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Abstract
Automatic speech recognition systems deteriorate in presence
of overlapped speech. A popular approach to alleviate this is tar-
get speech extraction. The extraction system is usually trained
with a loss function measuring the discrepancy between the es-
timated and the reference target speech. This often leads to dis-
tortions to the target signal which is detrimental to the recog-
nition accuracy. Additionally, it is necessary to have the strong
supervision provided by parallel data consisting of speech mix-
tures and single-speaker signals. We propose an auxiliary loss
function for retraining the target speech extraction. It is com-
posed of two parts: first, a speaker identity loss, forcing the es-
timated speech to have correct speaker characteristics, and sec-
ond, a mixture consistency loss, making the extracted sources
sum back to the original mixture. The only supervision re-
quired for the proposed loss is speaker characteristics obtained
from several segments spoken by the target speaker. Such weak
supervision makes the loss suitable for adapting the system di-
rectly on real recordings. We show that the proposed loss yields
signals more suitable for speech recognition and further, we
can gain additional improvements by adaptation to target data.
Overall, we can reduce the word error rate on LibriCSS dataset
from 27.4% to 24.0%.

Index Terms: Target speech extraction, SpeakerBeam, Weakly
supervised loss, Long recordings

1. Introduction
The performance of many speech technologies, such as auto-
matic speech recognition (ASR), gets deteriorated in presence
of speaker overlap. While on clean speech recordings, ASR sys-
tems reach reasonable performance today, multi-speaker ASR is
still a challenge, that attracts research interest [1]. A common
approach to alleviate the problem consists of pre-processing the
mixture of multiple speakers to remove the interfering speech
and then applying a conventional ASR system to the resulting
single-speaker speech [2].

Two important directions in this research are speech separa-
tion and target speech extraction. In speech separation [3, 4, 5],
the goal is to blindly obtain the signals of all the sources present
in the mixture. In target speech extraction [6, 7, 8], an enroll-
ment utterance of the target speaker is used to extract the speech
signal of this speaker from the mixture. Both directions have
their advantages in different application scenarios. In this work,
we focused on target speech extraction, however, the proposed
method can be applied analogously to speech separation.

Most recent target speech extraction and separation meth-
ods employ neural networks [3, 4, 5, 6, 7, 8]. In these methods,
the neural networks are trained with loss functions that compare
the reference single-speaker signal to the estimated output (e.g.
mean square error or signal-to-noise ratio). Such loss functions
however do not perfectly reflect which output signals lead to
good ASR performance. Namely, the systems trained with the
conventional loss functions often lead to too aggressive removal
of the interference causing distortion of the target speech. Previ-
ous works proposed joint training with ASR system to alleviate
this problem [9, 10]. However, this requires transcriptions of
the target speech which might not be always available.

In this work, we propose an auxiliary loss function for neu-
ral network-based speech separation/extraction that is based on
speaker characteristics. The loss function is composed of two
parts — a speaker identity loss and a mixture consistency loss.
The speaker identity loss forces the output to have the character-
istics of the desired speaker. To evaluate how well the speaker
characteristics match, we use x-vectors [11] and Probabilistic
Linear Discriminant Analysis (PLDA) [12], a popular model
for speaker verification. The mixture consistency loss forces
all signals extracted from the mixture to sum back to the mix-
ture. Such a constraint naturally arises from the assumed mixing
model and further restricts the network output.

The proposed loss function gives more freedom to the out-
put of the network than the conventional strongly supervised
loss, which enables less aggressive processing by keeping more
noise, which induces less distortion to the extracted speech. Be-
sides, the only supervision necessary for computing the loss is
several segments of speech of the target speaker, which are used
to estimate the desired speaker characteristics for the speaker
identity loss. In the case of long recordings, such as meetings,
these segments can be obtained by applying diarization. This
weak supervision makes it possible to adapt the system directly
on the target data, where strong supervision in form of parallel
single-speaker signals is not available.

