled variant. Additionally, we investigate
the stability and the predictive power of perplexity estimated
on augmented data. Despite being trivial, augmentation driven
by global substitution, deletion and insertion rates achieves the
best rescoring results. On the other hand, even though the asso-
ciated perplexity measure is stable, it gives no better prediction
of the final error rate than the vanilla one. Our best augmenta-
tion scheme increases the WER improvement from second-pass
rescoring from 1.1 % to 1.9 % absolute on the CHiMe-6 chal-
lenge.
Index Terms: data augmentation, error simulation, language
modeling, automatic speech recognition

1. Introduction
The traditional reason language models (LMs) appear in ASR
systems is that they directly represent the prior term P (S) in
the Bayes factorization of the posterior probability P (S|A) of
a sentence S given the audio A. However in practice, LMs
trained on excessive amounts of data are combined with hy-
brid and end-to-end systems alike [1, 2, 3] at authors’ liberty.
Overall, LMs can be seen as a refinement tool to apply on a
preliminary result of recognition.

To this end, language models can be trained to cope with er-
rors introduced during the first phase of ASR. This is especially
well pronounced in discriminative LMs [4, 5, 6], which focus on
obtaining the final hypothesis from a pool of first-pass hypothe-
ses, oftentimes explicitly taking acoustic clues into account. Er-
rors are also freely introduced into LMs purposed to serve as a
base for NLP systems [7]. On the other hand, we have recently
achieved interesting improvements in ASR by simply augment-
ing the training data for a conventional generative LM [8].

In general, the idea of working with data similar to ASR
output is not new: Literature typically focuses on errors intro-
duced in the form of substitutions, driven by a custom confus-
ability measure [9]. Traditionally, this confusability is based
on phonemic confusions [10], Recently, sequence-to-sequence
models have been proposed to introduce context-dependent er-
rors [11].

In this work, we elaborate on the idea that an LM should
be capable of good predictions of the next word even when
it is exposed to some mistakes in the history: We extend the
idea of augmenting data from substitutions only to deletions as
well as insertions. We also explore how the augmentation effect
changes when we remove the error statistics and do the aug-
mentation in an uninformed manner. Then, we investigate the
source of improvement by comparing this well-motivated input

augmentation to target augmentation. Finally, we examine the
impact of the data augmentation on the perplexity as a measure
of LM quality.

2. Simulating the Errors
In the traditional setting, language models are trained to maxi-
mize the probability of the word wt at any position t in the text,
as conditioned on the history ht comprising all previous words
w1 . . . wt−1:

− log PPL =
1

T

T∑
t=1

log p(wt|ht) (1)

In this study, we expose the LM to erroneous ht, similar
to what it experiences when processing output from an ASR
system, giving rise to simulated PPL:

− log sPPL =
1

T

T∑
t=1

Eĥt∼pASR(ht)

[
log p(wt|ĥt)

]
(2)

We discuss the approximations of pASR(ht) in Section 2.1.
In general, we obtain ĥt from the input history ht by processing
it token by token and introducing individual edits, as illustrated
in Fig. 1. We take care not to remove, replace or introduce
sentence boundaries1.

We also introduce target augmentation to check that the LM
benefits from modeling of ASR errors rather than simply from
regularization by adding noise to the data. Target augmentation
differs in that when introducing substitutions, we keep the input
token and replace the target one. Contrasting this to the sim-
ulated perplexity (omitting deletions and insertions), we arrive
at:

− log tPPL =
1

T

T∑
t=1

Eŵ

[
log p(ŵt|ht)

]
(3)

2.1. Error simulating distribution

As a baseline for error simulation, we do the sampling in a truly
flat manner: We simply roll an unfair 4-sided dice to determine
which of the four actions to take. In case substitution or inser-
tion is selected, we take a sample from a uniform distribution
over the vocabulary to obtain the new input token. We call this
the 0-gram error model. By adjusting the initial categorical dis-
tribution (the dice), we have a fine control over the strength of
the data augmentation.

In order to better match the actual errors made by the first-
pass recognizer, we propose a stronger, 1-gram, model. We pre-
pare it as follows: For a given set of utterances, we get the 100-
best hypotheses from the ASR system. Secondly, we align these

1Due to a bug in the implementation, we provided no special care to
sentence breaks initially. Despite being theoretically unsound, it did not
have any observable impact.
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Figure 1: How errors are introduced for NN LMs. The original sentence is “it’s good salad”. With substitution (a), only the input token
is replaced. To simulate deletions (b), both the input and the target at the given position are removed. Finally, inserted words (c) get
into the input while the original target token gets duplicated.

hypotheses to the actual transcriptions of this data. Then for
each reference word wact, we summarize its alignments over
the whole data and normalize the counts of hypothesised words
to get the distribution psub(w|wact). This categorical distribu-
tion is then used to decide the action to apply on every training
token. Note that by treating the empty symbol ε as a regular
word, we naturally model insertions and deletions this way. In
case of 1-gram error models, the overall rate of substitutions,
deletions and insertions is given by the statistics themselves.

