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1Brno University of Technology, Faculty of Information Technology, Speech@FIT, Czechia
2Saarland University, Saarbrücken, Germany

3Idiap Research Institute, Martigny, Switzerland
4Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

ikocour@fit.vutbr.cz, iveselyk@fit.vutbr.cz

Abstract
Contextual adaptation of ASR can be very beneficial for multi-
accent and often noisy Air-Traffic Control (ATC) speech. Our
focus is call-sign recognition, which can be used to track con-
versations of ATC operators with individual airplanes. We
developed a two-stage boosting strategy, consisting of HCLG
boosting and Lattice boosting. Both are implemented as WFST
compositions and the contextual information is specific to each
utterance. In HCLG boosting we give score discounts to in-
dividual words, while in Lattice boosting the score discounts
are given to word sequences. The context data have origin in
surveillance database of OpenSky Network. From this, we ob-
tain lists of call-signs that are made more likely to appear in
the best hypothesis of ASR. This also improves the accuracy
of the NLU module that recognizes the call-signs from the best
hypothesis of ASR.

As part of ATCO2 project, we collected liveatc test set2.
The boosting of call-signs leads to 4.7% absolute WER im-
provement and 27.1% absolute increase of Call-Sign recogni-
tion Accuracy (CSA). Our best result of 82.9% CSA is quite
good, given that the data is noisy, and WER 28.4% is relatively
high. We believe there is still room for improvement.

Index terms: Air Traffic Control, Automatic Speech Recogni-
tion, Contextual Adaptation, Call-sign Recognition, Call-sign
Detection, OpenSky Network.

1. Introduction
The purpose of aviation call-signs is to identify airplanes in Air
Traffic Control (ATC) procedures. Many ATC messages are
currently conveyed by voice over noisy VHF channel. If we had
perfect call-sign recognition, we could easily track conversa-
tions of pilots with ATC operators in the shared audio channel.
The tracking would be useful for post-analysis of recordings, or
possibly for real-time ATC systems of the airports.

Recently, call-sign detection was an evaluation task in Air-
bus Air Traffic Control challenge [1, 2]. We redefined the task
from detection to call-sign recognition, as we recognize the
ICAO call-sign codes (e.g. TVS123AB) from the best ASR
hypothesis. Then, the call-sign code can be directly interfaced
to radar or other system. From the perspective of our paper,
the call-sign recognition module is a black-box, and we focus
on improving ATC-ASR (i.e. ASR for ATC data) by leveraging
contextual information. The context we use are call-sign lists
for given location and time, and these lists are queried from
OpenSky Network (OSN) database [3, 4].

Several works are addressing the use of contextual informa-
tion for ATC-ASR [5, 6, 7]. Shore et al. [5] introduced a lattice-
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Figure 1: Topology of WFST graph for boosting of lattices.

rescoring mechanism, penalizing call-signs not present in the
current radar situation. Schmidt et al. [6] built a grammar-based
ASR, in which the search-space is limited to all command-
predictions for actual radar situation. The context adaptation
is continuous and integrated with on-line ASR. Later, in [7]
Oualil et al. compare grammar-based and n-gram-based lan-
guage modelling in ASR, showing n-grams as better. The n-
grams cover well the irregularities of real ATC speech. Again,
the context adaptation is continuous, and Weighted Levenshtein
Distance algorithm is used to select command prediction closest
to the ASR output. These works inspired us to focus on contin-
uous adaptation and its integration into ATC-ASR with n-gram
language models.

Otherwise, a significant inspiration for our Lattice boost-
ing was the work on composition-based on-the-fly rescor-
ing [8], where rapid rescoring is done on unpruned pseudo-
deterministic word-lattices. LM weights are adjusted for a small
set of n-grams representing contextual information. Later, in
rescoring-aware beam search [9], a secondary larger beam was
introduced into the decoder generating lattices. The secondary
beam is applied to the context represented as n-grams that are
later biased by rescoring. The purpose is to reduce a chance
that the context is pruned-out in the lattice generation. With the
very same motivation, we introduce our on-the-fly HCLG graph
boosting. Here, the score discounts are given to single words
relevant to the context. Our technique is simpler to implement.

2. Call-sign boosting in ASR system
As call-sign recognition has many practical use-cases for pro-
cessing ATC data, we focus on improving Call-Sign recognition
Accuracy (CSA). We improve CSA by targeted boosting of cer-
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tain words, or word-strings. We give them score discounts into
language model scores, which is done by means of WFST com-
position [8]. The boosted expressions are thus made more likely
to appear in the best hypothesis of ASR. This approach is nat-
ural for Weighted Finite State Transducer (WFST) based ASR
systems. And Kaldi [10] ASR systems do use OpenFst [11] for
representing WFSTs.