As an application scenario to test our method, we choose
automatic speech recognition on long recordings such as meet-
ings that have received increased interest recently [13, 14, 15].
We employed SpeakerBeam [6, 9] architecture as the method
for target speech extraction. In our experiments, we show two
benefits of the proposed loss: first, retraining with such loss im-
proves ASR performance and second, it can be used to adapt to
the target data without using parallel single-speaker references.
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Figure 1: Scheme of the speaker identity loss.

2. Related works
Several works in the area of universal sound separation have ex-
plored weakly supervised objective functions [16, 17, 18]. No-
tably, in [16, 17] authors propose an objective function consist-
ing of sound event classification and mixture consistency, sim-
ilarly to our proposed objective function. Direct application of
the loss from [16, 17] to our task would however require train-
ing a speaker classifier on the adaptation data, which we avoid
by using the generative PLDA model. The PLDA model can be
trained on a disjoint set of speakers and is considered state-of-
the-art in speaker verification.

For speech separation, several works explored using differ-
ent modalities, such as spatial [19, 20, 21] or visual [22, 23, 24]
cues as weak supervision. Our proposed scheme does not re-
quire other modalities, but if they were available, the objective
function could still be complemented by the speaker identity
loss presented in this work.

3. Target speech extraction
3.1. Problem formulation

The problem of target speech extraction is to isolate the speech
of a target speaker from an observed mixture of multiple over-
lapping speakers and noise. We assume a mixing model

y =

I−1∑
i=0

si + n, (1)

where I is the number of speakers in the mixture, si for i =
0, . . . , I−1 is the speech time-domain signal of the ith speaker,
n is the additional noise and y is the observed mixture. The
speech of the target speaker is extracted using additional infor-
mation in the form of enrollment utterance, which is spoken
by the target speaker. We denote the enrollment utterance for
speaker i as ei. Given the enrollment utterance ei, the goal is
to obtain an estimate ŝi of the target speech si.

3.2. SpeakerBeam

SpeakerBeam [6, 9] performs target speech extraction using
a neural network. In this work, we use frequency-domain
SpeakerBeam and denote the magnitude of short-time Fourier
transform (STFT) of y, si, ŝi, ei as |Y|, |Si|, |Ŝi|, |Ei|, respec-
tively. We use a frequency domain implementation to speed-up
experiments, although a time-domain one could be used as well.

The SpeakerBeam network consists of two parts: the main
network and the auxiliary network. The auxiliary network ac-
cepts the enrollment utterance |Ei| as the input and outputs
a fixed-length embedding vector αi representing the speaker
characteristics. The main network performs the extraction it-
self, i.e. it maps the mixed speech |Y| to a time-frequency mask
Mi = f(|Y|,αi), where f is the function modeled by the neu-
ral network. The mask Mi can be used to get the estimate of
the target speaker speech as |Ŝi| = Mi�|Y|, where� denotes

element-wise multiplication. The embedding vector αi is used
to inform the main network about the target speaker. Several
ways of informing the main network using the embedding have
been explored in the past. Here, we use the approach based on
scaling activations [6].

Conventionally, SpeakerBeam is trained with supervised
loss Lsup, which uses the target speech si as a reference. Here,
we employ the phase-sensitive mean square error between the
estimated and reference speech in STFT domain [25, 26]

Lsup(ŝi, si) = || |Ŝi| − |Si|max(0, cos(φy − φsi)) ||
2, (2)

where φy and φsi are the phase of STFT of y and si, respec-
tively.

4. Proposed weakly supervised loss
We propose a loss function which uses weak supervision in
the form of speaker characteristics. The speaker characteristics
are obtained from a set of Ni segments of speech of the tar-
get speaker i, denoted as S tgt

i = {s(tgt,1)
i , s

(tgt,2)
i , . . . , s

(tgt,Ni)
i }.

When using a segmented speech corpus such as WSJ, the seg-
ments can be simply different utterances from the same speaker.
In case of long recordings such as meetings, the segments can
be obtained from other parts of the recording where the speaker
is speaking, after applying diarization.

