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ABSTRACT
The paper presents a study of usability of x-vectors for adap-
tation of automatic speech recognition (ASR) systems. X-
vectors are Neural Network (NN)-based speaker embeddings
recently proposed in speaker recognition (SR). They quickly
replaced common i-vectors and became new state-of-the-art
technique. Here, the same approach is adopted for ASR with
the hope of similar outcome. All experiments were done on
ASR for the latest IARPA MATERIAL evaluation running on
Pashto language. Over 1% absolute improvement was ob-
served with x-vectors over traditional i-vectors, even when
the x-vector extractor was not trained on target Pashto data.

Index Terms— speech recognition, adaptation, x-vectors,
data augmentation, robustness

1. INTRODUCTION

Deep Neural Network (DNN) adaptation is an important tech-
nique in most of the state-of-the art automatic speech recog-
nition (ASR) systems as it allows to “adapt” the DNN model
to particular conditions such as channel, noise, and speaker.
Moreover, model adaptation is crucial in training/test data
mismatch. On contrary to classical Gaussian Mixture Mod-
els (GMM), the adaptation of DNN is more difficult due to
huge number of independent parameters. Several methods
have been proposed in tha past: Constrained adaptation adds
a regularization term (for example KL-divergence [1]) into
training on target adaptation data. Feature normalization con-
siders NN as a black-box and leverages on independent fea-
ture processing to suppress the mismatch. Common feature
normalization and enhancement approaches adopted from the
GMM-based ASR can be used as well, such as cepstral mean
normalization or Constrained Maximum Likelihood Linear
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Regression (CMLLR) [2]. Structured DNN Parameterization
imposes adaptable structures in the DNN hidden layers with
a relatively small number of adaptation parameters associated
with a speaker and/or noise type; notable examples are Lin-
ear Hidden Unit Contribution (LHUC) [3], or Cluster Adap-
tive Training (CAT) for DNN [4]. Currently, the most com-
mon adaptation method—Feature augmentation— fits into
this last category. It incorporates a compact representation of
speaker or noise information into a fixed-dimensional vector
appended to the input features. The i-vectors [5] are nowa-
days commonly used for this task.

The i-vectors are speaker embeddings developed origi-
nally for speaker recognition (SR). They provide an elegant
way of encoding a sequential input with variable length into
a single vector with fixed-dimension. The i-vectors became
state-of-the-art in SR and quickly found a way into ASR.
The first attempt incorporated i-vectors as additional input
features to discriminatively trained Region Dependent Linear
Transform (RDLT) for GMM-HMM (Hidden Markov Mod-
els) ASR system [6]. Soon after, input feature vectors were
augmented by i-vectors also for DNN-HMM [7] ASR systems
with promising results. Later [8], the optimal size of i-vectors
for ASR stabilized on 100-dimensional vector on contrary to
SR, where 512 dimensions are commonly used. Further mod-
ifications have shown positive effect of online i-vector extrac-
tion on the ASPiRE challenge data [9].

The i-vectors are estimated in Maximum Likelihood fash-
ion using a Universal Background Gaussian Mixture Model
(UBM-GMM), therefore, there have been numerous efforts to
use NNs to generate discriminatively-trained speaker embed-
dings. The main problem for NN-based speaker recognition
systems were variable-length feature sequences, while com-
mon NN classification structures expected fixed-length fea-
ture vectors. Recently proposed x-vectors [10] have solved
this problem in an elegant way by introducing a “statistical”
layer. This layer typically sits close to the end of the NN pro-
cessing pipeline, and is followed by a standard dense layer
and a softmax layer with speakers IDs as targets. The statisti-
cal layer aggregates frame-level representations and produces
a single set of statistics (means and variances) for the whole
speech segment. These statistics are mapped into single vec-
tor — an x-vector — which serves as speaker embedding for
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further processing.
Recent attempts of using the x-vectors as the embeddings

for adaptation of ASR systems [11, 12] showed only slight or
no improvement of performance. In this paper, we provide a
detailed analysis of suitability of x-vectors for ASR adapta-
tion, and we show significant gain over standard i-vectors.

Initial experiments in section 3.1 run with stand-alone x-
vector extractor implemented by Phonexia and trained on pro-
prietary data. Next, in section 5.3, we analyze suitability of
various publicly available data for x-vector extraction.

