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Abstract
Air traffic management and specifically air-traffic control (ATC)
rely mostly on voice communications between Air Traffic Con-
trollers (ATCos) and pilots. In most cases, these voice commu-
nications follow a well-defined grammar that could be leveraged
in Automatic Speech Recognition (ASR) technologies. The
callsign used to address an airplane is an essential part of all
ATCo-pilot communications. We propose a two-step approach
to add contextual knowledge during semi-supervised training to
reduce the ASR system error rates at recognizing the part of the
utterance that contains the callsign. Initially, we represent in a
WFST the contextual knowledge (i.e. air-surveillance data) of
an ATCo-pilot communication. Then, during Semi-Supervised
Learning (SSL) the contextual knowledge is added by second-
pass decoding (i.e. lattice re-scoring). Results show that ‘un-
seen domains’ (e.g. data from airports not present in the super-
vised training data) are further aided by contextual SSL when
compared to standalone SSL. For this task, we introduce the
Callsign Word Error Rate (CA-WER) as an evaluation metric,
which only assesses ASR performance of the spoken callsign
in an utterance. We obtained a 32.1% CA-WER relative im-
provement applying SSL with an additional 17.5% CA-WER
improvement by adding contextual knowledge during SSL on a
challenging ATC-based test set gathered from LiveATC.
Index Terms: automatic speech recognition, contextual semi-
supervised learning, air traffic control, air-surveillance data,
callsign detection.

1. Introduction
ATCos regulate and ensure the safety and reliability of air traf-
fic movements by providing spoken guidance to pilots during
all flight phases, e.g. approach, landing, taxi, and take-off. This
task has been demonstrated to be demanding and stressful [1].
Their most important working tools are their ability to speak ar-
ticulately, and to master radio, radar, and flight plans. ATC com-
munications follow a well-defined grammar and set of words.
However in many cases, there are deviations from the official
phraseology in both vocabulary and syntax.

Recently, the European Union and Clean Sky Joint Un-
dertaking1 with the aim of decreasing ATCos workload, in-
creasing air-space safety, and reducing aircraft pollution have

1Clean Sky is the largest European research program developing in-
novative, cutting-edge technology aimed at reducing CO2, gas emis-
sions, and noise levels produced by aircraft. https://www.cleansky.eu

been supporting projects such as MALORCA, HAAWAII, and
ATCO2, producing detailed results on how to reduce ATCos
workload [2], increase their efficiency [3], and how to integrate
contextual information in the ASR pipeline [4, 5].

Previous research under ATCO2 project targeted cross-
accented ASR in ATC, where more than 142 hours from differ-
ent sources and airports were used for supervised training [6].
Preliminary results on four test sets suggest that the ASR system
can generalize towards speakers with different English accents
as long as sufficient amount of manually transcribed training
data is available [6]. In fact, current commercial ASR systems
are trained on thousands of annotated speech data whereas in
ATC domain not even a considerable fraction of that amount
is available for supervised training. Recent research on ASR
in ATC has concluded that the lack of annotated speech data
and its high production cost are current issues holding the de-
velopment of fully autonomous ASR systems [7]. Some pre-
vious research addressed the lack of transcribed ATC speech
data using semi-supervised training (e.g. ASR tasks applied to
under-resourced languages [8, 9, 10, 11]) to decrease Word Er-
ror Rates (WER) [12, 13]. In this paper we investigate the effect
of integrating contextual knowledge from air-surveillance data
into the Semi-Supervised Learning (SSL) pipeline to further
boost the performance gains. Detailed information on the pro-
posed approach is given in section 3. Similar research adding
contextual knowledge into the decoding graph (HCLG.fst) or
by re-scoring lattices after the decoding step were described
in [14, 15, 16, 17]. Modifying the Language Model (LM) with
prior knowledge is reviewed in [18, 19].

In Section 2 we present the main ATC task and how SSL
and contextual knowledge can be used to leverage the ASR sys-
tem. Section 3 and Section 4 presents the experimental setup
and the two input streams of data, i.e. air-surveillance data and
untranscribed ATC voice communications. Section 5 presents
the main results and discussion. Finally, Section 6 concludes
the paper and proposes a road-map about how to scale up this
method for ASR systems trained on data from different airports.

