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Abstract

The widely used magnitude spectrum based features have
shown their superiority in the field of speech processing. In
contrast, the importance of phase spectrum is always ignored.
This is because the patterns hidden in phase cannot be intu-
itively modelled and interpreted, due to phase wrapping phe-
nomenon. In this paper, we explore novel phase spectrum based
features, named Learnable Group Delay (LearnGD), to capture
useful information in speech signals. Specifically, firstly, the
negative of the spectral derivative of the phase spectrum, called
group delay (GD), is used to unwrap the phase. Then, to sup-
press the spiky nature of GD, which is caused by its roots close
to the unit circle in the Z domain, a carefully designed light con-
volutional smoothing layer is employed to reconstruct the GD.
Finally, an exponential hyper-parameter is introduced to recon-
struct GD features to restore the spectrum range and generate
LearnGD features. For performance evaluation, speaker veri-
fication experiments are conducted on the VoxCeleb2 corpus.
Compared to the traditional acoustic feature derived from the
magnitude spectrum, the proposed phase-based features reach
a 27.8% relative improvement in terms of EER. Furthermore,
experimental results on TIMIT phoneme recognition task also
demonstrate the effectiveness of our proposed phase-based fea-
tures.
Index Terms: end-to-end speaker verification, phase informa-
tion, group delay, on-the-fly

1. Introduction
Speaker verification (SV) is the process of verifying whether an
unknown speech belongs to a specific target speaker. According
to the restriction of the content, speaker verification can be cat-
egorized into text-dependent speaker verification (TD-SV) and
text-independent speaker verification (TI-SV) [1]. This paper
focuses on TI-SV.

For many years, the combination of i-vector and Probabilis-
tic Linear Discriminant Analysis (PLDA) has been the domi-
nant approach [2]. Recently, with the advance in deep learning,
more attention has been paid to discriminative speaker embed-
ding learning in SV task. In order to enhance the discrimination
of the speaker embedding, researchers investigate neural net-
work structures and loss functions (e.g. triplet loss[3], angular
softmax loss [4], affinity loss[5]).

Most of these state-of-the-art SV systems use spectral fea-
tures derived from short-term Fourier transform (STFT) power

spectrum, such as filterbank, Mel Frequency Cepstrum Coef-
ficient (MFCC). It has been shown that the phase information
in speech influences the intelligibility [6]. In addition, a time
domain speech signal can be recovered uniquely only if both
magnitude and phase spectrum are known. This indicates the
phase spectrum has potential to encode some acoustic informa-
tion [7, 8], which may benefit to speech-related tasks. How-
ever, extracting useful information from phase spectrum is not
straightforward due to the phase wrapping phenomenon. Com-
pared to the magnitude spectrum, phase spectrum has an in-
tractable and noise-like shape, which is hard to interpret and
model directly [9].

To solve this problem, researchers turned to other phase-
related representations, which contain the majority of phase in-
formation, while being more tractable. In [10], the phase is
mapped into a polar coordinate on a unit circle. This modified
phase feature is more robust than the original phase features
for various speaker systems on the NTT dataset. It has been
shown in [11], that the modified phase-based system provides a
good performance in NIST SRE 2010 when fused with MFCC.
In [12], the instantaneous frequency cosine coefficients (IFCC)
features, which are extracted from the analytic phase of speech,
are utilized to capture the subtle acoustic variations in live and
replayed speech. The IFCC-based system leads to better results
than the MFCC-based system in ASVspoof 2017 corpus.

To further investigate the information contained in phase
spectrum, in the last few years, the negative derivative of the
phase spectrum, named group delay (GD), and its varieties
are raising attention to representing meaningful properties of
speech from phase spectrum [13, 14, 15]. The series of GD
features have the characteristics of high frequency resolution
and low frequency leakage at the same time. However, due to
influence of window function and noise in practice, the GD fea-
tures may be spiky when their zeros are close to unit circle in
z-domain, which will fuzz the fundamental frequency and other
useful acoustic information. In [13], a modified GD (MODGD)
features are proposed to solve this spikiness issue through cep-
stral smoothing. A potential shortcoming of these features is
that the parameters are fixed congenitally and not learnable us-
ing the training data. The feature extraction is independent of
model training and does not provide any proper bias to the spe-
cific speech task. In addition, cepstral smoothing algorithm that
implemented through a median filter, DCT and inverse DCT is
time consuming. The range of MODGD is still uncontrollable.

