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Abstract—One of the crucial tasks of an air traffic controller 

(ATCo) is to evaluate pilot readbacks and to react in case of errors. 
Undetected readback errors, when not corrected by ATCos, can 
have a dramatic impact on air traffic management (ATM) safety. 
Although they seldomly occur, the benefits of even one prevented 
incident due to automatic readback error detection justifies the ef-
forts. This, however, requires highly reliable detections, which is 
beyond the performance of currently available automatic speech 
recognition implementations. The HAAWAII project aims to 
achieve false alarm rates below 10% and readback error detection 
rates better than 50%. After performing a preliminary analysis by 
comparing ATCo utterances with pilot readbacks on word level, 
this approach proves to be very ineffective. Callsigns are abbrevi-
ated or not even pronounced, altitude and speed units are often not 
used, for example “nineteen eight” is the same as “one one nine dec-
imal eight”. Therefore, the presented approach transforms recog-
nized word sequences into so-called ATC concepts, as agreed with 
the ontology of the SESAR project PJ.16-04. Detecting readback 
errors on concept level is more reliable and robust as it also consid-
ers different forms of conveying the same semantic messages and is 
also more tolerant to partially misrecognized words. Nevertheless, 
a good recognition rate on word level is essential to correctly trans-
form words into concepts, which will be achieved by integrating 
voice data from ATCo utterances and pilot readbacks with context 
information such as data concerning radar, flight plans, and 
weather. This paper presents relevant use cases, the ontology-based 
algorithm, and initial results regarding callsign recognition accu-
racy for automatic readback error detection purposes. 

Keywords—Automatic Speech Recognition (ASR), Readback 
Error Detection, Air Traffic Control (ATC) 

I. INTRODUCTION 

Voice communication between air traffic controller (ATCo) 
and pilot using radio equipment is still widely used. The ATCo 
gives verbal commands to an aircraft. The pilot has to repeat all 
the commands that influence the motion of the aircraft, e.g., al-
titude, speed or direction commands. This repetition of the 
ATCo clearances by the pilot is called readback. Beside other 
tasks, the ATCo is also responsible for the hearback, i.e., mon-
itoring that all pilot readbacks are correct. During high traffic 
periods, the ATCo simultaneously communicates with many 
aircraft pilots, which can lead to a lower situation awareness 
level due to high workload.  Readback errors which are not cor-
rected in time can cause incidents and can even (very seldom) 

result in accidents. In order to reduce the workload and increase 
the awareness level of the ATCo, Automatic Speech Recogni-
tion (ASR) could be a solution to support readback error detec-
tion (RED). ASR based RED, however, requires a good accu-
racy, a low false alarm rate and a close-to real time availability. 
Accuracy translates to high detection rates of pilot readback er-
rors. A low false alarm rate means an ASR-supported RED as-
sistant should not falsely trigger the ATCo’ s attention too often 
in case of false detections. Otherwise, the ATCo will most 
likely start to ignore the readback error alarms. A readback error 
detection rate of 50% seems to be acceptable if the false alarm 
rate is in the order of 10%. In other words, from 100 readback 
errors, at least 50 should be detected and from 100 readback 
error alarms at least 90 of them should be correct. The ATCo’s 
user interface will have to be integrated and designed in such a 
way that it provides close-to real time detection, i.e., the classi-
fication whether a pilot readback is an error or not must be 
available immediately after the pilot’s verbal readback.  

This paper provides some related work to readback errors 
and their detection in the next section. Section III details relevant 
use cases, section IV describes the RED approach of the 
HAAWAII project, which transforms the ASR output into air 
traffic control (ATC) concept elements. Section V analyzes the 
performance requirements for the used ASR system to achieve 
the required false alarm rates. Sections VI and VII present initial 
results, before the last section concludes. 

II. RELATED WORK 

The content of communication between ATCos and pilots is 
of utmost importance for the safety of air traffic. Roughly 80% 
of incidents or accidents involve miscommunication between 
ATCos and pilots at least as a circumstance based on NASA avi-
ation safety reporting system reports [1]. Based on 
EUROCONTROL data, miscommunication is the reason for 
roughly 30% of incidents [2]. Miscommunication can comprise 
of different aspects such as not responding at all or mishearing 
that may lead to partial or full misunderstanding by either ATCo 
or pilot [3]. The communication feedback loop between ATCos 
and pilots shall ensure a low level of communication errors using 
information redundancy. ATCos transmit verbal ATC instruc-
tions via radiotelephony whose safety-related parts need to be 
read back by pilots according to International Civil Aviation 

HAWWAII project and PJ.10-96 (Wave-2) solution are partly funded by SESAR Joint Undertak-
ing (Grant Numbers 874464 resp. 884287). 
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Organization (ICAO) Annex 11. ATCos need to hear back pilot 
readbacks and correct the readback in case of errors [4]. Further-
more, the ICAO phraseology defines clear structure and vocab-
ulary to be used in aviation radiotelephony for avoiding misun-
derstandings [5]. It has to be noted that readback errors are a 
subset of communication errors/miscommunication in general. 
A hearback error is a readback error, which is undetected by the 
ATCo and is left uncorrected. 

Hence, communication errors occur very seldomly, i.e., de-
pending on the definition of an error in less than every hundredth 
[6],[7] or even up to every sixteenth ATC communication with 
some transmissions even containing multiple errors [8]. When 
analyzing only specific ATC command types or communication 
error effects, “one runway incursion for every 163,000 hearback 
errors, one runway incursion for every 407,000 readback errors, 
or one runway incursion for every 40,700,000 commands” has 
been calculated [9]. For this calculation, the assumption is that 
2% of the given ATCo commands result in a readback error with 
40% of those 2% are not corrected by the ATCo, i.e., 0.8% of all 
commands are hearback errors. From another European ATC ra-
diotelephony sample, 1.4 communication errors per 10,000 
flights or 2.4 communication errors per million instructions ac-
tually result in an incident whereof 40% occur during cruise-
flight [10]. Half of ATC miscommunication in US en-route sec-
tors is attributed to pilots mishearing or not responding, a quarter 
due to the same errors by ATCos [3]. En-route ATCos are capa-
ble of detecting 90% of pilot readback errors by themselves [6], 
but a small amount of readback errors with unclear effects re-
main undetected. The hearback error rate seems to increase with 
more transmissions per time slot, because tower/local ATCos 
detect only 63% and radar approach ATCos detect only 50% of 
all readback errors [7], [11]. Further factors increase the likeli-
hood of readback errors and clarification requests such as long 
utterances [12], more complex instructions [13], non-native 
English speakers [14], deviations from the ICAO phraseology 
[11],[15], or the current flight phase, i.e., pilots in approach pro-
duce more readback errors than in departure phase [8]. It was 
found that 85% of ATCos claim following ICAO phraseology, 
but in reality, not even 20% of their utterances follow them in 
detail [16]. Also, roughly one third of ATC utterances contain a 
greeting that is not recommended by ICAO, 3% contain hesita-
tions, and 1% include corrections [16]. Some labels to annotate 
content errors of ATC utterances have been proposed, namely 
grouped, sequential, omission, substitution, transposition, ex-
cessive verbiage, partial readback [17]. 