2. Contextual ASR & semi-supervised
learning

An ATCo-pilot communication heavily rely on the very partic-
ular context they are in. Characteristics such as airplane loca-
tion, altitude, departure or arrival, and air-space status define
the information that could be uttered by the speakers (small
deviations are allowed in specific scenarios). For instance, an
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ASR system can leverage this particular contextual information
(mentioned above) as prior knowledge to increase its perfor-
mance. However, aspects such as speaker’s characteristics, lo-
cation and context, low Signal-to-Noise Ratio (SNR) levels, and
air-space status increase the challenge of ASR for the ATC task.

2.1. Contextual automatic speech recognition

Our work relies mostly on adding air-surveillance data as con-
textual knowledge in the ASR system, also known as ‘contex-
tual ASR’. Contextual ASR has been an active topic of research
in the last decade, where companies such as Google and Mi-
crosoft have leveraged contextual data (e.g. user location and
contact list) for boosting mobile devices’ ASR performance.
One of the straightforward ways of adding context into the sys-
tem is by biasing the LM. In [15], an on-the-fly re-scoring algo-
rithm allows the insertion of contextual knowledge to the output
of the system, with a set of n-grams represented as a ‘Biasing’
WFST. Similarly, [16] proposes an updated version of the pre-
vious biased (‘B’) WFST. These two previous studies are very
related to what we propose in this work. But here, we apply the
‘biasing’ technique in SSL rather than standard ASR training to
improve the system’s performance. Further research focused on
augmenting the n-gram LMs with contextual information (e.g.
adjusting the LM probabilities on-the-fly) is reviewed in [18] or
on injecting classes into a non-class-based LM [19]. In [17],
the authors explored semantic information inside the decoded
word lattice by employing named entity recognition to identify
and boost some contextually relevant paths. Finally, research in
adding contextual knowledge in end-to-end ASR systems were
presented in [20].

2.2. Contextual ASR in air-traffic control communications

The International Civil Aviation Organization (ICAO) is the en-
tity that regulates the phraseology and grammar used in ATCo-
pilot voice communications. A standard communication starts
with a callsign, followed by a command, and a value. One of
the main challenges in ATC (thus in ASR) is to correctly iden-
tify the inner callsign in the utterance that specifically addresses
an individual aircraft. This research focuses on using a list of
callsigns as prior knowledge in the ASR system to reduce the
search space, thus increasing overall recognition performance.
Previous work has attempted to incorporate contextual knowl-
edge in the recognition process. Shore et al. [5] targeted word
lattice re-scoring with dynamic context (obtained from an in-
dependent ATC system that generates a list of possible “com-
mands”) to improve the network recognition performance. Fur-
ther research on this line of work was presented in [4, 21, 22].
We redirect the reader to a general review about spoken instruc-
tion understanding in the ATC domain to [23]. Nevertheless,
most of the previously cited works in ASR for ATC employ
only data from few airports assuming high-quality speech, i.e.
high SNR ∼20dB. However, it is hard to determine in advance
the quality of each ATCo-pilot communication due to a range
of elements such as weather, cockpit or environmental noise.

2.3. Semi-supervised learning in ASR

SSL has been proven to be an important asset for ASR in
many tasks. The goal of SSL is to leverage large amounts of
non-annotated (i.e. data augmented with automatically gen-
erated transcripts) data to boost the performance of the ASR
trained in an supervised manner. There have been many recent
studies leveraging untranscribed data during ASR training; for

example, pre-training and self-training methods in end-to-end
ASR systems [24]. Other research has leveraged non-annotated
data for ASR in low-resource languages [11]. Regarding ATC
voice communications, previous researchers have explored dif-
ferent techniques for leveraging untranscribed ATC data with
SSL [12, 13].

3. Datasets and Methods
We propose a method for leveraging contextual data during
semi-supervised acoustic model training. In this context, the
system is fed with two input streams of data: i) transcribed and
untranscribed ATC voice communications and ii) correspond-
ing contextual information in the form of air-surveillance data
gathered from OpenSky Network (OSN). The air-surveillance
contextual data is composed of a list of callsigns for each utter-
ance in the untranscribed dataset. In normal conditions, one of
these callsigns is present in the utterance.