The composition is done with a boosting graph that holds
score discounts. The original language model log-scores are
still used in the decoding process, as the score discounts are
added as their offsets.

The boosting graph is distinct for each utterance, so we
have to be aware that composition can easily become a com-
putationally demanding operation. The complexity of WFST
composition depends on numbers of states in the two operands,
the number of outgoing arcs from states and a degree of non-
determinism1.

2.1. Obtaining the call-sign lists

For boosting, we need lists of candidate call-signs, which are
capturing the short-term traffic situation. These can be obtained
in a dynamic way from a radar system, or in a static way from
a historical database of traffic monitoring. Our partner in the
ATCO2 project - OpenSky Network - provides an access to its
database of surveillance data [3]. The surveillance data are col-
lected from ADS-B receivers operated by a network of volun-
teers. The queries for call-sign lists are bounded both spatially
and with a time-frame [12].

For evaluation sets from HAAWAII project, we use call-
sign lists from radar system of the airport.

2.2. Verbalizing a call-sign

An example of the original ICAO call-sign code format from
the lists is: TVS123AB. This can be verbalized in several ways.
Our verbalization is an extension of ICAO standard [13]:

skytravel one two three alfa bravo
skytravel three alfa bravo
skytravel alfa bravo
skytravel one alfa bravo
skytravel one two bravo
tango victor sierra one two three alfa bravo
one two three alfa bravo
three alfa bravo
alfa bravo

The translation TVS -> skytravel is done according to
a look-up table of airline designators. The rest of the code
should be read as isolated numbers, and the suffix of let-
ters is ‘spelled’ with ICAO alphabet. Shortening right af-
ter the airline designator is possible. Spelling of TVS with
ICAO alphabet is also acceptable in the standard. Some
common non-standard variations include shortening the air-
line designator lufthansa -> hansa, or omitting it if
the situation is not ambiguous. We support also other non-
standard call-sign shortenings, and number expansions of type
777 -> triple seven. Airplanes not serving in airlines
have registration number as a call-sign. The registration has a
prefix that encodes country, which is spelled by ICAO alphabet
(e.g. OK for Czech Republic, or HB for Switzerland).

1http://www.openfst.org/twiki/bin/view/FST/
ComposeDoc
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Figure 2: Topology of WFST graph for boosting the recognition
network HCLG.

2.3. Lattice boosting

The lattice boosting is done as composition:

L′ = L ◦B , (1)

where L is the original lattice, and B is boosting graph. The
boosting graph B is specific for each utterance.

The toy-example boosting graph in Figure 1 has a lower part
with all the words in a lexicon on parallel arcs. This ensures
no word sequence being dropped from the original lattice by
the composition. There is also a phi input symbol #0 on the
‘entrance’ arc to the lower part. The upper part encodes word
sequences of call-signs, the score discounts -4 or -6 are on word
links. We intended to experiment with a combination of per-
word and per call-sign score discounts. The phi symbol allows
entering lower part only if the sub-path cannot be matched by
the upper part of boosting graph.

The composition is run in batch mode for whole test-set,
but it could be also done on-line after finalizing the lattice.
The composition is fast because both the lattices and boosting
graphs are relatively small.

The word sequence must be present in the lattice in order to
be boosted. The Lattice Oracle WER is computed from lattice-
path that is closest to the correct transcript, and the oracle align-
ments can hint us of problematic words.

2.4. HCLG boosting

The HCLG boosting is done as composition:

HCLG′ = HCLG ◦B , (2)

where HCLG 2 is the pre-compiled recognition network, and
B is another type of boosting graph. The HCLG′ graph is used
for lattice-generation, and the boosting graph B is again specific
for each utterance. The composition of B with HCLG graph
is done on-the-fly immediately before initializing the decoder.

The toy-example boosting graph in Figure 2 boosts individ-
ual words. In the figure it is c s a and brno which get the
score discount -3, other words have no discount. Also, note the
<eps> back-link into state 0.

The purpose of HCLG boosting is to decrease the Lattice
Oracle WER, so that the recall of call-signs in Lattice boosting
increases. And, by boosting more call-signs in lattices, the final
WER improves as well.