In this paper, we propose a novel phase-based feature,
called learnable group delay (LearnGD), to solve these prob-
lems. Firstly, we unwrap the original phase spectrum using
group delay function. Then, since the GD is undefined when
the roots of transfer function get close to unit circle, we de-
sign a light convolutional smoothing layer to efficiently filter
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Figure 1: The illustration of speaker verification framework with learnable group delay features

out the excitation component in GD and introduce an exponen-
tial hyper-parameter to regulate the dynamic range. We expect
the LearnGD to be capable of pulling the roots of speech away
from the unit circle in Z domain to avoid spikes which cause dis-
tortion of formats, while having a more flexible inductive bias
that is able to enhance the task-related vocal tract representation
and weaken the irrelevant part in the GD domain. Moreover, in
order to combine the feature extraction and model training into
one cascaded pipeline, motivated by [16, 17], we implement
the STFT operation by 1-dimensional convolution layer. In this
way, the whole calculation process of LearnGD feature is done
on the GPU devices, which allows the end-to-end neural net-
work training (e.g. directly take the raw waveform as input) and
speeds up the forward processing. Extensive experiments are
conducted on the VoxCeleb1&2 SV task and TIMIT phoneme
recognition task. Results show that our proposed LearnGD out-
performs widely used acoustic features.

2. Preliminaries
2.1. Short-Time Fourier Transform

Given a time domain speech signal x(n), its short-time Fourier
transform (STFT) X(n, ω) after applying window function
w(n) with the length N , is defined as follows:

X(n, ω) =
∑

x(m)w(n−m)e−jωm

= |X(n, ω)|ejθ(n,w)
(1)

where |X(n, ω)| is the magnitude spectrum and θ(n,w) is de-
noted as phase spectrum.

2.2. Group Delay

Group delay is defined as the negative derivative of the phase
spectrum θ(w). It can be expressed as:

τ(ω) = −d(θ(ω))
dω

= −Im
log(X(ω))

dω

=
XR(ω)YR(ω) +XI(ω)YI(ω)

|X(ω)|2

(2)

whereXn(ω) and Yn(ω) are the Fourier transforms of x(n) and
nx(n). The subscripts I and R mean the real and imaginary
parts, respectively. For a time delay system, the group delay is
related to the time delay value for all the frequency components.

3. Learnable Group Delay Features
The framework of our proposed LearnGD feature based SV sys-
tem is illustrated in Fig.1. At first, the input waveform x(n)
is passed to two 1-dimensional convolution layers that realize
the STFT operation of x(n) and nx(n) separately, and then the
corresponding complex spectrograms are generated. Secondly,
a light convolutional smoothing layer is designed to smooth
the power spectrogram of x(n). Then, along with the hyper-
parameter α, we compute the LearnGD feature, which is finally
fed to a deep neural network to predict the speaker label. The
whole operation is implemented on GPU, which enables the on-
the-fly feature extraction and model training at the same time.

3.1. Convolution STFT Layer

In this paper, the STFT operation is implemented on-the-fly
via expressing the vector multiplication as 1-dimensional lin-
ear convolution operation. The size of convolutional kernel is
equal to the length of window function. We set the stride of con-
volution according to the hop size of STFT operation. The size
and number of kernels can be customized according to different
STFT configurations. The window functionw(n) can be imple-
mented by multiplyingw(n) element-wise with the convolution
kernels during the processing.

3.2. Learnable Group Delay Features

As mentioned in introduction, Group delay features suffer from
unexpected spikes in spectrum that limit their performance in
applications.

When the root (pole or zero) of Z-transformation of the
speech signal (i.e., the denominator of Eq. 2) approaches the
unit circle in Z domain, the GD value of the corresponding fre-
quency component will become spiky and unstable. Further-
more, since the group delays of roots are added together, the en-
tire group delay will become sharp even when one of the group
delays is spiky. Thus, fundamental frequency and the fine struc-
ture may be obscured, ultimately reducing the effectiveness of
obtained feature.

These spikes brought by zeros cannot be eliminated by
normal linear smoothing functions. Hence, in [13], MODGD
is proposed to address this spikiness issue through cepstral
smoothing. However, the cepstral smoothing process, which
includes a median filter, DCT and inverse DCT operation, is
time-consuming. Also, the dynamic range of MODGD is still
uncontrollable. To solve these problems, firstly, we design a
light smoothing layer composed by a regular convolution layer
with a normalized kernel K, which acts as limited-region at-
tention module to smooth the power spectrum. The smoothed
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power spectrum can be obtained as follows:

S(n, ω) = softmax (K(n, ω))⊗ |X(n, ω)|2

S(n, f) =

F∑
f̂=−F

L∑
n̂=−L

softmax(K(n− n̂, f − f̂))
∣∣∣X(n̂, f̂)

∣∣∣2
(3)

where f = Nω
2π

, N is the window length, and |X(n, f)|2 is
the power spectrum, ⊗ is the convolution operator, softmax(·)
is the softmax activation function. The receptive field of the
convolutional kernel K is 2L × 2F , where 2L and 2F denote
the smoothing range along frame and frequency axis, respec-
tively. Such a simple conventional kernel based normalization
can effectively alleviate the spikiness problem by reducing the
weight of abnormal regions, while generating more discrimina-
tive phase-based features.

