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Abstract

Recently, neural approaches to spoken content retrieval have be-

come popular. However, they tend to be restricted in their vo-

cabulary or in their ability to deal with imbalanced test settings.

These restrictions limit their applicability in keyword search,

where the set of queries is not known beforehand, and where

the system should return not just whether an utterance con-

tains a query but the exact location of any such occurrences.

In this work, we propose a model directly optimized for key-

word search. The model takes a query and an utterance as input

and returns a sequence of probabilities for each frame of the

utterance of the query having occurred in that frame. Experi-

ments show that the proposed model not only outperforms sim-

ilar end-to-end models on a task where the ratio of positive and

negative trials is artificially balanced, but it is also able to deal

with the far more challenging task of keyword search with its

inherent imbalance. Furthermore, using our system to rescore

the outputs an LVCSR-based keyword search system leads to

significant improvements on the latter.

Index Terms: keyword search, spoken term detection

1. Introduction

Many technologies have emerged to facilitate browsing the

vast amounts of spoken content that have become common-

place. One of these is keyword search (KWS), in which a user-

specified keyword (also referred to as query or term) is searched

within an audio archive (or document), and the locations, if any,

are returned along with confidence scores.

The traditional approach to KWS entails using an LVCSR

system to transcribe the archive, and then conducting text re-

trieval on the LVCSR output [1]. This approach has been suc-

cessfully applied for retrieval on broadcast news [2, 3], video

lectures [4] and web videos [5].

A limitation of the LVCSR approach is the inability to re-

trieve words that are not seen at training time. Retrieving such

out-of-vocabulary (OOV) terms requires extra engineering. The

most common approach to open-vocabulary search is to use

subword units instead of words as the ASR output, thereby ex-

changing lattice compactness for coverage [6, 7, 8]. Another ap-

proach is to use phone-confusion statistics to convert an OOV

term into a similar sounding in-vocabulary (IV) one and then

searching for this proxy term instead [9, 10]. More recently, dy-

namic time warping (DTW)-based methods which completely

eschew LVCSR have been shown to outperform both [11, 12].

Recently, several neural architectures have been proposed

for hot-word spotting. In [13], a neural network is used to pre-

dict keywords from spectral features. CNN-based systems have

also been applied for supervised [14] and weakly-supervised

[15] keyword spotting. In [16], a system based on rank-1

encoder-decoder networks was proposed for end-to-end stream-

ing keyword spotting. These systems have the limitation of re-

quiring a pre-specified set of keywords.

End-to-end networks that bypass LVCSR while also being

able to deal with open-vocabulary applications have also been

studied. In [17], a pair of auto-encoders are pre-trained to en-

code the query and document, and a feed-forward network is

used to predict whether the query encoding occurs in the docu-

ment encoding. Other similar works use acoustic word embed-

dings for metric-based keyword search [18, 19]. In [20], the au-

thors improve on [17] by improving the pre-training and also by

leveraging temporal information available in the form of forced-

alignments. While these methods have been shown to perform

well for well-balanced tasks such as classifying whether two

embeddings belong to the same term or whether an utterance

contains a query, they have limited applicability for actual key-

word search, which is extremely imbalanced in that most loca-

tions do not contain the keyword; for every positive trial, there

are thousands of negative ones.

In this paper, we propose an end-to-end keyword search

model that takes a query as input and returns frame-level prob-

abilities of the query occurring in the document. Unlike other

neural KWS architectures, we do not need to construct positive-

negative samples for testing but can directly search on whole ut-

terances. We show that our model outperforms other end-to-end

KWS systems in segment-level classification, performs well in

realistic KWS settings, and is able to improve the performance

of a competitive LVCSR-based system by rescoring.

2. Model

We formulate keyword search as the task of classifying whether

a keyword occurs at any given location in the document. This

formulation – as opposed to, say, a regression task predicting

the boundaries of a hypothesized hit – is very well suited to

being used in combination with other keyword search systems

since it allows us to get a keyword search result for any possible

subsequence of the document.