Miscommunication affects different aircraft states, i.e., al-
most 40% of miscommunications result in altitude deviations 
[10], more than one-third of readback errors in en-route deal 
with frequency changes [6], and 10% of communication errors 
result from speed being mixed up with headings [18]. Moreover, 
about 20% of communication errors are also caused due to the 
presence of similar callsigns on the same frequency [10], [19]. 
This has unintended effects on safety such as runway incursions 
[20], e.g., in 0.2%-0.8% of the cases, pilots responded to a trans-
mission, which was not intended for them [6], [11] and only 39% 
of them have been detected by the humans involved [6]. It is 
noteworthy to mention that roughly one-quarter of real-life data 
readbacks and 42% of erroneous readbacks either did not contain 
a callsign or they were uttered incompletely [6]. In simulations, 
however, only 5% of the utterances did not contain a callsign 
[16]. These numbers are confirmed in this paper. 

Given the above findings on miscommunication and human 
error detection, a reliable system for automatic readback error 
detection without bothering ATCos with too many false alarms 
seems reasonable, but extremely challenging. Such a system re-
quires ASR to initially convert spoken ATC utterances into writ-
ten text to enable further analysis of ATCo and pilot utterance 
semantics, i.e., a “language technology system“ like proposed 
for Icelandic oceanic environment [21]. It is especially challeng-
ing (“twice as hard”) to correctly recognize pilot speech with 
their tendency to shorten utterances as compared to ATCo 
speech [22]. The word error rates currently achieved for real 
ATC recordings (low quality data) are 8% or worse, and that of 
simulated data (clean data) are slightly better [23]. The second 
important step for readback error detection is language under-
standing, also called as spoken instruction understanding in ATC 
[24]. With this understanding, semantics of utterances can be 
converted into a standardized form. An ontology for annotating 
ATCos’ and pilots’ utterances as agreed between European ATC 
stakeholders [25] helps to compare the semantic contents of 
ATCo transmissions and pilot readbacks as they often use dif-
ferent words and readback order [9]. Automatic extraction algo-
rithms for ATC concepts have already been developed for the 
tower [9], [26] and approach domains [27]. In addition, auto-
matic pairing of utterance semantics from ATCos and pilots be-
longing together is part of further research [9]. This helps in 
avoiding readback error alarms, if the error has already been de-
tected and corrected in the ATCo’s hearback. In addition, it 
needs to be defined, which differences in readbacks are tolerable 
to all actors, which are alert worthy, and which are clearly unsafe 
[9]. As a final step, a graphical user interface for handling read-
back errors as sketched in [9] is also needed. However, the big-
gest challenge remains in having a low false detection rate with-
out decreasing the true positive rate significantly. Chen et al. [9] 
provided an example that in the tower area 79% of callsigns spo-
ken by ATCos and 63% spoken by pilots have been recognized 
correctly by their first implementation as well as over 90% 
(ATCos) and 80-90% (pilots) of specific tower commands such 
as lineup and hold short [9]. However, these numbers result to 
the fact that each tenth readback would be highlighted as read-
back error, although the authors observe readback errors only in 
2% of the utterances, i.e., the false detection rate would be above 
80%, which will not be operationally acceptable [9]. 

In addition to traditional rule/pattern-based approaches to 
readback error detection and classification, modern methods em-
ploy the concept of machine-learning (ML) that trains specific 
models on available data and devises statistical data-dependent 
classifiers. As in other fields of computer science, recent ML ap-
proaches take advantage of deep neural networks. Recurrent 
Neural Networks (RNN) and Long Short-Term Memory 
(LSTM) models are applied in [28], [29], [30] to compute con-
textual representation of transcribed pairs of ATCo-pilot conver-
sation. The data for training is collected from manually tran-
scribed communication and books for civil aviation radioteleph-
ony training in Chinese. A simple, one-layer convolutional neu-
ral network for readback error classification is introduced in 
[31]. This model classifies pairs of ATCo command and the cor-
responding pilot readback into six classes: correct readback, 
partial information loss, call sign readback error, altitude read-
back error, runway readback error, and heading readback er-
ror. 2,500 pairs containing a readback error were collected. 

The above literature review makes obvious that a big varia-
tion in communication error rates exists. The HAAWAII project 
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(Highly Automated Air Traffic Controller Workstation with Ar-
tificial Intelligence Integration) will provide a better data base 
at least for NATS Terminal Manoeuvring Area (TMA) airspace 
and Icelandic enroute airspace. HAAWAII is led by DLR with 
the partners Idiap, BUT, NATS, Isavia ANS ehf., Austro Con-
trol, and Croatia Control. HAAWAII will develop a reliable, er-
ror resilient and adaptable solution to automatically transcribe 
voice commands from ATCos and pilots with the objective to 
develop a readback error detection assistant for the ATCo [32].  

III. USE CASES OF READBACK ERROR DETECTION 

A readback (RB) error can occur at different stages in the 
communication. Fig. 1 describes some of the cases using ATCo-
pilot communication timeline view.  

Figure 1. ATCo-pilot communication displayed in timeline view. 

The use cases 1 to 5 are split into two sub use cases depend-
ing on whether the pilot starts communication (first vertical dot-
ted line or the ATCo, which is the usual case. In the following 
examples which are related to Fig. 1, we show the content of 
ATCo-pilot conversations and also what the expected reaction 
of the readback error detection system should be. We mark po-
tential readback errors in yellow and correct readbacks in green. 
TABLE I shows a common ATCo-pilot communication with a 
pilot request, an ATCo clearance, and a correct pilot readback. 