To further restrict the dynamic range of group delay func-
tion, we introduce an exponential hyper-parameter α ∈ (0, 1]
for computing LearnGD feature by amplifying the low-value
region and compressing the high-value region. Thus, the fine
structure and spectral envelope of LearnGD can be emphasized
at the same time. The learnable group delay can be finally de-
fined as:

τLearnGD = |XR(n, f)YR(n, f) +XI(n, f)YI(n, f)

S(n, f)
|α (4)

4. Experiments and Discussion
In order to fairly compare the experimental results, we decided
to make our experimental settings consistent with the baseline
from [18], only except for the input feature. Thus, we utilize the
same network structure, data processing procedure, loss func-
tion, training and testing strategies in our experiments.

4.1. Datasets

The SV performance is evaluated on the VoxCeleb corpus
[19, 20], which is a widely used large-scale text-independent
speaker verification dataset. The entire dataset involves two
parts: VoxCeleb1 and VoxCeleb2. The utterances are collected
from YouTube videos, where the celebrities belong to differ-
ent races and have a wide range of accents. The training set is
derived from the development set of VoxCeleb2. The TIMIT
dataset contains 6300 utterances (5.4 hours), consisting of 10
utterances spoken by each of 630 speakers from 8 different re-
gions.

4.2. Implementation details

Network structure: For speaker verification, we use Fast-
ResNet34 [18] as the trunk architecture, which is a modified
version of the original Thin-ResNet [4, 21]. To be specific, the
input dimensions and strides are redesigned to reduce the com-
putation cost. The output of the last hidden layer is extracted
as the speaker embedding. No LDA nor PLDA is used. For
TIMIT phoneme recognition task, our implementation is based
on Pytorch-Kaldi standard recipe [22, 23]. The ASR feature
extractor starts with 4 1D-CNN layers with 128, 60, 60, 60 con-
volution kernels of the size 129, 5, 5 and 3, respectively. Five
additional feedforward layers followed with a softmax layer are
used to predict the probability over HMM states.
Training: Our system is optimized by Adam, where the initial
learning rate is 0.001, reduced by 4% every epoch. The Angu-

lar Prototypical (AP) [18] is utilized as loss function. The min-
batch size is set to 160. L2-regularization is added to prevent
overfitting during the training. For phoneme recognition, the
CNN models are fed with 200ms waveforms with 10ms frame
shift. A dropout rate of 0.15 is set for all layers expect the soft-
max layer. The mini-batch size is set to 128 for 23 epochs. The
models are optimized by RMSProp with learning rate of 0.001.
In this paper, we fix the F to 1 and denote the 2L as the smooth
length. The parameters of the convolutional smoothing layer
are initialized with the same value 1

4L
.

Metric: Equal error rate (EER) and minimum detection cost
function (minDCF) are used to measure the speaker verifica-
tion system performance. We use the same parameters as [19],
where the target probability Ptar is 0.01, Cfa and Cfr have the
same weight of 1.0. In ASR task, phone error rate (PER) is the
most common evaluation measures.

4.3. Analysis of hyper-parameters

Table 1: SV performances using different hyper-parameters set-
tings on VoxCeleb1-O with feature extractor Fast-ResNet34.

Length(2L) α EER(%) minDCF

80
0.2 2.76 0.215
0.4 2.09 0.155
0.6 2.17 0.159

100
0.2 2.29 0.167
0.4 2.08 0.162
0.6 2.08 0.174

120
0.2 1.81 0.137
0.4 1.99 0.152
0.6 2.04 0.156

In order to examine the LearnGD feature effectiveness un-
der different hyper-parameter settings, we report SV results in
Table 1, where the LearnGD feature is computed with different
window lengths and α values. We test the system performance
under different hyper-parameter settings as shown in Table 1. It
is noted that with the window length growing, the discrimina-
tive power of the speaker embeddings is significantly improved.
This suggests that a long view of smoothing layer enables the
neural network to learn a long-term representation that is po-
tentially useful for speaker recognition, while insensitive to un-
wanted variability (e.g. noise, channel). Moreover, the hyper-
parameter α plays a key role in controlling rang. When α varies
from 0.2 to 0.6, the system performance fluctuates remarkably
and gets saturated at α = 0.2 when the length is set to 120.