3.1. Supervised ATC databases

The supervised database is composed of more than 100 hours of
mostly clean speech recordings from public domain resources
(Atcosim [25], UWB atcc [26] and LDC atcc [27]) and from
Air Navigation Service Providers (ANSPs) such as in previous
projects (Prague and Vienna airports for MALORCA [12, 13]
and Toulouse-Blagnac for AIRBUS [28]). The transcripts nor-
malization of these databases was a challenging task due to
multiple file formats and annotation ontology. The speakers’
accent for each database is country-dependent (e.g. Airbus con-
tains mostly French-accented English recordings). We tested
our ASR systems on Airbus (1 hr), Prague (2.2 hr) and Vienna
(1.9 hr) test sets, which mostly contain clean speech. Detailed
description of these transcribed databases are in [6, 29].

3.2. Data from very-high frequency receivers

There are several ways to obtain untranscribed ATC speech
data. For this study we gathered data from two sources that rely
on Very-High Frequency (VHF) receivers: i) open-source chan-
nels such as LiveATC2, and ii) recordings from high-quality
VHF receivers offered by one project partner (ReplayWell). The
recording quality is proportional to how far the VHF receiver is
from the speaker (ATCo/pilot) and the hardware quality. First,
we manually transcribed 1.9 hours of recordings (mostly noisy
speech) from LiveATC to assemble a challenging test set. We
tag it as ‘liveatc mix’ including recordings from EIDW, LSZH,
KATL, EHAM, ESGG, and ESOW airports. The SNR levels for
liveatc mix test set ranges from 5-15 dB. Secondly, we gathered
67 hours (49 thousand segments) of ATCo-pilot speech with
high-quality setups of VHF receivers in Prague (LKPR) and
Brno (LKTB) airports from August 2020 until January 2021.
We tag it as ‘unsup vhf 67h’ untranscribed train set. We anno-
tated 5 minutes (without silences) of speech collected with VHF
receivers from Brno airport (not present in the supervised data),
i.e. ‘aiport lktb vhf ’ test set. Additionally, we automatically
extract timestamp and location information for each utterance
in unsup vhf 67h.

3.3. Contextual knowledge in semi-supervised learning

Currently, all the airplanes circulating in Europe must be
equipped with Automatic Dependent Surveillance–Broadcast

2LiveATC.net is a streaming audio network consisting of local re-
ceivers tuned to aircraft communications: https://www.liveatc.net/
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Figure 1: Process of retrieving a list of callsigns (contextual
data) from OpenSky Network. The contextual data is the com-
pendium of all possible verbalized versions of each callsign.

and Mode S modules which transmit almost in real-time their
information as meta-data such as altitude, velocity, callsign, and
direction. OpenSky Network3 captures that information, which
can be retrieved by defining a query. We define a query based
on the utterances’ timestamp and scanned area (unsup vhf 67h
untranscribed set). OSN retrieves a list of callsigns in ICAO for-
mat for each utterance that match the query criteria (potentially
one callsign from this list is present in the given utterance).
However, our ASR system is trained with transcripts that have
the verbalized version of the callsigns instead of ICAO format.
We developed an algorithm that verbalizes the ICAO callsigns
into different versions. The process is then repeated for each
callsign from the callsign list. Figure 1 shows the pipeline to as-
semble the contextual data from the verbalized callsign list for
one utterance. Our previous work can give a more in-depth idea
on how the list of callsigns are retrieved and verbalized [29].
Finally, we repeat this pipeline for each utterance of the unsu-
pervised train set, unsup vhf 67h.

4. Experimental setup
At this stage, we have the manually transcribed ATC data,
five test sets (Airbus, Prague, Vienna, liveatc mix and
aiport lktb vhf), and 67 hours of untranscribed training data
(unsup vhf 67h) with their respective contextual information.
The experimental setup is divided into: i) lexicon, language
model and seed model training, and ii) contextual semi-
supervised learning.

4.1. Baseline ASR system

The lexicon is composed of a word-list assembled from the tran-
scripts of all available annotated train databases and from ad-
ditional public resources (e.g. airlines names, airports, coun-
tries, ICAO alphabet, way-points, etc). The pronunciation of
new words (very common in ATC communications) is obtained
with Phonetisaurus G2P [30]. The language model is a tri-
gram LM created by interpolating several LMs. An additional
LM (only used during the interpolation, to further tune the fi-
nal LM) is built from external data such as expanded callsigns
from 20194, expanded runaways (all combinations) and Euro-
pean way-points.