TABLE I.  USE CASE 1A 

 Sequence of spoken Words / Transcription 
Pilot reykjavik control faeroline five five requesting lower 

ATCo faeroline five five descend out of controlled airspace 
Pilot descend below controlled airspace faeroline five five 

System No Readback error 

Pilot requests, ATCo issues clearance, Pilot correct Readback  No Readback Error 

The use case in TABLE II shows an example, where the 
ATCo corrects a wrong pilot readback. The concept of readback 
error detection assumes that a potential readback error is imme-
diately indicated. If the ATCo, however, detects the readback 
error after a couple of seconds, the system should recognize this 
and not demand further action. The idea is that the ATCo imme-
diately gets a yellow light, which only turns into red, if the wrong 
readback is undetected for some seconds, see the attention guid-
ance guidelines created by SESAR project PJ.16-04-AG in 
wave-1 [33]. The example also shows that a unit, e.g., “flight 
level”, is not always repeated. Although this could technically 
be considered as a readback error, the ATCo should not be 
warned, because these cases occur in real world operations. 

TABLE II.  USE CASE 2A 

 Sequence of spoken Words / Transcription 
Pilot reykjavik control lufthansa four zero zero requesting flight level 

three eight zero 
ATCo lufthansa four hundred climb flight level three seven zero 
Pilot climb three eight zero lufthansa four zero zero 

System Potential readback error is indicated 

ATCo 
correction lufthansa four zero zero climb flight level three seven 
zero 

Pilot three seven zero lufthansa four hundred 
System Readback error indication is cancelled 

Pilot requests, ATCo issues clearance, Pilot incorrect Readback, ATCo correction, Pilot ACK 
No Readback Error 

 

Use Case 3b in TABLE III is quite straight forward. The 
ATCo gives a clearance to flight level 100. The pilot reads back 
110. Here, the system has to detect this as a readback error. 
 

TABLE III.  USE CASE 3B 

 Sequence of spoken Words / Transcription 
ATCo scandinavian nine two four descend flight level one hundred 
Pilot descend flight level one one zero scandinavian nine two four 

System Readback error 

ATCo issues clearance, Pilot incorrect Readback, ATCo no correction  Readback Error 

 

In the use case in TABLE IV, the pilot requests a waypoint. 
The ATCo, however, issues a clearance to another waypoint 
which sounds similar (by accident or on purpose). The pilot in 
turn repeats the initially requested waypoint. Therefore, a read-
back error will be indicated. The ATCo now confirms the wrong 
readback to the first clearance. This could be done by intention 
or by accident. It is assumed that this could be done by accident, 
because the phraseology recleared should be used. Therefore, 
the readback error indicated is not released.  

TABLE IV.  USE CASE 4A 

 Sequence of spoken Words / Transcription 
Pilot reykjavík control arctic eagle one one six requesting direct alfa 

kilo india 
ATCo arctic eagle one one six cleared direct alfa kilo charlie 
Pilot direct alfa kilo india arctic eagle one one six 

System Potential readback error is indicated 
ATCo roger alfa kilo india 
System Readback error indicator is retained 

Pilot requests, ATCo issues clearance, Pilot incorrect Readback, ATCo wrong/no correction  
Readback Error 

 

TABLE V.  USE CASE 5B 

 Sequence of spoken Words / Transcription 
ATCo foxtrot lima india descend flight level one zero zero 
Pilot "no reply" 

System 
Missing readback indicator, which will be deleted when ATCo re-
peats the clearance 

ATCo foxtrot lima india descend flight level one zero zero 
Pilot "no reply" 

System Missing indicator is cancelled, i.e., previous clearance is kept 

ATCo issues clearance, Pilot “no reply”, ATCo repeats instructions, Pilot “no reply” 
No Readback Error 

 

TABLE V illustrates use case 5b, where the ATCo issues a 
clearance to which the pilot does not react. The system should 
indicate that there is a missing readback. The ATCo then repeats 
the instruction, to which the pilot again does not read back. The 
RED system then removes the missing indicator and retains the 
previously issued clearance. 

Pilot
no RB

Pilot
incorrect RB

Readback 
Required

ATCo
no correction

Readback/
Hearback error

Pilot
incorrect RB

ATCo wrong 
correction

Readback/
ATCo error

T0 T1 T2 T3 T4

Pilot
correct RB

Correct 
readback

Pilot 
follows *

Pilot 
follows

Communication 
Timeline

Case 3b

ATCo repeats 

instructions
Cancel if no

answer

Wrong
request

Corrected

request
Correct 

readback

Request ATCo no

response
Readback 

error

T5

Case 3a

Case 4a
Case 4b

Case 5a
Case 5b

Case 1a
Case 1b

Case 6

Case 7
* Another 
clearance 
required

Pilot 
Request

ATCo 
Clearance

Pilot
incorrect RB

ATCo
correction

Pilot Ack Readback error
corrected

Case 2a
Case 2b
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In TABLE VI the pilot asks for a strange speed respectively 
the speech recognizer understands mach 0.2. Mach numbers for 
aircraft are usually above 0.5. The ATCo corrects the requested 
value and the pilot accepts with a simple “that is correct”. The 
system should not indicate this as a readback error. Without the 
correction of the ATCo, it would be use case 7. 

TABLE VI.  USE CASE 6 

 Sequence of spoken Words / Transcription 
Pilot reykjavik control delta six zero five requesting mach decimal two 

ATCo delta six zero five confirm requesting mach decimal eight two 
Pilot that is correct 

System No Readback error 

Strange pilot request, ATCo corrects request, Pilot confirms correction  No Readback Error 

 

The following use case in TABLE VII is not shown in Fig. 1 
and is related to a case, in which more than one aircraft/pilot is 
involved. 

TABLE VII.  USE CASE WITH MORE THAN ONE PILOT INVOLVED 

 Sequence of spoken Words / Transcription 
ATCo lufthansa two alfa four turn left heading three two zero 
Pilot1 two alfa four turning right three two zero 
ATCo speed bird one one descend flight level one two zero 
System Readback error for DLH2A4 
Pilot2 descending level one two zero speed bird one one 

System No readback error for BAW11 

ATCo 
lufthansa two alfa four negative turn left heading three two 
zero turn left 

System Readback error indicator now disappears for DLH2A4 
Incorrect readback without ATCo correction, 

ATCo gives instructions to another aircraft not correcting the readback error with the first aircraft 

 

After detecting a possible readback error the next step would 
be to integrate it to the ATCo’s radar display. The visualization 
on the display is not in the scope of the HAAWAII project, but 
nevertheless there are high level guidelines defined for readback 
error integration within the project. The readback errors could 
be integrated into the call sign label as a readback error icon. The 
ATCo has the possibility to click on the icon and extend the no-
tification message showing the exact text, where the error oc-
curred. The indication is not intrusive and the ATCo can decide 
to acknowledge the readback error indication or to ignore the 
indication. The warning will timeout after a predefined time and 
will be acknowledged automatically. 