3. Experiments
We evaluate the proposed techniques on Track 1 of the CHiMe-
6 challenge [12]. The size of training and development data,
including sentence boundaries, is 522k and 136k tokens respec-
tively. For ease of implementation, we stay with the official
large vocabulary of 127k words, letting the output softmax layer
to learn that many of those words do not occur in the training
data.

As the ASR system to provide inputs for our experiments,
we used a single Kaldi system based on a mix of CNN and
TDNN-f layers. The first-pass decoding network is based on a
KN-smoothed 3-gram LM. For further details on the design of
the ASR system, refer to the system description [8].

This system achieves 48.39 % WER on the development
data. The error is composed respectively of 5 %, 17 % and 26 %
of insertions, deletions and substitutions.

For any LM evaluated, we extract 3000-best hypotheses to
rescore and use the development set to tune the linear interpo-
lation coefficient for mixing the LSTM LM with the first-pass
3-gram LM. When rescoring, we carry the hidden states over,
except for session breaks. This way, we effectively model the
language across segments [13].

3.1. Language Model Training

In all our experiments, we a use two layer LSTM [14] with
650 units per layer and the dimensionality of input word em-
beddings reduced to 100. We train our language models using
BrnoLM2.

We train the LMs with plain SGD, in two stages: At first,
we train the LM from scratch with shuffled lines3. In this stage,
we always employ the data augmentation technique under test.
Once the perplexity stops improving4, we take the trained LM
and finetune it on the sentences in their original order. We ran
this stage twice, with the augmentation turned either on or off. It

2https://github.com/BUTSpeechFIT/BrnoLM
3This effectively breaks across-segment dependencies.
4The models converged after around 40 epochs.

was always slightly better to do this finetuning with clean data,
thus we only report these results.

We begin the first phase training with learning rate 2.0 and
start the finetuning with 0.2, in both stages halving the learn-
ing rate when development perplexity does not improve. With
target augmentation, we observed the training to be more noisy,
therefore we only halved the learning rate when no improve-
ment was observed for 3 consecutive epochs.

3.2. Tested Augmentation Schemes

In total, we test LMs trained with seven augmentation schemes:

1. The baseline, which is only trained on the actual training
transcripts.

2. The 0-gram model (i0), which is trained with uniformly
sampled errors. With this model, we optimize for the
best rate of substitutions, deletions and insertions.

3. The 1-gram model (i1), where we collect the statistics
from the training data.

4. The oracle 1-gram model (i1o), where the statistics are
collected from the development data.

5. A 0-gram target augmentation (t0S), where we only in-
troduce substitutions, at the rate optimal for input aug-
menting systems.

6. A 0-gram target augmentation (t0SDI), where we intro-
duce deletions and insertion in addition to the target sub-
stitution.

7. Target label smoothing (t0LS) [15]. Note that unlike the
other techniques, label smoothing requires a principally
different change of the training procedure.

For all augmentation schemes, we sweep across the rate of
dropout in range [0.0, 0.7] to find the optimal level of total regu-
larization. For the baseline, the best result comes from setting it
to 0.75, those trained with data augmentation were fairly robust
to the dropout rate and achieved their best performance in range
of 0.3 – 0.6.

3.3. CHiMe-6 Rescoring Results

We first assess the performance on the development data, as
captured in Figure 2. Overall, we see that the behavior of all
LSTM LMs is smooth with respect to the interpolation coeffi-
cient, but the final WERs do differ significantly.

The best performance is achieved by the input 0-gram aug-
mentation. For this augmentation, we have found values of

5In this case, we tried higher values to check it is the optimum.
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Figure 2: Development WER as a function of LSTM LM weight.
For each augmentation scheme, the best dropout rate is se-
lected. The left edge represents retaining only the LM score
from the original 3-gram LM. Note how – with the minor ex-
ception of oracle 1-gram input augmentation (i1o) – the perfor-
mance of the LSTM LM itself (right edge) corresponds to the
performance of its optimal interpolation.

around 0.23, 0.15 to work the best as the substitution and dele-
tion rate respectively. Insertions did not provide any measur-
able improvements up till 0.1; higher values caused degrada-
tion. Note that the optimal augmentation rates correspond rather
closely to the actual errors rates of the ASR system (see Sec. 3)

On the other hand, the input 1-gram augmentation was not
significantly better than the baseline. We ruled out several pos-
sible causes: This is not originating from the decreased amount
of augmentation, as an i0 LM trained with the same amount
of augmentation achieves 46.30 % WER. Also, we ruled out
impact of outlier errors by limiting pASR so that it would only
introduce errors that were observed at least five times in the
training data. This brought no improvement. Neither is it be-
cause of a poor fit of the error statistics, as the 1-gram augmen-
tation performs very similar even when based on oracle statis-
tics. Therefore, it must be the nature of the augmentation that
prevents gains. We assume that by being actually predictable, it
produces little extra stimulus for learning.