Given a query phrase q and an utterance represented as a

sequence of frames X =
(

x1, . . . ,xN

)

, we seek the sequence

y(q,X) = (y1, . . . , yN ) ∈ {0, 1}N such that:

yn =

{

1, if q occurs at frame n of X

0, otherwise.
(1)

Note that although we elect not to write it explicitly to reduce

clutter, each yn is a function of q and X. We can then train a

neural network with parameters θ to obtain:

θ
∗ = argmax

θ

∑

q

∑

X

∑

n

log pθ(yn|q,X), (2)

where the summations are over all the phrases, utterances and

time frames in the training set.
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Figure 1: Overview of the proposed model.

2.1. Model definition

Our keyword search model, depicted in Figure 1, comprises a

recurrent document encoder and a recurrent query encoder. We

conduct the search via a matrix-vector multiplication of the en-

coder outputs which results in a vector of logits for each time

frame. The logistic sigmoid is then used to compute the poste-

rior probabilities pθ(yn| . . . ) which we post-process to detect

the locations of each keyword.

2.1.1. Query encoder

The input to the query encoder is a sequence of grapheme in-

dices q = (q1, . . . , qK) that constitute the query and the output

is a fixed-length representation eq ∈ R
D . A trainable embed-

ding layer converts the sequence of letters into a sequence of

vectors which are input into a stack of bidirectional gated recur-

rent unit (GRU) layers. The GRU outputs another sequence of

vectors V = (v1, . . . ,vK). The final query representation is

then computed from the sum of these GRU output vectors along

the sequence axis thus:

eq = W1(

K
∑

k=1

vk) + b1, (3)

where W1 and b1 are the weight and bias of an affine transform

that changes the dimensionality of the query representation to

ensure it matches the output of the document encoder.

We experimented with using the output of the GRU at fi-

nal frame (vK ) instead of the summation in (3), but found that

the summation performed better. We also experimented with

having a unidirectional query encoder but we found the bidirec-

tional encoder to be better.

2.1.2. Document encoder

The input to the document encoder is the sequence of speech

features X of length N . First, X is passed through a stack of

BiLSTM layers which output U = (u1, . . . ,uN̂ ) of length N̂ .

The final encoder output HX ∈ R
N̂×D is then:

HX = W2U+ b2, (4)

where W2 and b2 constitute an affine transformation similar to

that at the output of the query encoder, and the addition is done

by broadcasting b2 across the temporal axis.

We down-sample the hidden representations between some

of the BiLSTM layers (so that N̂ = ⌊N
s
⌋ for some s). This

decreases the computational cost of the search, and we found

empirically that it improves the search accuracy.

2.1.3. Search function

The search output is computed by taking a matrix-vector prod-

uct of the encoder outputs, followed by a logistic sigmoid to

compute the desired vector of per-frame posterior probabilities

z(q,X) = (z1, . . . , zN̂ ) ∈ (0, 1)N̂ thus:

z(q,X) = σ(HXeq). (5)

Note that the document and query representations only interact

through this product and are otherwise independent. Therefore,

we can amortize the cost of search by pre-computing the doc-

ument representation. For each query, we can then compute its

representation and take the product.

2.2. Model training

Our training procedure involves optimizing a modified form

of (2). The first two summations (2) are over all phrases and ut-

terances in the training set. For a corpus of U utterances with W
words each, there are O(UW2) elements in the double summa-

tion. Therefore, we make the following modifications to reduce

the training cost:

1. We limit training phrases to unigrams, bigrams and tri-

grams.

2. At each training step, we sample a batch Q of such

phrases for the first summation instead of the whole set.

3. For each training phrase q ∈ Q, we sample Xq, a set of

M ≪ U utterances, at least one of which contains q.

When sampling, we consider different examples of the same

phrase to be different tokens, so that more frequently occurring

phrases are naturally sampled more often. The utterances Xq

are re-sampled at each training step.