All experiments are conducted with Kaldi speech recog-
nition toolkit [31]. We report results on state-of-the-art deep
neural networks based architectures for hybrid-based ASR. All
our models are composed of six convolution layers and 15 fac-
torized time-delay neural network. We use the standard chain
Lattice-free MMI (LF-MMI) based Kaldi’s recipe [32] for train-

3OpenSky Network: provides open access of real-world air traffic
control data to the public

4https://zenodo.org/record/3901482.X5cK9k0m4

Figure 2: Contextual semi-supervised learning pipeline.

ing the seed and SSL-based models. It also requires 100-
dimensional i-vector features and 40-dimension MFCC fea-
tures. Previous experiments [29] suggested that adding noise to
the train data that matches LiveATC audio channel brings con-
siderable improvement in WERs in challenging test sets (e.g.
liveatc mix). We triple the training data by adding noises to
the whole database between 5-10dB SNR and then between 10-
20dB SNR. The baseline ASR system is trained on all available
data for 5 epochs, which we call ‘seed system’.

4.2. Contextual semi-supervised learning

We follow the standard recipe for semi-supervised learn-
ing [11], where a seed system produces word recognition lat-
tices of the untranscribed data set (e.g. unsup vhf 67h), which
are then mixed with the lattices generated on manually tran-
scribed data to train a new acoustic model. In hybrid ASR,
lattices are representations of search results that act as ‘inter-
mediate format’ that contain timing information with more de-
tails than plain 1-best string or n-best lists. Lattices generated
on manually transcribed and untranscribed data are mixed and
a new model is trained with this merged data. There are several
ways to add contextual knowledge in the ASR system, e.g. tun-
ing LM towards a defined sequence of n-grams, modifying G.fst
when making HCLG graph, or simply re-scoring lattices. This
research only explores lattice re-scoring during SSL. Initially,
we create a Weighted Finite-State Transducer (WFST) graph for
each utterance in the untranscribed dataset (i.e unsup vhf 67h).
The WFST is constructed from n-grams of the verbalized call-
sign list (air-surveillance data retrieved from OSN). Afterward,
the baseline lattices of unsup vhf 67h (generated during the first
pass decoding) are composed with its particular callsign WFST
in a second pass decoding. The re-scored lattices are then used
to retrain the acoustic model again as presented in Figure 2. In
the lattice re-scoring approach, lattices’ weights are re-scored
to increase the probability of given callsign sequences. The ex-
panded callsigns (represented in WFST) get boosted during the
re-scoring process, thus they become more probable to appear
in the hypothesized transcripts.

5. Results and Discussion
We perform four different experiments to test the proposed ap-
proach exploiting the contextual knowledge in SSL (see Ta-
ble 1). First, we train a baseline acoustic model (i.e. seed
model) without semi-supervised learning (first row of Table 1).
Then, we train a new acoustic model from scratch with SSL, the
seed model is used to generate the lattices of the untranscribed
data set (unsup vhf 67h). Next, we re-scored the untranscribed
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Table 1: Word error rates (%) of several ASR systems for dif-
ferent test sets. The default discount parameter (dp) in ASR
systems with lattice re-scoring is 2.0.

System

liv
ea

tc
m

ix

ai
po

rt
lk

tb
vh

f

A
ir

bu
s

Pr
ag

ue

V
ie

nn
a

Baseline (seed model) 49.7 26.6 11 4.4 6.8
+ SSL 38.3 21.3 12.1 3.8 8.2
+ lattice re-scoring 37.3 21.4 12.2 3.8 8.4

SSL + lattice
re-scoring (dp: 6.0)

36.4 21.3 11.8 3.6 8.4

data lattices by composing them with the WFSTs (one for each
utterance) previously created. The lattice re-scoring approach
relies on a ‘discount’ hyper-parameter, which tells how much
weight is given to the ‘contextual knowledge’ encoded at the
moment the WFST is created. We report the last result on using
a discount parameter of 6.0 instead of 2.0.