In the HCLG graph, we cannot boost word-strings as in case
of using graph from Figure 1. The composition would be pro-
hibitively slow, about 5 minutes per composition. By simplify-
ing the boosting graph to topology from Figure 2, we already

2HCLG is composed from ‘H’ with HMM topology, ‘C’ for context
dependency, ‘L’ with lexicon and ‘G’ for language model (grammar),
more info in https://kaldi-asr.org/doc/graph.html
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Table 1: Audio databases for training the ASR models.

database hours accents ref.

AIRBUS 38.9 French [14]

HIWIRE 28.7 French, Greek,
Italian and Spanish

[15]

LDC ATCC 26.2 American English [16]

MALORCA 7.9 Austrian German [17, 18]

N4 NATO 10.7 Canadian, German,
Dutch, British

[19]

ATCOSIM 10.7 German, Swiss
German + French

[20]

UWB ATCC 13.2 Czech [21, 22]

Total sum: 136.3

Table 2: Audio data for testing ASR and Call-sign recognition.

test-set hours description

airbus dev 1.03 custom held-out set from Airbus
challenge data, mostly from ‘lfbo’
airport, both operator and pilot
speech

malorca vienna 1.93 test-set from project MALORCA, Vi-
enna airport ‘loww’, no pilot speech

liveatc test set2 0.88 our own collection and manual tran-
scription of LiveATC data, mostly
Zurich airport ‘lszh’ plus some
‘eidw’ and ‘katl’, contains operator
and pilot speech, some parts are noisy

haawaii bikf
haawaii egll

5.31
6.85

data from HAAWAII project, Ke-
flavik airport ‘bikf’ and London
Heathrow ‘egll’, both operator and
pilot speech, ‘egll’ has more noise

got an affordable increase of processing time of 20-30% on top
of lattice-generation time.

We also apply epsilon-removal on B, prior to the composi-
tion, which reduces the composition run-time. In fact B could
be a single state WFST right from the beginning, the second
state is added for easier visualisation.

We believe that only rare, context-specific, individual words
should be boosted in HCLG boosting. As we focus on call-sign
recognition, we are boosting only the airline designator code-
words like skytravel, c_s_a or air_berlin.

An alternative strategy to HCLG boosting would be
to boost the G.fst and do the on-the-fly composi-
tion with HCL.fst graph as is done in Kaldi tool
nnet3-latgen-faster-lookahead. The cascade of
on-the-fly compositions HCL◦ (G◦B) would introduce some
latency too. We will consider exploring this possibility as a
follow-up work.

3. Experimental setup
3.1. Audio databases

For training the ASR, we pre-processed 7 audio databases of
English ATC audio data, see Table 1. Various accents are
present. Some data are from simulated scenarios (HIWIRE,
N4 NATO, ATCOSIM), while other audio is from real traffic.

Table 3: Simulating deployment of ASR to ‘malorca vienna’ as
a ‘new’ airport, WER% results.

Training data liveatc test set2 airbus dev malorca vienna

with malorca 33.1 8.3 4.7
w/o malorca 35.1 8.4 8.9

Table 4: Effect of tuning the beam-width for ‘lattice boosting’
and ‘HCLG + lattice boosting’, data-set liveatc test set2.

WER% Lattice Oracle
Beams baseline lattice HCLG+lat baseline HCLG

boost boost boost

b=10, lb=5 32.9 31.2 30.2 21.4 19.8
b=15, lb=8 33.1 30.0 28.8 15.2 13.9
b=20, lb=11 33.0 29.1 28.4 12.0 11.1
b=25, lb=13 33.1 28.9 28.4 11.3 10.7

Particularly the unification of transcripts ended up being a chal-
lenging task.

For testing, we use 5 different sets, see Table 2. The test-
sets differ in quality of signal : ‘airbus dev’, ‘malorca vienna’
and ‘haawaii bikf’ are clean, ‘liveatc test set2’ is quite noisy
and ‘haawaii egll’ contains some moderate noise. Next, ‘mal-
orca vienna’ contains no pilot speech. And further, the airports
from ‘liveatc test set2’, ‘haawaii bikf’ and ‘haawaii egll’ are
not present in training data of our ASR system.

Even though the ATC messages should follow a stan-
dard [13], we had to normalize the transcripts as follows: a) to
use same ICAO alphabet, b) to use only one variant of word-
splits in common expressions (e.g. ‘take off’ ‘take-off’ →
‘takeoff’, ‘flightlevel’ → ‘flight level’, etc.), c) to standardize
the airline designators according to a “correct” table and map
spaces and dashes to underscores (e.g. ‘norshuttle’ ‘nor shuttle’
→ ‘nor shuttle’, or ‘fly niki’ ‘fly niki’ ‘fly-niki‘→ ‘flyniki’).