2. DATA

All experiments run on Pashto as part of IARPA MATERIAL
evaluations1. The main task of this project is Cross Lingual
Information Retrieval (CLIR) for low resource languages;
the goal is measuring relevance of an English query in target
Pashto speech recordings (note, that part of the target data
are also text documents, which are not used in this work).
Consequently, the system involves a complicated pipeline
incorporating various ASR, machine translation and infor-
mation retrieval. This paper covers only the ASR part of the
MATERIAL system.

Speech recognition training data (build train) from BA-
BEL project [13] Pashto collection is used for acoustic model
training. 110 h of speech in this set consist mainly of conver-
sational telephone speech with small portion of scripted read
speech. On contrary to BABEL project, where target data
was coming mainly from matched telephone conversations
[13], target MATERIAL recordings are from three different
sources: Conversation Speech (CS, 1.8 h), Topical Broadcast
(TB, 11.0 h) and News Broadcast (NB, 3.7 h), 16.5 h in to-
tal. Therefore, a significant part of the target data is non-
conversational broadcast speech naturally causing data mis-
match.

x-vector extractor training data: low amount of speaker
recognition Pashto data led us to analyzing language depen-
dency and multilingual approaches to create x-vector training
data. We considered the following data-sets:

• Mult v1 (40k recordings from 20k speakers): 6 lan-
guages: Swahili, Tagalog, Somali (MATERIAL collec-
tion), Dholuo, Zulu, Igbo (BABEL collection).

• Mult v3 (204k recordings from 40k speakers): 27 lan-
guages: Swahili, Tagalog, Somali, Bulgarian, Lithua-
nian (MATERIAL collection), Pashto, Cantonese,
Asamese, Bengali, Turkish, Vietnamese, Haiti, Lao,
Tamil, Kurdish, Zulu, Tok Pisin, Cebuano, Kazach,
Telugu, Guarani, Igbo, Amharic, Mongolian, Javanese,
Dholuo, Georgian.

• sre v0 (91k recordings from 7k speakers): NIST
Speaker Recognition Evaluation (SRE) data from

1https://www.iarpa.gov/index.php/
research-programs/material

Layer Layer Type Context Size

1 TDNN-ReLU [t− 2, t+ 2] 512
2 Dense-ReLU t 512
3 TDNN-ReLU [t− 2, t, t+ 2] 512
4 Dense-ReLU t 512
5 TDNN-ReLU [t− 3, t, t+ 3] 512
6 Dense-ReLU t 512
7 TDNN-ReLU [t− 4, t, t+ 4] 512
8 Dense-ReLU t 512
9 Dense-ReLU t 1500
10 stats (mean+stddev) whole segm. 2 × 256

Table 1. Architecture of Extended-TDNN based speaker em-
bedding extractor.

2004–2010, Mixer 6, Switchboard 2 (phases 1, 2, 3),
Switchboard Cellular.

• phx v0 (116k recordings from 4k speakers): in-house
Phonexia data from various sources, mostly non-
English.

• vceleb (1.2M short recordings from 7k speakers) from
VoxCeleb 1 and 2 [14].

Note, that all wide-band data was down-sampled to 8kHz to
be consistent with telephone conversations.

3. X-VECTOR EXTRACTOR

All x-vector extractors presented in this paper are based on
Extended-TDNN architecture (see table 1) proposed in [15],
having superior SR performance than the original TDNN ar-
chitecture [10].

The rest of training pipeline follows Kaldi toolkit [16]
SRE recipe (egs/sre16/v2/run.sh):

1. feature extraction is based on 23 dimensional Mel-
Filter Cepstral Coefficients (MFCC).

2. voice activity detection is based on energy detector.
3. data augmentation leverages RIR and MUSAN datasets2.

It creates 4 augmented versions of the original data by
(1) adding reverberation (convolution with RIRs); (2)
adding noise (MUSAN); (3) adding music (MUSAN);
and (4) adding background speech. The augmented
data is randomly sub-sampled by factor of two, and
original data is appended, therefore, the final training
data has 3× the size of the original data.

4. x-vector training.

Note, that the limit for minimum number of recordings per
speaker is switched off when using ASR training data, where
it is common to have just one recording per speaker.

