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Abstract
Recently, extracting speaker embedding directly from rawwave-
form has drawn increasing attention in the field of speaker veri-
fication. Parametric real-valued filters in the first convolutional
layer are learned to transform the waveform into time-frequency
representations. However, these methods only focus on the
magnitude spectrum and the poor interpretability of the learned
filters limits the performance. In this paper, we propose a com-
plex speaker embedding extractor, named ICSpk, with higher
interpretability and fewer parameters. Specifically, at first, to
quantify the speaker-related frequency response of waveform,
we modify the original short-term Fourier transform filters into
a family of complex exponential filters, named interpretable
complex (IC) filters. Each IC filter is confined by a complex
exponential filter parameterized by frequency. Then, a deep
complex-valued speaker embedding extractor is designed to op-
erate on the complex-valued output of IC filters. The proposed
ICSpk is evaluated onVoxCeleb andCNCeleb databases. Exper-
imental results demonstrate the IC filters-based system exhibits
a significant improvement over the complex spectrogram based
systems. Furthermore, the proposed ICSpk outperforms existing
raw waveform based systems by a large margin.
Index Terms: end-to-end speaker verification, raw waveform,
complex neural networks, interpretable complex filters

1. Introduction
Speaker verification (SV) is a process to verify whether an un-
known utterance belongs to its claimed identity. According
to the application scenario, SV can be categorized to the text-
dependent speaker verification (TD-SV) and text-independent
speaker verification (TI-SV) [1]. Since TI-SV has no constraint
of transcripts, compared to TD-SV, it has greater potential in
applications. In this paper, we focus on TI-SV.

As an efficient statistical model, i-vector+PLDA has
achieved great success in TD-SV task [2]. Recently, as deep
learning shows its remarkable success in speech modeling, more
researchers focus on building deep structures [3, 4] or investi-
gating effective objective functions [5, 6] to extract discriminant
speaker representations. Most of these approaches employ hand-
crafted acoustic features, such as log Mel filterbank (Fbank)
and Mel frequency cepstral coefficients (MFCC). One potential
shortcoming of these methods is that, such representations (e.g.,
FBank, MFCC) are data-independent because of predefined and
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fixed feature extraction parameters, which indicates they cannot
be trained forwards specific speech-related task. Additionally,
these features could lose useful acoustic information during the
nonlinear transform, which may lead to a performance bottle-
neck of SV systems.

To mitigate this problem, one natural approach is to learn
the acoustic features automatically as a part of neural network
model. For better incorporating with SV task, the network
should model the vocal tract related characteristics directly from
the raw waveform with a set of learnable filters in the first layer
[7]. Following this pipeline, in [8], a carefully designed convo-
lution neural network (CNN) is used to directly model the raw
waveform. It exhibits good performance on VoxCeleb1 dataset
[9]. In [10], a feature encoder consisting of convolutional lay-
ers with large stride and kernel size is leveraged to deal with
the raw waveform, which obtains a comparable result to start-
of-the-art systems. Although the learned filters outperform the
hand-engineered filters, the training process is unstable and the
interpretability in time and frequency about those structures re-
mains shallow.

To enhance the interpretability, the original convolutional
filters have been modified to learn well-explored acoustic fea-
tures via incorporating prior signal processing knowledge. In
[11], a novel convolution layer composed by parameterized
band-pass filters, named SincNet, is designed to obtain speaker
embedding. Compared to traditional CNN, SincNet takes the
advantages of a parametric model: higher interpretability and
fewer parameters [12]. [13] utilizes power Gabor filter to craft
learnable spectrograms for audio classification task. EachGabor
filter has only two parameters, i.e., center frequency and inverse
bandwidth. The system reaches state-of-the-art performance
on the AudioSet benchmark. Nevertheless, these methods only
consider themagnitude spectrum, while the importance of phase
in the complex-valued spectrogram is neglected.

In this paper, we build upon our previous research [14]
and design a novel complex-valued deep neural network to ex-
tract speaker embeddings with high interpretability, named in-
terpretable complex speaker embedding extractor (ICSpk). The
basic idea is to learn interpretable complex (IC) filters based
on the well-defined short-term Fourier transform (STFT). Ac-
cording to the definition of STFT, the waveform is decomposed
on a set of complex exponential bases, the frequency responses
of which are evenly distributed. However, as [15] points out,
the speaker information is located mostly in the low-frequency
region. Therefore, to distinguish speakers more precisely in
low-frequency region, we propose to learn a new frequency re-
sponse distribution for complex filters in data-driven fashion.
Specifically, the complex exponential bases are implemented
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Figure 1: The illustration of interpretable complex speaker
embedding extractor, which consists of interpretable complex-
convolutional layer, complex speaker encoder. The details of
complex residual block are shown in Figure 2.