3.2. Baseline ASR system

We use a ‘hybrid’ speech-to-text recognizer based on Kaldi [10]
trained with Lattice-free MMI [23]. The neural network has 6
‘conv-relu-batchnorm-layer’ convolutional layers followed by
9 ‘tdnnf-layer’ semi-orthogonal components [24]. As usual,
there are two pre-final layers and two output layers: one for
LF-MMI objective, the second for frame cross-entropy objec-
tive. In total, the model has 12.93 million trainable parameters,
and the number of left biphone tied-states is 1680. The input
features are high-resolution Mel-frequency cepstral coefficients
(MFCC) with online Cepstral mean normalization (CMN). The
features are extended with online i-vectors [25, 26].
Lexicon: The positive side of ATC-ASR is that the vocabu-
lary is relatively small compared to general purpose ASR. In
our case, there are 28.4k unique tokens in lexicon, out of that
15.3k are 5-letter waypoints, and 5.2k are airline designators
for call-signs. We tried to create a rich vocabulary in advance
to minimize the OOV problem.

We used Phonetisaurus [27] to build a grapheme to
phoneme model from Librispeech lexicon [28]. We limited the
vocabulary to ATC word-list gathered from 7 training databases,
our test-sets, and some other pre-collected word-lists (airline
designators, waypoints, airports, cities, countries, etc.).

The table of airline designators was prepared from
Wikipedia page3. We cross-checked some items with other pub-

3https://en.wikipedia.org/wiki/List_of_airline_codes
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Table 5: Call-Sign recognition Accuracy % (CSA) and Word Error Rate % (WER) for 4 test sets and 2 types of ASR boosting:
‘Lattice boosting’ and ‘HCLG + Lattice boosting’. The Oracle CSA is calls-sign recognition from ground truth transcripts.

Baseline Lattice boost. HCLG+Lat. boost. Oracle
CSA WER CSA WER CSA WER CSA

liveatc test set2 53.5 33.1 75.6 28.9 80.6 28.4 90.0
malorca vienna 84.4 8.9 86.5 8.1 88.1 7.5 90.5
haawaii bikf - 30.6 - 29.4 - 28.9 -
haawaii egll - 20.8 - 19.3 - 18.8 -

lic databases. Recently, we found an FAA document4, which
could be used in future. The list of European waypoints was
obtained from traffic [29] python project.
Language model: We use 3-gram language model built by in-
terpolating several LMs with SRI-LM [30]. The mixing coeffi-
cients are tuned on entire ‘liveatc test set1’ (i.e. a set different
from liveatc test set2) complemented with a fragment of ‘air-
bus dev’ and ‘malorca vienna’ test-sets. We build one LM from
each training corpus transcripts (except HIWIRE and N4 NATO
whose transcripts have limited variability).

An additional LM for interpolation is built from ‘ex-
tra data’, i.e. a collection of: a) expanded call-signs from OSN
database with 2019 world-wide traffic5, b) all possible runway
number combinations, c) European waypoints in typical idioms,
and d) pre-collected word-lists previously added to lexicon.

4. Results
4.1. Deploying ASR to new airport, simulation

An ideal ATC-ASR system should generalize to a ‘new’ airport.
In practice, the training data come from some airport, and per-
formance for that airport is better than for some ‘new’ airport.
We quantified this effect in Table 3.

By excluding malorca data from the training (acoustic
model, language model and lexicon), the WER nearly doubles
4.7 → 8.9 for malorca vienna test set. For other test sets, the
error rate almost did not change. The malorca data consist of
purely ATC operator speech, and including pilot speech would
further increase the WER. Our boosting experiments are done
with an ASR system that had malorca data excluded, to simulate
the ‘new’ airport scenario.

4.2. Call-sign boosting, ASR performance, tuning beams

Next, we experiment with call-sign boosting. The call-sign
words represent roughly 25% of reference transcript text. We
evaluate Lattice boosting and a cascade of HCLG boosting and
Lattice boosting. The liveatc test set2 is used to tune the beam
widths and values of score discounts.