The target augmenting LMs do achieve improvement over
the baseline, albeit smaller than the 0-gram input augmentation.
Introduction of deletions and insertions brought no improve-
ment for the target 0-gram augmentation, however we have ob-
served these LMs to be less sensitive to the dropout rate.

The two best performing schemes — input 0-gram and tar-
get 0-gram — are technically orthogonal to each other. Thus,
we extended our experiments to an interpolation of the two: We
kept the total substitution rate at 24 %6 and varied the amount
of input and target substitution. Unfortunately, no synergy was
achieved and the development WER increased monotonically
as more of the substitutions happened in the targets.

Finally, in Table 1, we capture the performance of the mod-
els on the unseen evaluation data. The input 0-gram augmenta-
tion brings clearly the largest gain and the overall behaviour of

6deletions at 15 % and insertions at 4 %
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Figure 3: Normalized histogram of sPPL estimates with substi-
tution and deletion rate respectively 0.23 and 0.15. Estimated
from 1000 runs across the development data. Note that values
have been centered, baseline LM has mean-sPPL 226, the i0
one trained with matching data augmentation has 178.

the other LMs is consistent with the development data. Only no-
table exception is the LM trained with label smoothing, which
suddenly provides no benefit. We checked that this is not a re-
sult of mis-calibrated LM weight by tuning it to the optimal
value w.r.t. evaluation data, but we did not find the cause of the
difference.

Table 1: Results of rescoring ASR outputs with LMs trained
with different data augmentation schemes. We report the result
of the optimal setting of dropout and LSTM-LM weight as per
development results.

development evaluation

3-gram only 48.39 48.82
baseline 46.86 47.69

input 0-gram 46.05 46.92
input 1-gram 46.85 47.70
input 1-gram oracle 46.82 47.97

target 0-gram S 46.20 47.41
target 0-gram SID 46.20 47.23
target label smoothing 46.43 47.70

3.4. Experiments on Firefighter Speech Recognition

To explore the efficiency of the proposed augmentation in a dif-
ferent scenario, we have applied the 0-gram input augmentation
to speech recognition in the OpenSAT challenge [16]. This task
is considerable easier, with WER at around 10 %. By adding
the augmentation, we have achieved a marginal improvement
of about 0.1 % absolute, confirming our expectation that this
method brings benefit mainly when employed in high error sce-
narios.

3.5. Behavior of the Simulated Perplexity

Since the best performing LMs are trained with the sPPL objec-
tive, we investigate two of its properties. Firstly, we observe its
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Figure 4: Correlation of different PPL estimates with develop-
ment WER. Individual points represent LMs trained with differ-
ent rate of i0 augmentation. Red, blue and black denote respec-
tively sPPL following development error rates, sPPL following
training error rates and the vanilla PPL. For each of the PPL
variants, the measured PPL values have been min-max normal-
ized.

stability as we only estimate the expectation in (2) from a single
realization of noise. In doing so, we compare behavior of two
different LMs, where one was trained to optimize sPPL and the
other was optimized with regular PPL. Then, we examine the
predictive power of sPPL towards the final WER of the system.

The stability is captured in Figure 3. The sPPLs are approx-
imately normally distributed, with relative standard deviation of
around 0.5 %. Comparing the baseline LM to the one trained on
the augmented data, we see that the baseline has significantly
higher average sPPL (226.5 vs. 178.7) and a slightly higher
standard deviation.

To assess the predictive power of sPPL, we plotted a couple
of i0 LMs as described by their development (s)PPL and WER
in Figure 4. We did not find any conclusive evidence that sPPL
would serve as a better predictor than PPL.

4. Conclusions
We have examined several simple text data augmentations for
language model training. Evaluating them by rescoring ASR
outputs on the CHiMe-6 challenge, we have achieved the best
result when simply introducing uninformed edits into the stream
of input tokens. This improved the WER by 0.8 % absolute over
rescoring with the baseline LM, which had the same neural ar-
chitecture, but was trained on clean text only. No improvements
were achieved with augmentation based on the actual word level
confusions produced by the ASR system. Finally, a control ex-
periment with target augmentations reached approx. 0.5 % abs.
improvement. From these experimental results, we conclude
that while the LMs do benefit from being exposed to ASR-
like errors, most of the improvement is coming from training
on noised data per se.

We also investigated into the properties of simulated per-
plexity (sPPL) estimated on the augmented data. While being
rather stable w.r.t. the sampling of the word-level noise, we did
not see sPPL predict the WER any better than PPL. Further-
more, we always obtained better results when finetuning the
LMs to clean data, solidifying our belief that the proposed aug-
mentation scheme should be viewed as a successful regulariza-

tion technique rather than as an adaptation to a given ASR sys-
tem.

In future, we will focus on explaining the failure of the aug-
mentation based on actual error statistics and we will seek a
remedy to it.
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K. H. Vydana, A. D. Lozano, O. Plchot, K. M. Baskar, J. Švec,
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