SSL gave much larger improvement for test sets that
matched the data used in semi-unsupervised learning (i.e. sim-
ilar SNR and airport location). For example, we obtained
around ∼20% relative WER improvements in liveatc mix and
aiport lktb vhf test sets, and 13.6% relative WER improvement
in Prague test set by doing standalone SSL. Nevertheless, Air-
bus and Vienna test sets show a WER degradation. We attribute
this to data-quality mismatch (i.e. the untranscribed VHF data
is noisier than the data with manual transcripts), but also the
Airbus and Vienna test sets are from airports not present in
the untranscribed set. It is important to mention that WER
improvements in challenging test sets such as liveatc mix and
aiport lktb vhf are more significant because the data is nosier
and some airports are not present in the annotated train set;
which is closer to a real-life scenario. An extra ∼5% relative
WER improvement is achieved on liveatc mix and Prague test
sets when adding contextual knowledge into the SSL pipeline.
The Prague test set yielded improvements in WER in all four
proposed ASR systems. We believe this is because data was
present in both, the transcribed and untranscribed training sets.

The WER metric measures the ASR performance in the
whole utterance. Nevertheless, our contextual SSL approach
only ‘boosts’ the callsign part in the hypothesized utterance, in-
creasing the chances of recognizing the correct callsign (usually
composed of five to seven words, 25% of the transcript). We
therefore propose a new metric: Callsign Word Error Rate ‘CA-
WER’ which is more aligned to measure the ASR system per-
formance on callsigns only. CA-WER measures only the WER
of the callsign between the reference and hypothesized text.
We use texterros5 library to evaluate CA-WER, which needs
the verbalized ground truth callsign per utterance. We eval-
uated CA-WER for liveatc mix, Prague, and Vienna test sets;
610, 875, and 915 utterances have a callsign, respectively. The
CA-WER is evaluated for different discount parameters (hyper-
parameter in the WFSTs). Figure 3 shows that lattice re-scoring
helps in all cases for liveatc mix and it helps Prague test set after
a discount value of 4.0. Vienna test set is skipped from Figure 3,
because there were no significant variations across different dis-
count parameters. Even though there is a degradation in WER

5https://github.com/RuABraun/texterrors

Figure 3: CA-WER performance on liveatc mix (noisy) and
Prague (clean) test sets for different discount parameters used
at the moment of creating the biasing WFST.

for Vienna test set when adding contextual knowledge, we ob-
tained 7.5% relative CA-WER improvement when comparing
it with the ‘+ SSL’ model (thus showing the robustness of the
proposed approach). Discount parameter of 5.0 yielded the best
results, reaching a 17.5% and 14% CA-WER relative improve-
ment on liveatc mix (CA-WER: 39.88%→ 32.9%) and Prague
(CA-WER: 3.48%→ 2.99%) test sets, respectively (compared
to SSL without applying contextual knowledge).

Finally, the novelty of our approach is that SSL can further
leverage contextual knowledge, bypassing the burden of lack of
annotated data (which is the case for most of the ATC use-case
applications). ATC speech and air-surveillance data can be eas-
ily gathered for many airports in Europe, thus the proposed ap-
proach could be easily scaled up to different domains/airports.

6. Conclusions
This paper introduced a SSL approach that leverages contex-
tual knowledge. It relies on ATC speech and air-surveillance
data. Initially, we create a biasing WFST for each utterance, that
encodes n-grams sequences of verbalized callsigns retrieved
from OpenSky Network. This prior knowledge in the format of
WFST is then added into the SSL recipe to further improve the
acoustic models. The WERs did not improve across all cases
(test sets) with the proposed approach. However, we obtained
significant gains in CA-WER for liveatc mix, Prague, and Vi-
enna test sets, in comparison to standalone SSL. We believe that
CA-WER is a more relevant metric to evaluate the ASR sys-
tem if we aim to measure its performance regarding ‘callsign’
recognition. Our best ASR system trained with SSL and con-
textual knowledge yielded a 17%, 14% and 7.5% CA-WER rel-
ative improvement in liveatc mix, Prague, and Vienna test sets
compared to standalone semi-supervised learning, respectively.
Future research shall explore a better set of discount parame-
ters when building the WFST, for example ‘rewarding’ longer
sequences instead of giving the same score for all the boosted
sequences.
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