IV. ONTOLOGY BASED READBACK ERROR DETECTION 

In principle, the readback cycle is very easy. The ATCo is-
sues one or more commands in an utterance and the pilot repeats 
them. If they are not correctly repeated, the ATCo repeats the 
commands again, until the pilot correctly reads back the given 
command(s). However, an example as simple as - ATCo: “sau-
dia one zero seven hello descend flight level one five zero” and 
the pilot’s readback “descending one five zero saudia one zero 
seven” already indicates the complexity of the task. The ATCo 
says the callsign in the beginning. (S)he provides a greeting 
“hello” and also mentions the unit (“flight level”), which is miss-
ing in the pilot’s readback. The callsign can be in the beginning 
(as for most ATCos), towards the end (as for most pilots) or in 
the middle (occurs seldom) of an utterance. This simple example 
may have already convinced some of the readers that RED on 
word level is hopeless. The following example in TABLE VIII 
should convince most of the readers. 

TABLE VIII.  EXAMPLE OF ATCO-PILOT COMMUNICATION THAT SHOWS 

READBACK ERROR DETECTION ON WORD LEVEL VS. CONCEPT LEVEL 

 Spoken Words / 
Transcription 

Ontology Instructions / 
Annotation 

ATCo 

speed bird two zero zero zero 
alfa reduce one eight zero 
knots until DME four miles 
contact tower 
on frequency one one eight 
decimal seven zero zero 

BAW2000A REDUCE 180 kt UNTIL 
4 NM DME  
BAW2000A CONTACT TOWER  
BAW2000A 
CONTACT_FREQUENCY 118.700 

Pilot 
one eighty to DME four tower 
one eighteen seven speed bird 
two thousand alfa 

BAW2000A PILOT SPEED 180 none 
UNTIL 4 none DME  
BAW2000A PILOT CONTACT 
TOWER   
BAW2000A PILOT CONTACT_-
FREQUENCY 118.700 

 

Transcription refers to the word-by-word representation of 
the speech data. Annotation refers to the semantic interpretation 
of the transcription, consisting of a sequence of ATC concepts. 
Or in other words, annotation refers to the transformation of a 
sequence of words to a sequence of ATC concepts. The transfor-
mation rules (so called ontology) were first defined by fourteen 
European partners from ATM industry and research as well as 
by air navigation service providers (ANSPs) funded by SESAR 
2020 [25]. The ontology is applied and further improved by dif-
ferent projects, such as STARFiSH [34] and “HMI Interaction 
Modes for Airport Tower” [35] in the tower environment, by 
“HMI Interaction modes for approach control” [36], and 
HAAWAII [32],which also include pilot utterances.  

Instruction

Command Condition(s)

Type Value(s) Unit Qualifier Conjunction RequirementReasonSpeaker
 

Figure 2. Instruction consisting of a callsign, a command, and condition(s). 
 

Fig. 2 summarizes that an utterance consists of one or more 
instructions and each instruction starts with the callsign, even if 
the callsign is only said once. The full intended callsign (from 
the flight plan or surveillance data) is provided, i.e., BAW2000A 
is used even if only “speed bird alfa” is said or recognized. If no 
callsign is said or the callsign could not be uniquely determined, 
“NO_CALLSIGN” is used in the annotation. An instruction con-
sists of a callsign, a command, and optional conditions. A com-
mand consists of various fields such as type, value, unit, etc. The 
command type is always mandatory. It determines how many 
values are expected. The remaining fields such as the unit (e.g., 
FL, ft, kt), qualifier (e.g., LESS, OR_BELOW, LEFT), speaker 
(PILOT or empty), and reason (REQUEST, REPORTING or 
empty) are optional. We will not be describing the ontology 
rules here, but concentrate in TABLE IX to TABLE XI on ex-
amples showing the advantages of the transformation for read-
back error detection.  

A one-to-one comparison of the extracted (and not extracted) 
concepts is still not possible as shown by the ATCo-pilot com-
munications in TABLE IX. In the first example, the pilot reports 
the current descending altitude, which does not require an action 
by the ATCo. Here, the ATCo allows the aircraft to further de-
scend to flight level 150, but under the condition that it must be 
reached before reaching the waypoint TIGER. The pilot reads 
back the descend command, the value, and the condition, but 
leaves out the unit “flight level”, which happens quite commonly 
but is considered bad practice.  
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TABLE IX.  EXAMPLE USE CASE WITH A PILOT REPORT, FOLLOWED BY 

AN ATCO COMMAND, AND A PILOT READBACK 

 Spoken Words / 
Transcription 

Ontology Instructions / 
Annotation 

Pilot 
saudia one zero seven de-
scending one eight zero 

SVA107 PILOT REPORTING 
DESCEND 180 none 

ATCo 
saudia one zero seven 
hello descend level one 
five zero be level by tiger 

SVA107 GREETING  
SVA107 DESCEND 150 FL   
   UNTIL REACHING TIGER 

Pilot 
descending one five zero 
to be level by tiger saudia 
one zero seven 

SVA107 PILOT DESCEND 150 none   
    UNTIL REACHING TIGER 

 

In the second example (TABLE X), the pilot again initiates 
the conversation. (S)he requests a direct to the waypoint ULKIM. 

TABLE X.  EXAMPLE USE CASE WITH A PILOT REQUEST, FOLLOWED BY 

ATCO COMMANDS, AND A PILOT READBACK WITH ONE MISSING COMMAND 

 
Spoken Words / 
Transcription 

Ontology Instructions / 
Annotation 

Pilot 

mike tango yankee request 
present position direct to 
position ulkim for the 
RNAV runway two two and 
will be ready for descent 
very shortly 

MINTY PILOT REQUEST  
    DIRECT_TO ULKIM none 

ATCo 

mike tango yankee cleared 
direct ulkim and when 
ready descend out of con-
trolled airspace QNH  
egilsstadir nine nine four 

MINTY DIRECT_TO ULKIM none 
MINTY DESCEND CA none WHEN 
READY 
MINTY INFORMATION QNH 994 

Pilot 

okay when ready descend 
out of controlled airspace 
egilsstadir QNH nine nine 
four mike india november 
tango yankee 

MINTY PILOT DESCEND CA none 
WHEN READY 
MINTY PILOT INFORMATION 
QNH 994 

ATCo 
mike tango yankee just to 
confirm you are cleared di-
rect ulkim 

MINTY DIRECT_TO ULKIM none 

Pilot sorry cleared direct ulkim 
NO_CALLSIGN DIRECT_TO 
ULKIM none 

 

The request for the RNAV approach to runway 22 is not 
modeled by (current version of) the ontology rules. The ATCo 
gives a clearance for ULKIM and in addition, also provides a 
conditional descent clearance and the QNH value. All three 
command types, i.e., DIRECT_TO, DESCEND, and 
INFORMATION QNH require a readback. Therefore, the 
ATCo repeats the direct to clearance again due to the missing 
pilot readback for the DIRECT_TO command. The pilot then 
reads back the DIRECT_TO command, but without the callsign. 