2http://www.openslr.org
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3.1. Phonexia x-vector extractor

Phonexia x-vector extractor is taken for the initial experi-
ments due to its simplicity and easiness of use. It is a single
binary generating speaker based x-vector for each record-
ing. In addition, it can produce a continuous x-vector stream
based on floating window. It operates inside 5s (our case)
windows producing output every 100 ms (10 frames). In
case of no voice activity, it repeats the last active x-vector.
These discontinuities can create long stable parts which can
have negative effect on adaptation performance, therefore we
also analyzed online x-vectors without voice activity detector.
Phonexia extractor used in this work was trained using above
recipe on sre v0+phx v0 data.

3.2. Baseline i-vector extractor

Standard 100 dimensional online i-vectors [9] were estimated
as a baseline. The features were the same as for final acoustic
models (40-dimensional MFCC - see section 4). We also ex-
perimented with multilingual and speaker-based i-vectors for
better comparison with x-vectors.

4. HYBRID ACOUSTICS MODELS

All experiments run with hybrid DNN-HMM ASR trained
with the Kaldi toolkit. Factorized Time Delay NN (TDNNf)
architecture [17] with convolutional layers (CNN) was se-
lected as it was showing similar performance to more com-
plicated recurrent NN types including those based on Long-
Short-Term Memory (LSTM) cells.

Our 6CNN-9TDNNf architecture contains 6 CNN layers
(64, 64, 128, 128, 256, 256 filters in L1, L2, . . . , L6) followed
by 9 TDNNf layers each with 1536 neurons, and bottle-neck
factorization to 160 dimensions with stride 3.

The feature extraction is based on 40-dimensional MFCC,
where inverse cosine transform is applied before the input of
the NN. It re-creates Mel-filter bank outputs more suitable for
further CNN processing. The adaptation vectors are trans-
formed by affine transform to 200 dimensions. Both feature
streams are concatenated and serve as CNN input. NNs are
trained with Lattice Free Maximum Mutual Information (LF-
MMI) objective and bi-phone targets as suggested in [18].

5. RESULTS

5.1. Language Model

The output lattices are generated with automatic segmenta-
tion. The decoding uses a smoothed 3-gram language model
(LM) estimated by linear interpolation from various text
sources: build train data transcriptions (1 MWords), ma-
chine translation training data (0.9 MW), data crawled from
wikipedia (3 MW) and other general sources (224 MW),
see [19] for details on LM data creation.

x-vector mode analysis WER [%]
Total CS TB NB

none none 47.0 46.0 49.5 40.3
i-vectors online 46.2 44.8 48.8 39.3

phx speaker 44.5 43.3 46.6 39.0
phx utterance 43.9 44.3 46.1 37.4
phx online 44.5 44.1 46.7 38.1
phx online novad 44.4 44.8 46.2 38.6

Table 2. Phonexia x-vector extractor in various modes.

5.2. Phonexia stand-alone x-vector extractor

Simple use of Phonexia x-vector extractor allowed for direct
testing of suitability of x-vectors for speech recognition. X-
vectors with different time granularities (recording, utterance,
online) were generated and added as adaptation features to the
DNN training. New DNN models were trained and analyzed
in table 2. It clearly shows significant 2.3% absolute gain with
utterance-based x-vectors over standard i-vectors.

The utterance-based x-vectors show better performance
than speaker-based ones due to finer granularity resulting in
a possibility to react on speech variations during the record-
ing. Unfortunately, no positive effect from online extraction
is observed, probably due to low amount of data for x-vector
estimation. On the other hand, it opens a possibility for online
ASR.

Based on this outcome, the utterance-based x-vectors
were considered for further experiments.

5.3. Training data analysis
Phonexia extractor generalizes well on Pashto data probably
due to significant amount of non-English training data coming
mainly from phx v0 dataset. Unfortunately, this proprietary
data makes results non-reproducible, therefore it is removed
from further experiments.

We are interested in lowering data mismatch and in pro-
ducing robust embeddings suitable for ASR. Here, keep-
ing channel information could be important on contrary to
speaker recognition task.

Considered data-sets for the following experiments can be
categorized with the following attributes:

• Multilinguality - Mult v1, Mult v3 - multilingual train-
ing sets including even matching language (Pashto)
data (Mult v3). We routinely use this data for multilin-
gual ASR training [20]. It is not suitable for SR due to
low number of recordings per speaker, but it could fit
well in case of language mismatch.