4.4. Comparison with start-of-the-art systems

The comparison of our proposed LearnGD feature based SV
systems to state-of-the-art systems using various input features
is shown in Table 2. We observe that with the same Fast-
ResNet34 feature extractor, the real and imaginary based sys-
tem outperforms the magnitude spectrum based system by 0.2%
EER. Compared to phase spectrum, group delay achieves a rel-
ative improvement of 16% in EER. This means that besides the
widely used magnitude-based feature, the phase-based features
can also encode some speaker-related information. Replacing
the MODGD with the LearnGD, 34.4% relative improvement
is achieved. This suggests that, by providing a flexible bias to
the task, the LearnGD may have the potential to emphasize the
speaker-related components and suppress the irrelevant parts in
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Table 2: Results on the Voxceleb1 dataset and extended test sets. All the methods in this table use the same training data. N/R : Not
report results. PL-S: Prototypical loss and softmax loss, AP: Angular Prototypical, DAM-S: Dynamic Additive Margin Softmax loss.

Front-end Model Input Feature Loss VoxCeleb1 VoxCeleb1-E VoxCeleb1-H
EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

Thin-ResNet34[24] Magnitude Spectrum Softmax 2.87 N/ R 2.95 N/R 4.93 N/R
RawNet2 [25] Raw waveform Softmax 2.48 N/R 2.57 N/R 4.89 N/R

Fast-ResNet34[18] Mel-FBank AP 2.22 0.176 N/R N/R N/R N/R
Fast-ResNet34[26] Mel-FBank PL-S 1.94 0.210 N/R N/R N/R N/R

ResCNN[27] Magnitude Spectrum DAM-S 1.94 N/R 2.14 N/R 3.70 N/R
Fast-ResNet34 Magnitude Spectrum AP 2.51 0.191 2.55 0.194 4.89 0.323
Fast-ResNet34 Real + Imaginary AP 2.34 0.178 2.34 0.171 4.40 0.278
Fast-ResNet34 Phase Spectrum AP 4.38 0.333 4.35 0.321 8.02 0.492
Fast-ResNet34 Group Delay AP 3.68 0.232 3.51 0.255 6.48 0.389
Fast-ResNet34 MODGD AP 2.76 0.215 2.66 0.197 5.17 0.336
Fast-ResNet34 LearnGD AP 1.81 0.137 1.83 0.132 3.53 0.228

Fusion LearnGD + Mel-FBank - 1.36 0.099 1.39 0.097 2.71 0.173

(a) Magnitude Spectrum (b) Phase Spectrum

(c) Group Delay (d) Learnable Group Delay

Figure 2: Spectrogram of different features.

group delay domain. Thus, the feature extractor can generate
more discriminative speaker representation. Moreover, the fu-
sion of Mel-fbank and LearnGD features results in a huge im-
provement and achieves the start-of-the-art performance.

Furthermore, in order to verify whether the LearnGD
has the ability to convey effective characteristics in spectro-
temporal feature extraction, the time-frequency representations
of phase, magnitude, group delay, and LearnGD are shown in
Figure 2. Note that compared to phase and group delay, the
LearnGD has a better resolution in the peaks and valleys region,
and closely resembles the magnitude spectrum. This indicates
that LearnGD may not only contain the phase information but
also carry some magnitude information, thus have the power to
convey meaningful attributes.

4.5. Speech recognition performance on TIMIT dataset

In this section, we evaluate the phone recognition system with
proposed LearnGD feature on TIMIT dataset in terms of PER.

Table 3: Phoneme Error Rate (PER) of different input features
based phone recognition systems on TIMIT dataset.

Feature PER(%)
Mag-based feature Mel-FBank 18.2

Phase-based feature

Phase Spectrum 76.0
Group Delay 22.6

MODGD 19.9
LearnGD 19.4

The results are shown in Table 3. The performance of system
using original phase spectrum feature is the worst. This indi-
cates that the ASR system cannot extract meaningful informa-
tion from chaotic phase spectrum. It is noted that the GD-based
system outperforms the original phase-based system by a rela-
tive 70.26% PER reduction. This indicates that the tractable GD
feature is more advantageous in ASR feature extraction. By re-
placing the MODGD with LearnGD, a further improvement is
achieved (19.9% v.s. 19.4%). This suggests that optimized for
phoneme classification task, the LearnGD based system has po-
tential to obtain more discriminative representation.

5. Conclusion
This work proposes novel phase spectrum based features,
named Learnable Group Delay (LearnGD), for enhancing the
performance of speaker verification. Following the definition
of group delay to unwrap the phase, the proposed LearnGD
features suppress the unexpected spikes with a convolutional
smoothing layer. Also, to compress the value range of group de-
lay function to amplify the low-value region, a hyper-parameter
is introduced in LearnGD computation process. Both speaker
verification experiments conducted on VoxCeleb2 corpus and
phone recognition experiments on TIMIT demonstrate the supe-
riority of proposed LearnGD features over widely used acoustic
features, such as magnitude spectrum, Mel-Fbank etc.
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