The last example starts with a climb command for callsign 
MILAN, followed by a handover command for a second aircraft 
AUA3BA. However, the pilot of AUA3BA reads back before 
MILAN, and both readbacks are correct. Later, the ATCo gives 
a REDUCE clearance to MILAN, which is followed by a usual 
pilot readback, although the word reduce and the unit are not 
repeated by the pilot. The pilot immediately asks for a confirma-
tion of the already cleared flight level in a separate utterance. 
Maybe (s)he is confused by the unusual speed clearance for a 
departure. The ATCo acknowledges the already cleared altitude 
to which the pilot reads back, but without mentioning the altitude 
unit. 

In principle, the example utterances and their transformation 
to annotations show that RED on ontology/annotation level is 

much simpler than a hopeless comparison on word level. This 
assumption, of course heavily depends on a reliable algorithm 
that transforms a sequence of recognized words with a word er-
ror rate (WER) above 0% to the corresponding annotations. In-
deed, such an algorithm was developed by DLR. Command 
recognition rates of 99% for Prague and 95% for Vienna Ap-
proach were reported [25]. First results from the HAAWAII pro-
ject are presented in section VII. 

TABLE XI.  COMPLEX CONVERSATION WITH TWO PILOTS INVOLVED 

 Spoken Words / 
Transcription 

Ontology Instructions / 
Annotation 

ATCo mike alfa november climb 
flight level two four zero 

MILAN CLIMB 240 FL 

ATCo austrian three bravo alfa 
contact one three four deci-
mal three five zero ciao 

AUA3BA 
CONTACT_FREQUENCY 134.350 
AUA3BA FAREWELL  

Pilot1 one three four three five 
zero austrian three bravo 
alfa servus 

AUA3BA 
CONTACT_FREQUENCY 134.350 
AUA3BA PILOT FAREWELL 

Pilot2 mike alfa november climb 
flight level two four zero 

MILAN PILOT CLIMB 240 FL 

ATCo mike alfa november reduce 
two two zero knots or less 

MILAN REDUCE 220 kt OR_LESS 

Pilot2 speed two two zero or less 
mike alfa november 

MILAN PILOT SPEED 220 none 
OR_LESS 

Pilot2 just to confirm continue 
climb level two four zero 

NO_CALLSIGN PILOT CLIMB 
240 FL 

ATCo mike alfa november correct 
two four zero  

MILAN AFFIRM  
MILAN ALTITUDE 240 none 

Pilot2 two four zero mike alfa no-
vember 

MILAN PILOT ALTITUDE 240 
none 

 

We define that a readback is correct, if the same callsign, 
type, value(s), unit, qualifier, and condition(s) are extracted 
from both ATCo and pilot utterance. Nevertheless, it is not as 
simple and straightforward as it might seem: 

 Not all command types defined in the ontology require a 
readback, e.g., a GREETING or an INFORMATION 
TRAFFIC do not require a readback. 

 The sequence of ATCo instructions does not necessarily 
have to be read back in the same order by the pilot. 

 A DESCEND command is annotated as ALTITUDE, if the 
value is read back without the command type. The same ap-
plies for other command types, e.g., REDUCE and SPEED 
command types. Vienna ATCos used, e.g., 52% REDUCE 
and 48% SPEED command types for reducing the speed. 

 The unit is not always repeated by the pilot (see results in 
next section). Although this is not recommended as per 
ICAO phraseology standards, reporting this as a readback 
error may result in heavy workload for the ATCo. 

 The callsign is not always provided, especially when the 
ATCo and pilot continuously communicate with each other. 

V. WHICH ACCURACY ON COMMAND LEVEL IS NEEDED? 

For simplicity, in this section we do not consider if a read-
back error is corrected or not. We also ignore if the error is 
caused by the pilot or ATCo, i.e., the sub case a and b in Fig. 1 
are treated as one use case. Without loss of generality, for the 
rest of the paper we assume that the ATCo gives a command, 
and the readback (correct or wrong) comes from the pilot. As-
suming that we have a human readback error rate (RE) of 2%, 
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this means that 200 out of 10,000 given commands are not cor-
rectly repeated by the pilot. The HAAWAII objective of a read-
back error detection rate (RD) of 50% requires that at least 100 
of these 200 readback errors are detected. In the best case, these 
readback errors include all hearback errors. The second objec-
tive of the HAAWAII project, a false detection rate of 10%, re-
quires that if 111 readback errors are reported, at least 100 of 
them must be actual readback errors. 

The RED rate of course heavily depends on how good the 
automatic transformation of words into ATC concepts works. 
The quality of this transformation is measured using command 
recognition rate (R), command recognition error rate (E), and 
command rejection rate (RR). The command recognition rate re-
fers to the percentage of correctly recognized commands. The 
command recognition error rate, on the other hand refers to the 
percentage of wrongly extracted commands. A command is said 
to be rejected, if it is not extracted. Therefore, the command re-
jection rate is the percentage of commands, which are not ex-
tracted [37]. One of the best reported results with respect to qual-
ity of the transformation for data from outside the laboratory en-
vironment is from the MALORCA project with command 
recognition rates and command recognition error rates of 92% 
(RATCo) and 0.6% (EATCo) for ATCos, respectively. 