• Channel - vceleb - VoxCeleb data consisting of audio
extracted from video recorded originally in wide-band.
The embeddings should fit better to target channel than
those trained on telephone data, although vceleb was
down-sampled to 8kHz.
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x-vector data analysis WER [%]
Total CS TB NB

Pashto i-vectors 46.2 44.8 48.8 39.3
sre v0 i-vectors 47.0 45.3 49.1 41.9

Mult v1 (speaker mode) 46.9 43.5 49.3 41.5
Mult v1 45.7 44.6 48.4 38.1
Mult v3 45.0 43.7 47.6 37.9
sre v0 44.1 44.0 46.3 37.9
sre v0 (reco. per spk≥8) 44.3 43.8 46.7 37.6
vceleb 44.9 44.1 47.2 38.3

sre v0 + Mult v3 44.4 43.6 46.7 38.0
sre v0 + vceleb 44.6 44.1 47.0 37.9

Table 3. Utterance-based x-vectors from various datasets.

• Speaker recognition - sre v0 - well balanced data for
speaker recognition. The embeddings should describe
well speaker characteristics.

• Combination of above.

Table 3 shows that having the data well balanced for
speaker recognition is more important than the channel and
multilingual attributes. Even a combination of the data-sets
did not bring any improvement over sre v0.

As a next step, we limited sre v0 training set to have a
minimum of eight recordings for each speaker (as it is com-
mon in x-vector training for SR). It resulted in similar gains
as keeping all the data, with only a small degradation of per-
formance in most conditions.

In addition, we experimented with i-vectors estimated on
sre v0 data for fair comparison with x-vectors. A degradation
compared to i-vector baseline was observed probably due to
i-vector language dependency (these sets consist mainly of
English data).

5.4. x-vector dimensionality
Optimal dimensionality of embeddings for ASR can differ
from SR as the role of the vector is to help the system to adapt
instead of speaker classification. This outcome was observed
for i-vectors already in [8]. To analyze the effect of dimen-
sionality, x-vector extractors with various sizes of statistical
layer were trained on sre v0 data. Table 4 presents no gains
by reducing the layer size. This is probably caused by forcing
the NN to squeeze information needed for speaker classifi-
cation (NN target classes) into too narrow bottle-neck. This
may result in high suppression of channel information that is
useful for ASR adaptation.

6. FINAL EVALUATION SYSTEM

Various speech recognition system improvements were ex-
plored in parallel to this x-vector analysis. Consequently,
the final system for MATERIAL evaluation, run in summer

x-vector dim analysis WER [%]
Total CS TB NB

sre v0 - 1024 44.5 44.1 46.9 37.5
sre v0 - 512 44.1 44.0 46.3 37.9
sre v0 - 256 45.3 44.0 48.0 38.0
sre v0 - 100 45.3 44.6 47.7 38.4

Table 4. Various sizes of x-vector statistical layer.

System x-vector analysis WER [%]
Total CS TB NB

CNN6-9TDNNf i-vector 37.0 43.2 37.6 32.0
CNN6-9TDNNf Mult v3 36.1 42.0 36.7 31.1
CNN6-19TDNNf Mult v3 35.6 41.1 36.2 30.9

+ specaug Mult v3 35.2 41.2 35.8 30.3
CNN6-19TDNNf sre v0 35.0 41.8 35.4 30.4+ specaug

Table 5. Final evaluation systems.

2020, required complex re-training. In addition to x-vectors,
the following enhancements are added: multilingual pre-
training [20], new broadcast news Pashto data, increasing
number of TDNNf layers from 9 to 19, wide-band feature
extraction, spectral augmentation [21], Recurrent Language
Model (RNN-LM) [22], and sequence Minimum Bayes Risk
(sMBR) training [23]. Only the most important results
with x-vectors are shown in table 5. Here, all raws shares
wide-band training, multilingual pre-training, further training
with sMBR criteria and RNN-LM rescoring. It shows 0.9%
gain by “Mult v3” x-vectors over i-vectors on traditional
6CNN-9TDNNf architecture. Next, 0.2% additional gain
from “sre v0” x-vectors is observed on enhanced architecture
with more layers and spectral augmentation.

7. CONCLUSION

The paper presents the first attempt to adopt x-vectors as
adaptation vector for speech recognition acoustic model. Ex-
tensive analysis shows suitability of this technique for low re-
source ASR even if the target language is not part of x-vector
training data. The x-vectors trained on sufficient amount of
well balanced telephone data show robustness to channel and
language mismatch. They overcome baseline i-vectors by
impressive 2% absolute gain. The obtained improvements are
persistent when a significantly more complex ASR system is
used.
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