We devise a loss function Lspk, which forces the output of
SpeakerBeam for each speaker i to have the same speaker char-
acteristics as S tgt

i (Section 4.1). Forcing the correct speaker in-
formation however does not tie the output of SpeakerBeam to
the input mixture in any way. For this reason, we add an ad-
ditional loss Lmix, which encourages mixture consistency, i.e.
the extracted signals from the mixture sum back to the mixture
(Section 4.2). The full weakly supervised loss function, Lwsup,
is then

Lwsup(ŝi, S
tgt
i ) = λspkLspk + λmixLmix (3)

where λspk and λmix are hyper-parameters weighting the parts of
the loss.

4.1. Speaker identity loss

To encourage the SpeakerBeam estimate ŝi to have the same
speaker characteristics as segments in S tgt

i , we employ concepts
from speaker identification. Namely, we use x-vectors [11] to
represent the speaker characteristics and Probabilistic Linear
Discriminant Analysis (PLDA) [12] to model the x-vectors. Let
us denote the x-vector extracted from ŝi as x̂i and the set of
x-vectors extracted from S tgt

i asX tgt
i = {x(tgt,1)

i , . . . ,x
(tgt,Ni)
i }.

In PLDA, the distribution of x-vectors is modeled as

p(r) = N (r;m,Σac) (4)
p(x|r) = N (x; r,Σwc), (5)

where x is the x-vector, r is the speaker mean, m is the global
mean and Σac, Σwc are the across-speaker and within-speaker
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co-variance matrices. In the loss function, we aim to maximize
the likelihood of the estimated x-vector x̂i given the x-vectors
X tgt

i , under the hypothesis Hsame that both have been generated
from the same speaker

p(x̂i|X tgt
i ,Hsame) =

∫
p(x̂i|r)p(r|X tgt

i ) dr = N (x̂i;µi,Σi)

(6)

Σi = (Σ−1
ac +NiΣ

−1
wc )

−1 (7)

µi = Σi (Σ
−1
ac m +NiΣ

−1
wc x̃i), (8)

where x̃i and Ni are the mean and the number of x-vectors in
X tgt

i . The equality follows Eq. (213) in [27]. The loss function
is then the inverse log-likelihood summed over all speakers in
the mixture

Lspk = −
I−1∑
i=0

log p(x̂i|X tgt
i ,Hsame). (9)

Note that µ and Σ can be pre-computed for each speaker in
advance. The evaluation of the loss function is then the evalua-
tion of the Normal p.d.f. of the estimated x-vector x̂i. Figure 1
shows the process for computing the speaker identification loss.
The extraction of the x-vector including the feature extraction
needs to be implemented in a differentiable way, which is pos-
sible using a toolkit such as PyTorch [28]1.

4.2. Mixture consistency loss

The mixture consistency loss reflects a property that should hold
for the extracted sources, i.e. summing back to the original sig-
nal. This directly follows from the assumed mixing model in
Eq. (1). To enforce this, we minimize the mean-square error be-
tween the sum of the extracted signals and the observed mixture
in time-domain

Lmix = ||y −
I−1∑
i=0

ŝi||2. (10)

Note that we neglect the noise factor n in the loss. This could
possibly lead to the network learning to include the noise in the
extracted sources. Extending the mixture consistency with a
noise model is a possible future direction, which could be ben-
eficial for very noisy conditions.

4.3. Overall steps
The proposed weakly supervised loss can be used for retrain-
ing a target speech extraction system on data, where for each
mixture y and corresponding enrollment utterance ei, there is a
set of segments S tgt

i spoken by the target speaker. Here, we de-
scribe the steps we follow in our experiments with the proposed
loss:

1. Train SpeakerBeam with supervised loss Lsup(ŝi, si). This
step requires parallel single-speaker recording si for each
mixture y and represents the baseline.

2. Re-train SpeakerBeam initialized in step 1 with weakly su-
pervised loss Lwsup(ŝi, S

tgt
i ) on the same training data as in

step 1, but using only weak supervision in form of seg-
ments S tgt

i spoken by the target speaker. The segments
are taken from other utterances of the target speaker in the
training data.