We assume that a readback error for a command is correctly 
detected, if all ATC concept elements (callsign, type, value, etc.) 
from both the ATCo utterance and the pilot’s readback are cor-
rectly recognized and neither the ATCo’s recognition nor the pi-
lot’s recognition is rejected. Assuming that the command recog-
nition rates for the ATCo (RATCo) and pilot utterances (RPilot) are 
independent of each other (which is not fully true), the recogni-
tion rate for the combined commands Rboth can be written as: 

����� = ����� ∗  ������ 

TABLE XII.  TERMINOLOGIES USED IN READBACK ERROR DETECTION 

EVALUATION 

True Positive TP: Readback error is present which is correctly detected, 
i.e., recognition correct and not rejected  

False Positive FP: No readback error is present, but is falsely classified as 
a readback error, i.e., recognition wrong and no rejection for 
none or for both  

True Negative TN: No readback error present which is correctly classified 
as no readback error, i.e., recognition correct or no recogni-
tion 

False Negative FN: Readback error is present, but is falsely classified as 
no readback error, i.e., one recognition is wrong or one of 
the two recognitions is rejected 

Precision True Positives (TP) divided by the sum of True Positives 
and False Positives (TP+FP) [38] 

Recall True Positives (TP) divided by the sum of True Positives 
and False Negatives (TP+FN) [38] 

The alarm is the positive event, comparable to Covid-19 positive definition in medical domain 

 

The above ATCo command recognition rate of 92% with an 
assumed RPilot of 85% for the pilot would according to Eq. ) 
result in 78%, which means that 78% of the readback errors 
would be detected.  

A command involving a readback is said to be wrongly rec-
ognized as a readback error, if there is an error in the command 
recognition either for the ATCo (EATCo) or for the pilot (EPilot). 
Assuming again that the recognitions are independent of each 
other, we write: 

����� = ����� + ������ − ����� ∗  ������ 

TABLE XII, defines two commonly used metrics precision 
and recall in the context of readback error detection. Precision 
is the percentage of correctly classified readback errors among 
all which are classified as readback errors. Recall is the percent-
age of actual readback errors which are correctly detected. 

In this work, we further define and use two metrics: readback 
error detection rate (RD) and false alarm rate (FA). The readback 
error detection rate is the number of correctly detected readback 
errors divided by the total number of readback errors. It is equal 
to the recall (TP/[TP+FN]). The ATC community might be more 
familiar with readback error detection rate, whereas machine 
learning community might prefer recall. 

�� =
��

�� + ��
=

�� ∗  �����

�� ∗ ����� + �� ∗ (1 − �����)
= ����� 

The detection rate is independent of the error rate. The de-
tection rate, however, depends on the rejection rate, which in 
turn is influenced by the error rate. This is because a high error 
rate can be reduced by rejecting some of the errors, which would 
also lead to a lower RED rate, which is, therefore, indirectly in-
fluenced by the command recognition error rates EATCo and EPilot. 
The false alarm rate (FA), also known as false detection rate can 
now be defined as the number of wrongly detected readback er-
rors divided by the sum of the wrongly and the correctly detected 
readback errors. In other words, it is the number of False Posi-
tives (FP) divided by the sum of False Positives plus True Posi-
tives (TP): 

�� =
��

�� + ��
=

(1 − ��) ∗ �����

�� ∗ ����� + (1 − ��) ∗ �����
 

The false alarm rate is equal to one minus the precision 
(TP/[TP+FP]). The above example from the MALORCA project 
would result in a false alarm rate of 62%, which is far beyond 
the desired 10% false alarm rate: 

62% =
(1 − 2%) ∗  (0.6% + 2% + 0.6% ∗  2%)

2% ∗ 78% + (1 − 2%)(0.6% + 2% + 0.6% ∗ 2%)
 

TABLE XIII.  DEPENDENCY OF FALSE ALARM RATE FROM COMBINED 

COMMAND RECOGNITION ERROR RATE AND RECOGNITION RATE 

Rboth / Eboth 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 

98% 4.8% 9.1% 13.0% 16.7% 20.0% 23.1% 

95% 4.9% 9.4% 13.4% 17.1% 20.5% 23.6% 

90% 5.2% 9.8% 14.0% 17.9% 21.4% 24.6% 

85% 5.5% 10.3% 14.7% 18.7% 22.4% 25.7% 

80% 5.8% 10.9% 15.5% 19.7% 23.4% 26.9% 

75% 6.1% 11.6% 16.4% 20.7% 24.6% 28.2% 

70% 6.5% 12.3% 17.4% 21.9% 25.9% 29.6% 

60% 7.6% 14.0% 19.7% 24.6% 29.0% 32.9% 

50% 8.9% 16.4% 22.7% 28.2% 32.9% 37.0% 

40% 10.9% 19.7% 26.9% 32.9% 38.0% 42.4% 

20% 19.7% 32.9% 42.4% 49.5% 55.1% 59.5% 

10% 32.9% 49.5% 59.5% 66.2% 71.0% 74.6% 

 

TABLE XIII shows the dependency between the combined 
recognition rate Rboth and the combined recognition error rate 
Eboth. In dark green we mark the pairs, which result in a false 
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alarm rate below 10% and in lighter green the pairs, which still 
have a false alarm rate at least below 20%. Although we have 
made some simplifications with respect to independence of the 
different pilot and ATCo rates, the results are nevertheless very 
clear: The combined command recognition rate is not so im-
portant. Even a command recognition rate of only 50.0% would 
achieve the required precision. However, a combined command 
recognition error rate Eboth of maximum 0.5% is needed for a 
false alarm rate below 20%. For a false alarm rate of 10% or less, 
we need a combined command recognition error rate of less than 
0.2%. If we compare this with the best available results only on 
ATCo data from the MALORCA project, i.e., with command 
recognition rates of 92% and command recognition error rates 
of 0.6%, the challenge is obvious. 

We assumed independence of pilot and ATCo recognition 
rates, which is not fully given. In a real implementation we can 
assume that both recognitions will rely on each other, so that the 
combined recognition rate is higher than the product of the indi-
vidual recognition rates. The same applies for the recognition 
error rates. They will not be independent of each other, so in Eq. 
) the term ����� ∗  ������ will be greater and, therefore, Eboth is 
also greater. 

Another heuristic to reduce Eboth is using more than one 
speech recognition engine and only create a readback alert, if all 
engines have extracted the same concepts from the ATCo’s and 
the pilot’s utterance. However, in case of doubt, it still holds true 
that no alarm is preferred, i.e., the recognition of the ATCo or 
the pilot should be rejected, which could be solved by plausibil-
ity values on word and on semantic level and also by comparing 
the extracted commands with the corresponding surveillance 
data. 