as interpretable complex (IC) filters of a convolutional layer.
The frequency component of each filter is set as a learnable
parameter, which is initialized based on the original STFT defi-
nition. These IC filters directly operate on the rawwaveform and
produce a complex-valued time-frequency representation that is
optimized for SV task. With such representation, a dedicated
complex-valued convolutional neural network, which combines
the advantage of both complex neural networks and residual con-
nections, is designed to further extract the speaker information in
complex domain. Extensive experiments are conducted on two
large-scale TI-SV datasets: VoxCeleb [9, 16] and CNCeleb [17].
Results show that the proposed ICSpk consistently outperforms
feedforward methods based on non-adaptive traditional features,
as well as the state-of-the-art raw waveform based methods.

The rest of paper is organized as follows: Section 2 gives a
brief introduction to the SincNet. Section 3 describes the pro-
posed ICSpk in detail. Experimental setup including database
description, training paradigm, and result analysis are described
in Section 4 and 5. Section 6 concludes the paper.

2. Related Work
Standard CNNs operate on the raw waveform by performing
time-domain convolutions between the input waveform and a
set of certain finite impulse response filters [18]. The first layer
of SincNet employs a set of band pass filters implemented by
two sinc functions, resulting in an ideal band-pass filter. The
impulse response 6(C) of the band-pass filter is:

6(C) = 2 52B8=2(2c 52C) − 2 51B8=2(2c 51C) (1)

where the B8=2 function is defined as B8=2(G) = B8=(G)
G , 51 and

52 are learnable parameters, which denote the low and high
cutoff frequency respectively. Note that 52 > 51. Eq.1 in the
frequency domain gives:

� ( 5 ) = A42C ( 5
2 52
) − A42C ( 5

2 51
) (2)

where A42C (·) is the rectangular function. � (·) is the frequency
response. However, SincNet only considers the real-valuedmag-
nitude part of complex-value spectrogram.

Figure 2: Details of the complex residual block. "CLeakyReLu"
is the complex leaky ReLu. "Complex BN" means complex batch
normalization.

3. Interpretable Complex Speaker
Embedding Extractor

In this section, we will describe the proposed complex-valued
system, which directlymodels the raw speech signal, as shown in
Figure 1. At first, we introduce the proposed interpretable com-
plex filter. Then, we describe the complex speaker embedding
extractor.

3.1. Interpretable complex-convolution filter

As mentioned in [11], conventional CNN filters are not as effec-
tive in capturing fundamental acoustic features from raw wave-
form as expected. This is due to the lack of constraint to the
learnable parameters. Intuitively, the frequency response of
the widely-used STFT is evenly distributed. However, most of
speaker-related information lays in low-frequency regions [19].
To take advantage of this characteristic, we redesign the STFT
kernel to emphasise the information in low frequency. Specifi-
cally, a family of IC filters incorporating prior knowledge from
STFT are employed to directly deal with raw waveform and
produce a complex-valued time-frequency representation. The
center frequency of each IC filter is set as the learnable pa-
rameter. Mathematically, an IC filter with learnable real-valued
parameter : is defined as follow:

- [=] =
#−1∑
<=0

G [<]l[= − <]4−8:= (3)

where G [=] is the input rawwaveform, F [=] denotes the window
function with the length # . In this paper, we use the well-known
Hanning window. - [=] is the complex-valued time-frequency
representation of G [=] processed by the IC filters. The IC filters
can be split into real �real and imaginary �imag part, respectively:

�real [=, :] = l[=] cos[:=]
�imag [=, :] = −l[=] sin[:=]

(4)

where the filter length of �real and �imag is decided by the
window function l[=] with the length # , and = ∈ [0, # − 1]
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denotes the time index in window F. The stride of IC filters
makes reference to the hop size in STFT.

3.2. Complex speaker embedding extractor

To consistently work with complex-valued features derived from
IC filters, the most straightforward approach is to concatenate
the real and imaginary parts on the channel axis and then feed
them to the standard (real-valued) speaker embedding extractor.
During this process, the complex multiplication rule is ignored.
The neural networkmay not able to learn the correlation between
the real and imaginary parts. This could limit the performance
of the speaker embedding extractor.

To enhance the interaction between the real and imaginary
parts contained in complex-valued features, we redesign the con-
volutional layers, activation functions and normalization within
the residual blocks of speaker embedding extractor to handle the
complex domain operations. As shown in Figure 2, the complex
convolution kernel W is defined as W = A + 8B, where the
real and imaginary parts of a complex kernel are implemented
by the real-valuedmatricesA andB, respectively. The complex
operation on complex input matrix H = X + 8Y is defined as:

W ⊗H = (A ⊗X −B ⊗ Y ) + 8(A ⊗X +B ⊗ Y )
= P + 8Q

(5)

where⊗ denotes the real-valued convolution operation,P andQ
are real and imaginary parts of the complex convolution product,
respectively. The complex residual block (CRS) [20] consists
of two repeats of one complex convolutional layers followed by
complex batch normalization (ComplexBN) [21] and complex
leaky rectified linear unit (CLeakyReLu). Additionally, a skip
connection is added between the block input and output.