1We will provide the implementation at https://github.
com/BUTSpeechFIT/spkb_plda_loss

3. Re-train SpeakerBeam with weakly supervised loss
Lwsup(ŝi, S

tgt
i ) on the target data. As the target data con-

sists of long recordings, we use segments of the target
speaker defined by a diarization as S tgt

i .

The goal of step 2 is to evaluate the effect of the loss itself com-
pared to the supervised loss, while in step 3 we explore whether
it is possible to use the loss to adapt to the target data.

5. Experiments
5.1. Dataset
We use two different sources of data, i.e. artificially mixed
short utterances for training, and long meeting-like recordings
for testing and adaptation. The artificially mixed data are based
on LibriSpeech dataset [29]. We simulate mixtures of 2 speak-
ers. We will denote the mixed data as LibriSpeech-mix. Lib-
riSpeech dataset is also used to get enrollment utterances in all
experiments. For testing and adaptation, we use the LibriCSS
dataset [13], which contains multi-channel recordings simulat-
ing conversations. For our experiments, we use the first chan-
nel only. Each recording was created using multiple utterances
from LibriSpeech [29] from multiple speakers. The utterances
were played back from a loudspeaker in a room. The recordings
can be grouped into six different overlap conditions from 0% to
40% of overlap. Alternatively, the recordings can be grouped
into 10 different sessions, where each session contains differ-
ent speakers. Each session then contains one recording for each
overlap condition. We use session0 as the development set and
the remaining sessions as the evaluation set.

5.2. Configuration
SpeakerBeam The main network of SpeakerBeam consists of

3 BLSTM layers, each with 600 units and 2 fully connected
layers with ReLU activation. We apply the scaling of the ac-
tivations after the first BLSTM layer. The auxiliary network
has 2 fully connected layers with 64 units, ReLU activation
after the first layer. For supervised training, we used Adam
optimizer with learning rate 1e-3 and gradient clipping 1. We
trained the network for 450k iterations with batch size 36. We
used STFT with window size and shift of 512 and 128 sam-
ples. When extracting the target speech, we apply Speaker-
Beam by chunks of 10 seconds with 5 second shift.

x-vectors, PLDA We use x-vector extractor and PLDA model
from VBx recipe2. Both are trained on VoxCeleb corpus [30].
The architecture and training are further described in [31].

Proposed loss For re-training the network with the proposed
loss Lwsup, we use Adam optimizer, with learning rate 1e-6
and gradient clipping 1. We perform 80k iterations with batch
size 1. We weigh both parts of the loss equally, setting λspk =
λmix = 0.5, unless stated otherwise.

ASR system We use the hybrid HMM-DNN model from [32].
The acoustic model is a 17-layer factored TDNN [33] trained
using the lattice-free MMI objective [34]. The model was
trained on the 960h Librispeech data with 3x speed perturba-
tion, and additionally fine-tuned for 1 epoch on reverberated
Librispeech data. We use the official 3-gram language model
provided with Librispeech for decoding.

5.3. Results

We evaluate the target speech extraction performance with
speech recognition on the LibriCSS dataset. We show re-

2VBx recipe https://github.com/BUTSpeechFIT/VBx
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Table 1: Speech recognition performance in terms of Word er-
ror rate (WER) on single-channel LibriCSS data using oracle
diarization.

on target WER [%]
Lwsup data all OV40

(1) Mixtures - - 26.2 41.6
(2) SpeakerBeam 7 7 24.1 33.2
(3) SpeakerBeam 3 7 20.8 31.1
(4) SpeakerBeam 3 3 20.3 30.2

Table 2: Speech recognition performance in terms of Word error
rate (WER) on single-channel LibriCSS data using RPN and
TS-VAD diarization.