VI. EXPERIMENTAL SETUP 

Surveillance data and the corresponding voice utterances of 
both pilots and ATCos were recorded in 2020 from Isavia’s en-
route airspace, London TMA of NATS, and from Vienna TMA 
and adjacent sectors of Austro Control. The voice utterances 
containing both pilot and ATCo speech in a continuous audio 
stream were automatically split, so that each voice recording file 
contains only one utterance. The automatic splittings of the ut-
terances were manually corrected. Each file was then automati-
cally transcribed, and finally manually checked. The transcrip-
tions were automatically annotated, and parts of these annota-
tions were manually corrected. TABLE XIV shows the amount 
of data being available from this analysis from the three ANSPs. 

TABLE XIV.  AMOUNT OF DATA FOR READBACK ANALYSIS 

ANSP  #Utter-
ances 

# Com-
mands 

Gold Tran-
scriptions [h] 

Annota-
tions [h] 

Annotations 
Gold [h] 

ACG 2694 6635 3.5 3.5 0.5 
Isavia 6744 12,265 7.6 7.6 2.0 
NATS 7656 13,165 7.2 7.2 2.5 

The term “Gold” always refers to manually checked and corrected transcriptions and annotations. 

 

The RED algorithms highly rely on correct callsign detec-
tion. Otherwise the readback may come from the wrong pilot, 
see use case in TABLE VII.  Therefore, we have also analyzed, 
how good the callsign recognition rate is. The callsign recogni-
tion rate is improved by using information from the surveillance 
data specifying which callsigns are currently in the air. Further-
more, the callsign recognition in the readback is improved, if the 
callsign information from the previous utterance is also used. 

We also search for the best matching callsign, if surveillance 
data is provided: if “speed bird two alfa four” is said and only a 
BAW3A4 (speed bird three alfa four) is in the surveillance data, 
then the BAW34A is assumed to be the correct one. The plausi-
bilities of the extracted concepts are, however, decreased, which 
helps to reduce the recognition error rate Eboth of Eq. ). 

The manual transcriptions were used to improve the recog-
nition models. TABLE XV shows the achieved recognition per-
formance for different models. The basic model was developed 
without using any data from the three ANSPs, i.e., the initial 
model, which supported the ANSPs in performing the first man-
ual transcriptions. The first number shows the achieved word er-
ror rate for the ATCo utterances and the second one for the pilot 
utterances. The second model uses roughly two hours of data 
from manual transcriptions to update the language models. The 
third model uses six hours of data from manual transcriptions. 

TABLE XV.  WER FOR ATCO AND PILOT FOR DIFFERENT ASR MODELS 

 ANSP 1 ANSP 2 ANSP 3 
Basic Model 20.4%, 30.3% 13.9%, 31.6% 16.9%, 26.5% 
2 hours of 

domain data 
Not available Not available 15.8%, 26.5% 

6 hours of 
domain data 

9.3% / 17.3% 8.0%/23.3% 11.3%, 22.7% 

Due to data privacy reasons the clear names of the ANSPs are not provided 

In our experiments, conventional bi-phone Convolutional 
Neural Network (CNN) [39] + Factorized Time Delay Neural 
Network (TDNN-F) [40] based acoustic models (AM) trained 
with Kaldi [41] toolkit (i.e., nnet3 model architecture) are used. 
AMs are trained with the LF-MMI [42] training framework con-
sidered to produce state-of-the-art performance for hybrid ASR 
systems. 3-fold speed perturbation [43] and i-vectors are the ba-
sis for all experiments. The 3-gram language model (LM) is 
used. The baseline AM and LM are trained with a combination 
of air-traffic command-related databases: NNMATC, HIWIRE, 
ATCOSIM, AIRBUS, and MALORCA [44] to [49]. 

In order to improve the baseline system, we perform LM ad-
aptation [50] in two iterations. In the first iteration, roughly two 
hours of manual transcriptions available were split into develop-
ment set (1h 20min) and test set (40 min). The development set 
was then used to build a 3-gram LM and interpolated with LM 
used in the baseline model. The results are shown in TABLE XV 
in row “2 hours of domain data”. In the next iteration, six hours 
of manual transcriptions were available which were used to train 
a 3-gram LM, which was then interpolated with the baseline 
model, see last row in TABLE XV. 

The gold transcriptions were used to analyze the ATCo-pilot 
conversation with respect to readback relevant information. We 
analyzed from the automatic annotations, how often the first, 
second, third, etc. utterance of an ATCo-pilot conversation con-
tains the callsign. When ATCo or pilot start a communication, 
they nearly always provide their callsign. Otherwise ATCo or 
pilot would not know who is speaking or who is being addressed. 

TABLE XVI.  CALLSIGN AND UNIT PROVIDED IN [%] 

A = ANSP A 1 A 2 A 3 
ATCo utterance without callsign 15% 12% 8% 
Pilot utterance without callsign 19% 10% 6% 
ATCo utterance without unit 3% 20% 5% 
Pilot utterance without unit 26% 42% 26% 
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The results in TABLE XVI show that the callsign is not al-
ways said by both the ATCo and the pilot. This is especially true 
when they answer immediately. Therefore, a good callsign 
recognition is very important. They need to be extracted in the 
first utterance. These numbers are confirmed in TABLE XVII 
by the data recordings used during the MALORCA and SESAR 
project 16-04-ASR for Prague and Vienna airports, respectively. 
MALORCA data results from recordings from the operational 
environment whereas 16-04-ASR recordings result from the la-
boratory environment for both Vienna and Prague, respectively.  
In the operational environment, Prague ATCos omit the callsign 
in about 5.2% of 3,400 utterances, related to issuing significant 
commands. In 4.4% of the ops room utterances the callsign was 
used without a following command. In lab environment Prague 
ATCos used no callsign in 0.9% of the utterances with at least 
one valid command. Similar rates were observed for Vienna. 
The percentage of words used in an utterance, which are not used 
for command extraction or could not be classified are provided 
in the last row. These results show that the used phraseology in 
the laboratory, when ATCOs are aware of the speech recognizer, 
is less complex, than in the operational environment. 

TABLE XVII.  NO CALLSIGN SAID IN OPS-ROOM AND IN LAB-ENVIRONMENT  

 Prague Vienna 
Ops Lab Ops Lab 

NO_CALLSIGN with commands 5.2% 0.9% 2.0% 0.9% 
NO_CALLSIGN NO_CONCEPT 4.4% 2.2% 3.4% 0.3% 

Words unused for semantic extraction 10% 1.2% 12% 4.3% 

 

The HAAWAII project has decided in its Operational Con-
cept Document [51], [52] in cooperation with the International 
Federation of Air Traffic Controllers’ Associations (IFATCA) 
that a missing unit (e.g., feet, flight level, knots) in a readback 
should be marked as a readback error. The numbers highlighted 
in yellow in TABLE XVI, however, show that this would result 
in at least one reported readback error per minute. The results 
also indicate the more the ATCo deviates from the ICAO rules, 
the more the pilot is also ignoring units. 