The complex speaker embedding extractor, an advanced
ResNet34 structured model, employs 1 complex convolution
layer and 4 stacks of CRSs to generate the frame-level features.
The number of channels in these CRSs is set as 8, 16, 32, and 64,
respectively. The size of complex convolution kernels in CRS is
always set to 3× 3. The frame-level features are aggregated into
an utterance-level representation through an attentive statistics
pooling (ASP) layer [22]. Then a feedforward layer is utilized
to obtain speaker embedding.

3.3. Properties

In summary, the proposed ICSpk has some interesting proper-
ties:

FewerParamters. The ICfilters have fewer parameters than
sinc-conv filters. Specifically, each filter of sinc-conv has two
learnable parameters (i.e. the low and high cutoff frequencies),
while the IC filter has only one learnable parameter. Moreover,
with increasing filter length, the number of parameters of con-
ventional 1-dimensional CNN kernel filter grows proportionally,
while IC filter has still only one parameter.

IC filter has the unchanged parameter.
Higher Interpretability. The IC filter is derived from the

STFT filter. The response of each filter corresponds to the task-
related region, which has a clear physical meaning.

4. Experiments
For all experiments, we use the same experimental setup to
perform fair comparison. The data processing, training and
testing strategies for all presented experiments are the same.

4.1. Dataset

Experiments are conducted on the VoxCeleb [9, 16] and
CNCeleb [17] datasets. For VoxCeleb dataset, we only use
the VoxCeleb2 [16] for model training, while the VoxCeleb1 [9]
is utilized to evaluate various protocols. The VoxCeleb2 de-
velopment dataset is collected from YouTube and contains over
2,000 hours of recordings from 5,994 English speakers under
text-independent scenarios. The VoxCeleb1 dataset contains
1,251 speakers, and is used to construct verification trials.

CNCeleb is a large-scale text-independent dataset and con-
tains over 130,000 utterances from 1,000 Chinese celebrities
from BiliBili. It covers 11 genres and the total duration of
speech is 274 hours. The training part contains 800 speakers,
while the evaluation part contains 18,849 utterances from 200
speakers. To increase the diversity, we augment the original
CNCeleb dataset using RIR and MUSAN datasets.

4.2. Model training

The duration of input raw waveform ranges from 200 to 400 ms.
The mini-batch size is 120. The dimension of speaker embed-
ding is set as 512. Following [23], angular prototypical (AP)
loss is selected as objective function of the ICSpk. Moreover,
we choose Adam as the optimizer with an initial learning rate of
0.001. L2 regularization is applied to prevent overfitting with
the rate of 54−5. To speed up the training process, the learning
rate is decreased by 10% every 2 epochs. The parameters of IC
filters are initialized using original STFT configuration (i.e. : 9
is initialized with 92c/# , where : 9 is the learnable parameter
of the 9-th IC filter, # is the length of IC filter), and the rest of
neural network is initialized with the default initialization in Py-
Torch. The models are trained on 8 NVIDIA Tesla V100 GPUs
for 50 epochs. It is noted that to keep the same parameters with
the original ResNet34 (1.9 M), we reduce all the convolution
channels by half for fair comparison. For VoxCeleb SV, the
kernel size (window length) of the complex filters is set to 400,
the stride (hop size) is 160, the total number of complex filters
is 512.

5. Results
5.1. Metric

Equal error rate (EER) and minimum detection cost function
(minDCF) are used to measure the speaker verification system
performance. The target probability %tar is 0.01, �fa and �fr
have the same weight of 1.0, which is a standard setting [9].

5.2. Comparison with state-of-the-art systems

To demonstrate the effectiveness of proposed ICSpk, we com-
pare it with other state-of-the-art systems using raw waveform
as input. Table 1 reports the results of our proposed ICspk with
ResNet34 using different types of input acoustic features, in-
cluding magnitude, concatenation of real and imaginary parts of
complex spectrogram and raw waveform. We also list the state-
of-the-art SV systems using rawwaveform (RawNet2, Wav2spk,
raw-x-vector) for comparison.