For each query-utterance training pair (q,X), we define

a loss function between the sigmoid outputs z(q,X) and the

(down-sampled) labels y(q,X):

Js(q,X) = −

N̂
∑

n=1

(

✶zn>1−φ · (1− yn) log(1− zn)

+ ✶zn<φ · λ · yn log zn
)

. (6)

λ is a hyper-parameter that controls the relative weight of

frames labeled 1 to frames labeled 0. φ controls the sensitivity

of the loss function to easily classified frames: frames labeled

1 with sigmoid outputs already above φ and frames labeled 0
with sigmoid outputs already below 1 − φ do not contribute to

the loss function as they are considered good-enough. This pre-

vents the model from learning to better classify frames that are

already well classified at the expense of learning to classify dif-

ficult frames. Observe that if we set λ = 1 and φ = 1, then the

loss function returns to the binary cross-entropy function.

2.3. Post-processing for search

Having obtained the vector of probabilities from (5), we post-

process them to perform various keyword search tasks.

2.3.1. Segment classification

This task is a simplified form of keyword search where it is

enough to classify whether or not a speech segment contains

the given query. To do this, we simply compute a segment-

wide score: p = maxn zn, and say that the segment contains

the query if p is larger than some threshold, which is tuned on

a development set. The rationale for this method is that it is

enough for a query to occur at any frame of a segment for it to

have occurred in that segment. Therefore, we need only care

about the frame with the highest probability.
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Figure 2: System hypothesis calculation from network outputs.

2.3.2. Keyword search

The task here is to return a location within the utterance hypoth-

esized to contain the query along with a confidence score. The

procedure, illustrated in Figure 2, is as follows:

1. We set the probabilities (zn) below some threshold to

zero. This threshold is tuned on the development set.

2. We pick the “islands” of non-zero elements as our sys-

tem hypotheses. The confidence score is computed as

the median probability of each interval. We also experi-

mented with the mean and max operations but found me-

dian to be better.

The thresholding is a necessary first step because the sigmoid

outputs strictly positive values. Additionally, we found that

pruning out intervals which are shorter than 20ms × #letters

for each query led to slightly improved performance.

2.3.3. Keyword search rescoring

In this task, we seek to improve the performance of another

keyword search system by fusion of scores. Our approach en-

tails rescoring the hypothesis list of a baseline system. Our

proposed model is particularly well suited to this task since it

outputs scores for each frame, and so we can readily obtain a

score for any location with which we are presented. For a given

query-document pair, if the baseline hypothesizes a start-end-

score triplet (n1, n2, p̃), we return a new triplet (n1, n2, p) at

the same location with score given by a weighted sum of the

original score and the average of the network’s outputs in that

interval, p = γp̃ + mean(z[n1 : n2]), where γ is a weighting

hyper-parameter which we tune on the development set. We ex-

perimented with using the median and max instead of the mean

but found no significant improvements.

3. Experiments

3.1. Experiment setup

3.1.1. Data

We experiment on the limited language pack (LLP) data from

the IARPA Babel program [21]. For each language, this com-

prises a 10-hour training set used to train a speaker-adapted

HMM-GMM model with which we obtain word level training

alignments, a 10-hour development set to tune model hyper-

parameters, a 5-hour “evalpart1” set for evaluation, and key-

word lists whose distributions are shown in Table 1.

We consider two kinds of acoustic features as input to

the document encoder: 80-dimensional filter-banks and 42-

dimensional multilingual bottleneck features (BNF), each with

frames of length 10ms. The BNF extractor is trained with 19

languages’ LLPs (totaling about 190 hours) including Assamese

and Bengali but not Pashto, Turkish and Zulu.

Table 1: Number of dev and eval queries in each language.