on target RPN TS-VAD
Lwsup data all OV40 all OV40

DER [%] - - 9.5 14.2 7.6 9.5

WER [%]
(1) Mixtures - - 31.2 47.2 28.4 42.4
(2) SpeakerBeam 7 7 30.1 42.3 27.4 36.3
(3) SpeakerBeam 3 7 27.0 40.0 24.3 33.7
(4) SpeakerBeam 3 3 26.6 39.4 24.0 33.0

sults on the evaluation set (all) and the condition with high-
est amount of overlap (OV40). We compare 4 different se-
tups: (1) unprocessed data without SpeakerBeam applied, (2)
baseline SpeakerBeam trained with the supervised loss Lsup on
LibriSpeech-mix, (3) SpeakerBeam retrained with the weakly
supervised loss Lwsup on LibriSpeech-mix, and (4) Speaker-
Beam retrained on target LibriCSS data with Lwsup. The setups
(2)-(4) correspond to steps 1-3 as described in Sec. 4.3. Note
that for (4) there are no parallel data available.

For the experiments, it is necessary to have diarization out-
puts — first, for ASR decoding, and second, to get speaker la-
bels when adapting to the target data. To avoid the influence of
the diarization errors, we first perform experiments using oracle
diarization. The results are shown in Table 1. Comparing the
results on unprocessed data (row (1)) with applying baseline
SpeakerBeam trained with the supervised loss Lsup (row (2)),
we can see that the target speech extraction improves the ASR
performance significantly, especially when a higher amount of
overlap is present. Retraining the SpeakerBeam system with the
weakly supervised loss Lwsup on the original artificially mixed
data (row (3)) improves the performance further. By exploring
the outputs of original and retrained SpeakerBeam, we can see
that after retraining with Lwsup, the resulting speech contains
slightly more noise, but less speech distortion. Such outputs
may be more favorable for the ASR system. Note that the net-
work in (2) is fully converged and training it longer with super-
vised loss does not yield better results. The improvements in (3)
are thus not caused by simply longer training. Finally, retrain-
ing SpeakerBeam directly on the target evaluation set, leads to
further improvement, showing that it is possible to adapt to the
target conditions using the speaker labels only.

Although not directly comparable, a separation using a sim-
ilar network architecture and hybrid ASR back-end achieved a
WER of 35.5% on OV40 condition in [13]. The performance of
the proposed system could also be improved using more sophis-
ticated network architectures for both front-end and back-ends
as in [13].

In the second set of experiments, we used outputs of the
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Figure 2: Speech recognition performance as a function of
number of iterations during adaptation and different values
of weight λspk. The mixture consistency weight λmix is set to
1− λspk.

diarization system rather than the oracle ground-truth diariza-
tion, to see whether errors in the speaker labels have a detrimen-
tal effect on the adaptation. We used two different diarization
systems, i.e. region proposal network (RPN) [35] and target-
speaker voice activity detection (TS-VAD) [36]3. Table 2 shows
the results of the ASR, together with the diarization error rates
(DER) of the diarization systems. We can see that in both cases,
the trends are similar as with the oracle diarization. Including
the proposed loss brings from 2.3% to 3.1% WER improve-
ment, and adapting to the target data further improves the per-
formance by 0.3-0.7% WER. The adaptation to the target data
was thus not significantly affected by the diarization errors.

To understand better how the two parts of the loss func-
tion, defined in Sec. 4, affect the training, we experimented with
different weights λspk, λmix during the adaptation stage. Fig-
ure 2 shows the speech recognition performance as a function
of the number of iterations performed. We set the weights so
that λmix + λspk = 1. The results show greater importance of
the speaker identity loss Lspk. When the mixture consistency is
dominant in the loss, the performance starts to worsen after 10k
iterations. The speaker consistency loss leads to improvements
even by itself, however, the best results are still obtained when
both parts of the loss are balanced.

6. Conclusion
In this paper, we have investigated a novel loss for target speech
extraction, which makes use of speaker characteristics. We
have shown that retraining with the proposed loss improves au-
tomatic speech recognition performance. Further, due to its
weakly supervised nature, it is possible to adapt to target data
using diarization labels, and bring further improvements. Al-
though we have focused on target speech extraction in this
study, the loss is applicable also to speech separation.
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