VII. FIRST RESULTS 

The previous sections have shown that a moderate (com-
bined) command recognition rate Rboth is necessary, but a very 
low (combined) command recognition error rate Eboth is of deci-
sive importance for having low false alarms rates. 

Although the callsign is not provided in each utterance, 
callsign recognition quality is of decisive importance for read-
back error detection. Therefore, TABLE XVIII provides first re-
sults for different callsign recognition heuristics. The callsign 
recognition rate (CsR) is the number of correctly recognized 
callsigns including “NO_CALLSIGN” divided by the number 
of all used callsigns in all utterances. The callsign recognition 
error rate (CsE) is the number of wrongly recognized callsigns 
divided by all callsigns. A given callsign which is recognized as 
NO_CALLSIGN is not counted as an error, but as a callsign re-
jection. 

The manually transcribed utterances were automatically an-
notated using the callsigns from the corresponding surveillance 
data. Parts of them were manually checked. The rates CsR and 
CsE, which are provided in rows “gold callsign info”, are count-
ing only the utterances, which result from manually checked 
files. It should be clear that the real rates CsR and CsE are lower 
than the results in row “gold callsign info”, when manually 

checking is performed for more extraction. Nevertheless, al-
ready these automatic extractions enable to evaluate the bene-
fits of additional training data and of using callsign information. 
It shows that the current implementation of callsign extraction 
from manual transcriptions correctly extracts most of the 
callsigns. The rows “gold no callsign info” show that the recog-
nition performance degrades, if no callsign information from the 
surveillance data is provided. The callsign BAWA3CC as an ex-
ample is not recognized any more from the utterance “three char-
lie charlie continue present …”.  

TABLE XVIII.  CALLSIGN RECOGNITION PERFORMANCE IN [%] 

A = ANSP A 1 A 2 A 3 
CsR/E gold callsign info 99 / 0.5 99 / 0.5 99 / 0.5 

CsR/E gold no callsign info 84 / 12 75 / 15 84 / 6 
CsR/E Sp2T callsign info, 0 hours 78 / 16 65 / 28 67 / 17 

CsR/E Sp2T no callsign info, 0 hours 53 / 27 38 / 39 37 / 30 
CsR/E Sp2T callsign info, 2 hours 

No data available 
73 / 16 

CsR/E Sp2T no callsign info, 2 hours 44 / 27 
CsR/E Sp2T callsign info, 6 hours 95 / 3 No 

data 
85 / 10 

CsR/E Sp2T no callsign info, 6 hours 79 / 13 60 / 19 

 

The following rows with “Sp2T” show the performance of 
the command extraction of the different Speech-To-Text en-
gines from TABLE XV for the cases, when callsign information 
is used (“Sp2T callsign info”) or not used ("Sp2T no callsign 
info”) for the command extraction. With increasing the amount 
of ANSP dependent domain data the extraction performance in-
creases, i.e., as expected the command extraction performance 
correlates with the performance of the acoustic and language 
model of the ASR system. At the end of the HAAWAII project, 
HAAWAII intends to benefit from roughly 1,000 hours of 
mostly non-transcribed training data. 

The following TABLE XIX shows the results, when the full 
command and not just the callsign is considered. 

TABLE XIX.  COMMAND RECOGNITION PERFORMANCE IN [%] 

A = ANSP A 1 A 2 A 3 
CmdR/E gold callsign info 99 / 0.6 99 / 1.2 100 / 0 

CmdR/E, gold no callsign info 83 / 5 79 / 9 84 / 10 
CmdR/E Sp2T callsign info 59 / 9 40 / 15 51 / 18 

CmdR/E Sp2T no callsign info 41 / 16 23 / 24 29 / 29 
CmdR/E Sp2T callsign info, 2 hours No data  

available 
54 / 17 

CmdR/E Sp2T no callsign info, 2 hours 33 / 27 
CmdR/E Sp2T callsign info, 6 hours 86 / 5 

No data 
69 / 12 

CmdR/E Sp2T no callsign info, 6 hours 72 / 10 49 / 23 

 

Although no results with respect to readback error detection 
rate and false alarm rate are available yet, the results again show 
that using an Assistant Based Speech Recognition (ABSR) [37], 
dramatically improves both – command recognition rate and 
command recognition error rate. ABSR uses an assistant system 
to provide system dependent callsign information and predict 
possible commands that the ATCo may give in the near future. 
The ABSR improvements are observed for both callsign recog-
nition and also for recognizing the whole command. Using ad-
ditional six hours of transcribed recordings from the correspond-
ing airport increase recognition rates for the whole command 
and for the callsign by only 20% absolute. Currently, the 
HAAWAII project has recorded more than 500 hours of silence 
reduced voice data. Further improvements with respect to word 
error rates and command recognition rates can be expected.  
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VIII. CONCLUSIONS AND NEXT STEPS 

The presented readback error use cases clearly demonstrate 
that readback error detection on word level cannot be successful. 
More than 95% of the analyzed ATCo utterances contain a unit, 
(e.g., feet or knots), whereas less than 75% of the pilot utterances 
contain them. Instead, an abstraction of the recognized words to 
ATC concepts consisting of callsigns, command types, com-
mand values, etc. is necessary. 

User acceptance of a readback error assistant system requires 
a low false alarm rate. Assuming a readback error rate of 2%, we 
show that a moderate command recognition rate would be suffi-
cient. The error rate on command level, however, must be very 
low, i.e., an error rate of less than 0.5%, is required, if a readback 
error false alarm rate below 10% is intended. This either requires 
redundant, but at least partly independent readback error detec-
tion algorithms, or plausibility values or using context infor-
mation from the corresponding surveillance data. Our current 
implementation based on only six hours of voice utterances from 
pilots and ATCos enables word error rates of 20% and 10%, re-
spectively, which will be improved by integration of Assistant 
Based Speech Recognition. Nevertheless, using callsign infor-
mation reduces the command recognition error rate by more than 
5% absolute for each of the investigated airspaces from Isavia, 
NATS, and Austro Control. 

Although the current implementation resulting from the first 
nine months of the HAAWAII project does not yet achieve the 
required false alarm rates, the reported results already show the 
direction of future work, and may help other research teams to 
benefit from. A joint approach will be needed so that ASR per-
formance can increase ATM safety resulting from automatic 
readback and hearback error detection. 
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