Language Assamese Bengali Pashto Turkish Zulu

Dev-IV 1403 1295 1465 219 1194
Dev-OOV 597 705 600 88 806
Eval-IV 5286 4957 3233 1955 2199
Eval-OOV 2087 2368 970 1216 1111

3.1.2. Network configuration

The document encoder consists of 6 BiLSTM layers each with

512 dimensional output in each direction. Each BiLSTM layer

(including the first) is preceded by a batch-normalization layer

and followed by a dropout layer with dropout probability of 0.4.

In addition, the outputs of the first and fourth BiLSTM layers

are each down-sampled by a factor of 2 (i.e. N̂ = ⌊N
4
⌋). The

final affine projection has an output dimension of D = 400.

The query encoder is composed of a 32-dimensional em-

bedding layer, two 256-output-dimensional BiGRU layers each

preceded by a batch-normalization layer and a final affine layer

with 400-dimensional output.

We train with Adam using an initial learning rate of 2 ×
10−4. We use a batch size of |Q| = 64 and |X |q = 4 utter-

ances per training phrase. The training hyper-parameters in (6)

are empirically chosen as λ = 5 and φ = 0.7. We select a ran-

dom 10% of the training utterances for validation. We halve the

learning rate whenever the validation loss stagnates for 4 epochs

and halt training when it stagnates for 10 epochs.

3.2. Classification task

Our first experiment involves classifying whether a given seg-

ment of speech contains a keyword. This task serves as a

benchmark for comparing our approach with recent end-to-end

keyword search sytems [17, 20]. We use the evaluation setup

from [20]. Each utterance is divided into one-second segments

with 50% overlap. Any segment that contains even a portion

of the keyword is considered a positive test for that keyword.

For example, a query which occurs between the 0.4-1.2 sec-

ond marks of some utterance will yield three positive tests (the

ranges 0-1, 0.5-1.5 and 1-2). For each such positive test, a ran-

dom negative test (3 in total for the given example) is generated

from other locations (possibly other utterances) which do not

contain the query. Each test returns a score which should be

high for positive and low for negative tests. The performance is

measured in terms of accuracy and area under the curve (AUC).

We take the systems from [17] and [20] as baselines. In

both cases, we directly take the results reported in [20]. For our

system, we use the procedure described in Section 2.3.1 with

threshold determined on the dev-set.

Table 2 shows the results obtained. Across all languages,

our system gives significant improvements in both accuracy and

AUC over the baselines. We get still further improvements by

switching from filter-banks to BNF. We report P-B results for

Assamese and Bengali for completeness, but keep in mind that

the BNF extractor training includes those languages.

3.3. Keyword search

In this set of experiments, the task is to return the exact loca-

tions of each query within utterances along with the confidence

scores. Unlike the balanced classification task, here the problem

is made more complex by the presence of more negative trials

than positive ones. For instance, the Pashto dev-set contains

14451 examples and 72 million negative trials keeping the rate
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Table 2: Accuracy and AUC on the eval set. B1 and B2 refer

to the baseline systems from [17] and [20] respectively. P-F

and P-B refer to our system using filter-banks and bottleneck

features respectively.

Accuracy AUC
Language System IV OOV IV OOV

Assamese B1 0.604 0.604 0.638 0.632
B2 0.626 0.619 0.724 0.724
P-F 0.713 0.677 0.797 0.778

P-B 0.824 0.811 0.909 0.896

Bengali B1 0.589 0.579 0.658 0.653
B2 0.639 0.637 0.743 0.742
P-F 0.744 0.696 0.840 0.769

P-B 0.836 0.784 0.912 0.871

Pashto B1 0.608 0.594 0.653 0.634
B2 0.674 0.665 0.797 0.786
P-F 0.857 0.830 0.927 0.909

P-B 0.881 0.855 0.946 0.925

Pashto Turkish Zulu

0.05

0.1

0.15

0.2

A
T

W
V

base fbank no-kst no-margin phoneme

Figure 3: Eval-set ATWV of various ablations. Every other bar

is obtained by changing one component from the base system.

of one trial/second, which makes metrics like accuracy unsuit-

able. Therefore, we use the term weighted value (TWV) metric

proposed by NIST [22] for KWS evaluations [21, 23, 24, 25].