Firstly, using real-valued ResNet34 as front-end model,
“Real+Imag” based system outperforms “Magnitude” based sys-
tem (i.e. 2.34% v.s. 2.51%), implying that the phase part is also
embedded with speaker related information that has been ne-
glected. Learning band-pass filters (sinc-conv) outperforms the
magnitude based system, while exhibiting slight worse perfor-
mance than “Real+Imag” based system. Replacing the real-
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Table 1: Results for speaker verification on the Voxceleb1 dataset and extended VoxCeleb1-E and VoxCeleb-H test sets. N/R : Not report
results. CResNet34: complex ResNet34. AP: Angular Prototypical.

Front-end Model Params Input Feature Loss VoxCeleb1 VoxCeleb1-E VoxCeleb1-H
EER minDCF EER minDCF EER minDCF

RawNet2 [24] N/R Raw waveform Softmax 2.48 N/R 2.57 N/R 4.89 N/R
Wav2spk [10] N/R Raw waveform AM-softmax 1.95 0.203 N/R N/R N/R N/R

raw-x-vector [25] 4.2M Raw waveform AM-softmax 2.56 0.25 2.41 0.25 3.99 0.36
ResNet34 1.9M Magnitude AP 2.51 0.191 2.55 0.194 4.89 0.323
ResNet34 1.9M Real + Imag AP 2.34 0.178 2.34 0.171 4.40 0.278
ResNet34 1.9M Sinc-conv AP 2.36 0.183 2.55 0.188 5.01 0.317
CResNet34 1.9M Real + Imag AP 2.02 0.137 2.09 0.151 3.94 0.254

ICspk 1.9M Raw waveform AP 1.92 0.137 1.94 0.141 3.78 0.237

(a) original STFT (b) Sinc filters (c) IC filters

Figure 3: Frequency response of three different types of filters.
(a) Vanilla STFT filters. (b) Learned Sinc-convolution filters.
(c) Learned IC filters. Filters are sorted by their corresponding
peak values in the frequency domain and the number of filters is
fixed to # = 257.

valued speaker embedding extractor (ResNet34) with the pro-
posed CResNet34, 14% relative improvement (i.e. 2.02% v.s.
2.34% ) is achieved with the same number of parameters. Fi-
nally, by integrating the proposed IC filters and complex network
structure, the proposed ICSpk outperforms all other raw wave-
form based systems and achieves state-of-the-art performance
on VoxCeleb1 dataset.

In order to further analyze how and why our proposed
method is effective, we visualize the frequency response of orig-
inal STFT filters, Sinc-conv filters and proposed complex-conv
filters by sorting their corresponding peak values in Figure 3.
The frequency response of original STFT is evenly distributed,
as defined. For the learnable filters, the learned sinc-conv filters
share the similar property with the learned IC filters. The ma-
jority of filters are tuned to lower frequencies, conforming that
the low frequency features play a critical role in distinguishing
speaker. In detail, since there are two learnable parameters, i.e.,
upper and lower bounds, the responses of sinc-conv filters tend to
be flocculent. The complex-conv filter including one learnable
parameter provides a higher resolution in low frequency.

5.3. The effect of window length

A potential pitfall of the STFT is that it has a fixed resolution
determined by a predefinedwindow length: awidewindowgives
a good frequency resolution but poor time resolution, and vice
versa. Since the complex-convolution layer convolves the raw
waveform with a set of parametrized STFT bases, we report our
experimental results on how the window length and learnable

Table 2: Effect of window length on CNCeleb.Eval test dataset.
ResNet34 is employed as feature extractor. ! denotes filter
length of IC filters

Model L Learnable EER minDCF
i-vector[17] - - 14.24 N/R
x-vector[17] - - 14.78 N/R
ResNet34[26] - - 16.51 N/R

ResNet34

128 X 15.55 0.636
- 14.31 0.627

256 X 13.12 0.611
- 14.41 0.626

512 X 13.31 0.594
- 13.85 0.621

parameters affect the performance of the SV systems. Three
window length settings (i.e. 128, 256, 512) are compared. We
use the ResNet34 to extract the speaker embeddings. Table 2
presents the results evaluated on CNCeleb(E). The bold font
denotes the best result when the loss function is fixed.

As shown in Table 2, the wide window is able to surpass the
performance of narrow one. This suggests that the fine structure
of frequency is beneficial to the speaker representation. In terms
of the learnable parameters, almost all results show that using
a set of learnable complex filters gives a better result. This
indicates that having a flexible bias to the SV, the model has a
potential to produce more discriminative speaker embeddings.
Moreover, the proposed system outperforms the previous state-
of-the-art systems by large margin.

6. Conclusion
In this paper, we propose interpretable complex filters derived
from the STFT kernel to directly model the raw waveform. The
IC filter in the first convolution layer is implemented using a
complex exponential whose frequency is learnable. Besides, a
complex speaker embedding extractor is proposed to deal with
the complex output of IC filters. The conducted SV experiments
show the proposed system outperforms state-of-the-art systems
while operating on the raw waveform by a large margin.
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