Table 4 shows a significant improvement 4.7% of WER
(33.1 → 28.4) from the combination of HCLG boosting and
Lattice boosting. If we do only Lattice boosting, the per-
formance gain is little smaller (4.2%). Further widening the
beams can, to some extent, compensate for not doing the HCLG
boosting, but the lattices also grow larger. With ‘lb=8’ the
liveatc test set2 lattices have 12MB, with ‘lb=11’ 89MB, and
for ‘lb=13’ 192MB.

In first column, ‘b=’ stands for --beam and ‘lb=’ for
--lattice-beam. The default values from Kaldi are ‘b=15,
lb=8’. Larger beams lead to better performance, but the system

4https://www.faa.gov/documentLibrary/media/Order/
7340.2J_Chg_1_dtd_10_10_19.pdf

5https://zenodo.org/record/3901482#.X5cK9k_0m_4

becomes slower. We also see the effect of HCLG boosting of
airline code-words on Lattice Oracle WER. The improvements
are ranging from 1.6% absolute for smaller lattices generated
with narrow beams to 0.6% for wide beams.

4.3. Callsign accuracy performance

The ASR output is processed by call-sign recognition module,
which is an End2End neural network that translates text directly
into ICAO call-sign code like TVS123AB. The performance is
measured as Call-Sign recognition Accuracy (CSA). The call-
sign recognizer uses list of candidate call-signs as contextual
information, while it still can synthesize a new call-sign not
present in the list.

In Table 5, we see that WER improvements consistently
translate into CSA improvements. On liveatc test set2 we have
a huge improvement from 53.5 to 80.6. For malorca vienna
the absolute CSA improvement is smaller, nevertheless the gain
from 84.4 to 88.1 removed 60.7% of the gap spanning from
baseline to oracle CSA. For test-sets from HAAWAII project,
we have only WER scores that show consistent improvements.
For evaluation of call-sign recognition, we kept only utterances
where the true call-sign was present also in the traffic monitor-
ing data. This reduces the risk of having a wrong call-sign in
the ground-truth annotation.

5. Conclusions
Inspired by other works on contextual adaptation of WFST-
based ASR systems, we applied a cascade of on-the-fly HCLG
boosting of individual words and Lattice boosting of word se-
quences. The boosted elements appear more likely as part of
the best ASR hypothesis.

We focused on call-sign recognition from air-traffic control
speech. Our boosting improved dramatically both the Word Er-
ror Rate and Call-sign recognition accuracy, especially for noisy
test-set like liveatc test set2 : WER -4.7% absolute, Call-sign
accuracy +27.1% absolute in Table 5. The proposed technique
of giving score discounts to certain words or word sequences in
ASR inference is generic and can be used in other domains.

In future, we plan to extend contextual adaptation to more
types of content, for example waypoints, geographical names,
or frequent expressions in local language.

6. Acknowledgements
We would like to thank to Hartmut Helmke for early feedback
and DLR for providing annotated audio data from HAAWAII
project. The work was supported by European Union’s Horizon
2020 projects No. 864702 - ATCO2 (all auth.) and No. 884287
HAAWAII (BUT and IDIAP). Part of high-performance com-
putation run on IT4I supercomputer and was supported by the
Ministry of Education, Youth and Sports of the Czech Republic
through e-INFRA CZ (ID:90140).

3304



7. References
[1] T. Pellegrini, J. Farinas, E. Delpech, and F. Lancelot,

“The Airbus Air Traffic Control Speech Recognition 2018
Challenge: Towards ATC Automatic Transcription and Call
Sign Detection,” in Interspeech 2019, Graz, Austria, September
2019. ISCA, 2019, pp. 2993–2997. [Online]. Available:
https://doi.org/10.21437/Interspeech.2019-1962

[2] V. Gupta, L. Rebout, G. Boulianne, P. A. Ménard, and J. Alam,
“CRIM’s Speech Transcription and Call Sign Detection System
for the ATC Airbus Challenge Task,” in Interspeech 2019, Graz,
Austria, September 2019. ISCA, 2019, pp. 3018–3022. [Online].
Available: https://doi.org/10.21437/Interspeech.2019-1131

[3] J. Sun and J. M. Hoekstra, “Integrating pyModeS and OpenSky
Historical Database,” in Proceedings of the 7th OpenSky Work-
shop, vol. 67, 2019, pp. 63–72.
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P. Ircing, “Design and development of speech corpora for air
traffic control training,” in Proceedings LREC 2018, Miyazaki,
Japan, May 2018. (ELRA), 2018. [Online]. Available: http:
//www.lrec-conf.org/proceedings/lrec2018/summaries/41.html
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