The TWV for a set of queries Q and a threshold θ is computed

as follows:

TWV (θ,Q) = 1−
1

|Q|

∑

q∈Q

(Pmiss(q, θ)+βPFA(q, θ)), (7)

where Pmiss(q, θ) and PFA(q, θ)) are the probabilities of

misses and false alarms respectively, and β controls the rela-

tive costs of false alarms and misses. As in the NIST STD

evaluations [23], we set β = 999.9. On the dev-set, we re-

port the maximum TWV (MTWV) which is the TWV at the

threshold that maximizes it. This threshold is fixed and used

to compute the actual TWV (ATWV) for the eval-set. Since

TWV requires a single threshold, it is necessary to normalize

the scores across keywords. We adopt keyword specific thresh-

olding (KST) from [26] for score normalization.

As stated before, Assamese and Bengali are included in

the BNF extractor training, so we elect not to report results

for those. Instead we use Turkish and Zulu, which, along with

Pashto, are not included in the BNF training.

Figure 3 shows the performance of our system when used as

a standalone KWS system by following the procedure described

in Section 2.3.2 with KST normalization (base). For context,

our re-implementation of [17] (using BNF) achieved MTWV

Table 3: Results of rescoring LVCSR output. L denotes the

LVCSR baseline. L ⊕ P denotes the result of rescoring.

Language System Dev MTWV Eval ATWV

Pashto L 0.2754 0.3190
L ⊕ P 0.3068 0.3464

Turkish L 0.4892 0.4051
L ⊕ P 0.5080 0.4419

Zulu L 0.3716 0.3381
L ⊕ P 0.3917 0.3620

of 0 and negative ATWV. The figure also shows the impact of

changing various components of our system. First, we find that,

as expected in this low-resource setting, filter-banks (fbank)

perform worse than BNF. We also observe deterioration in per-

formance when we omit score normalization (no-kst).

Next, we measured the impact of removing the margin term

from our loss function by setting φ = 1 in (6) which results in

a weighted binary cross-entropy objective (no-margin). For

Turkish and Pashto, we find that the margin term helps signifi-

cantly, whereas for Zulu, the impact is milder.

Furthermore, we considered the impact of using phonemic

instead of graphemic query representation (phoneme). When

using phonemes, we use the lexicon available with the Ba-

bel data for training and for IV terms, and we train a G2P

model [27] to obtain pronunciations for OOV terms. We find

graphemes to be superior for Turkish and Zulu. This can be

explained by the fact that when using phonemes, we only con-

sider one pronunciation for each word, so the model learns a

limited pronunciation model; whereas when we use graphemes,

the model is allowed to implicitly learn pronunciation variabil-

ity. However, for Pashto, phonemes work better. We hypothe-

size that this is because the graphemic representation uses the

non-diacritized Pashto alphabet which omits vowels.

Finally, we utilize our system (referred to as base in Fig-

ure 3) to rescore the output of an LVCSR-based KWS system

(multilingually pre-trained and finetuned on each target lan-

guage, with words for IV and subwords for OOV search). We

rescore using the procedure described in Section 2.3.3 followed

by KST normalization. The results in Table 3 show that we are

able to significantly improve on an already competitive system.

4. Conclusion

In this work, we have proposed a model that is directly opti-

mized for keyword search. By predicting frame-wise likeli-

hoods of keyword occurrences, the proposed model facilitates

fine-grained keyword search and readily accommodates fusion

with other systems.

We showed that our method works well not only for ut-

terance classification used as a proxy for search but also for

the more difficult “needle-in-a-haystack” search problem - an

encouraging result for the prospects of end-to-end approaches

to keyword search. Moreover, we have shown that an applica-

tion of our technique can already significantly improve LVCSR-

based keyword search performance through rescoring.
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