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Abstract

In speaker recognition, where speech segments are mapped to
embeddings on the unit hypersphere, two scoring backends are
commonly used, namely cosine scoring or PLDA. Both have
advantages and disadvantages, depending on the context. Co-
sine scoring follows naturally from the spherical geometry, but
for PLDA the blessing is mixed—length normalization Gaus-
sianizes the between-speaker distribution, but violates the as-
sumption of a speaker-independent within-speaker distribution.
We propose PSDA, an analogue to PLDA that uses Von Mises-
Fisher distributions on the hypersphere for both within and
between-class distributions. We show how the self-conjugacy
of this distribution gives closed-form likelihood-ratio scores,
making it a drop-in replacement for PLDA at scoring time. All
kinds of trials can be scored, including single-enroll and multi-
enroll verification, as well as more complex likelihood-ratios
that could be used in clustering and diarization. Learning is
done via an EM-algorithm with closed-form updates. We ex-
plain the model and present some first experiments.
Index Terms: speaker recognition, PSDA, Von Mises-Fisher

1. Introduction
Probabilistic linear discriminant analysis (PLDA) [1, 2], is a
popular backend for scoring speaker recognition embeddings
in Rd, following [3, 4]. However, [5] showed that length-
normalizing the embeddings onto the unit sphere, Sd−1 has a
Gaussianizing effect that improves accuracy and this has been
standard practice ever since. One disadvantage of the length-
normalization is that within-speaker variability is squashed in
the radial direction, making it speaker-dependent, in violation
of the PLDA assumption of a constant within-class distribution.
Moreover, given a flexible, discriminatively trained embedding
extractor, it is often found that cosine scoring (dot products
between embeddings in Sd−1) outperforms PLDA, especially
when the test data is in domain, e.g. [6, 7]. We propose to en-
rich the field with a new backend that is intermediate between
cosine scoring and PLDA: Probabilistic spherical discriminant
analysis (PSDA) uses Von Mises-Fisher (VMF) distributions on
Sd−1 in place of Gaussians. A Python implementation is avail-
able here.1

To the best of our knowledge, the only related work in
speaker recognition is [8], where a VMF mixture was used
for speaker clustering of length-normalized i-vectors. For face
recognition, VMF mixtures were explored in [9].

1https://github.com/bsxfan/PSDA

2. Von Mises-Fisher distribution
When embeddings in Euclidean space, Rd are length-
normalized, they are projected onto the unit hypersphere:2

Sd−1 = {x ∈ Rd : ∥x∥ = 1} (1)

When x ∈ Sd−1, it is on the sphere. If ∥x∥ < 1, it is inside. To
construct the PSDA model, we replace the Gaussians in PLDA
with Von Mises-Fisher (VMF) distributions. The density for
x ∈ Sd−1 is [10]:

V(x | µ, κ) = KdCν(κ)e
κµ′x where ν =

d

2
− 1 (2)

The parameters are the mean direction, µ ∈ Sd−1 and the con-
centration, κ ≥ 0. While Kd depends only on the dimension
and is of no further interest here,3 the other normalization factor
is all-important for our purposes:

Cν(κ) =
κν

Iν(κ)
=

( ∞∑

i=0

κ2i

22i+ν i! Γ(i+ ν + 1)

)−1

(3)

where Iν is the modified Bessel function of the first kind
(Bessel-I) of order ν. Note Iν(κ) ≥ 0 and Iν(0) = 0 for
ν > 0, but I0(0) = 1. The derivative can be expressed as [11]:

∂

∂κ
Iν(κ) =

ν

κ
Iν(κ) + Iν+1(κ) (4)

which shows it is monotonic rising. As a function of κ,
Cν(κ) is positive and strictly monotonic decreasing,4 and
limκ→0 Cν(κ) = 2νΓ(ν + 1). The concentration parameter,
κ is roughly analogous to precision in the normal distribution.
For smaller κ, the distribution is more widely spread, until at
κ = 0 it gives the uniform hypersphere distribution. For larger
κ, the distribution concentrates more tightly around µ. It should
be noted that µ ∈ Sd−1 is not the expected value, which instead
is at [10]:

⟨x⟩ = ρ(κ)µ, where 0 ≤ ρ(κ) =
Iν+1(κ)

Iν(κ)
< 1 (5)

2Do not confuse sphere with ball: Sd−1 is the surface of the ball.
Euclidean norm is denoted ∥x∥ =

√
x′x.

3Different authors (e.g. [10] vs [11]) use different expressions for
Kd, depending on the reference measure for the density. Kd is analo-
gous to the usually irrelevant (2π)d/2 factor in the multivariate normal
density.

4On a log-log plot it is relatively flat for 0 ≤ κ <<
√
ν + 1 and

then plunges dramatically for large κ.
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where ⟨x⟩ is inside the sphere, not on it. The norm,
∥∥⟨x⟩

∥∥ =
ρ(κ) is strictly increasing w.r.t. κ, where limκ→0 ρ(κ) = 0 and
limκ→∞ ρ(κ) = 1. The empirical mean, say x̄, of a cluster of
points on the hypersphere has the same behaviour: x̄ is inside
the sphere and moves closer to it (∥x̄∥ increases towards 1), as
the cluster becomes more concentrated.

2.1. Maximum likelihood parameter estimates

Given data set in Sd−1, say X = {xi}ni=1, assumed to have
been sampled iid from V(µ, κ), the maximum-likelihood (ML)
estimate of the parameters is obtained by maximizing the log-
likelihood:

log
n∏

i=1

V(xi | µ, κ) = n logCν(κ) + nκµ′x̄+ const (6)

where x̄ = 1
n

∑
i xi. The maximum w.r.t. µ ∈ Sd−1 is at:

µML =
x̄

∥x̄∥ (7)

Inserting this back into (6), we need to maximize:

n logCν(κ) + nκ ∥x̄∥ (8)

to find κ. Setting the derivative to zero, using (4), gives [10]:

κML = ρ−1(∥x̄∥) (9)

We used a numerical (derivative-free) rootfinding algorithm5 to
invert ρ. At the ML estimate ⟨x⟩ = x̄. The ML parameters
depend solely on the sufficient statistic x̄. When x̄ = 0, µ
is irrelevant and the likelihood is maximized at κ = 0, which
gives the uniform distribution.

3. The PSDA model
PSDA is constructed much like PLDA [4]. For every speaker
we posit a hidden speaker identity variable, z ∈ Sd−1, hav-
ing a VMF prior, V(z | µ, b), where µ ∈ Sd−1 is the speaker
mean direction and b ≥ 0 is the between-speaker concentra-
tion. Embeddings with low speaker concentration (as spread
out as possible), ideally b = 0, is required for good accuracy.
The simplest variant of PSDA has a uniform between-speaker
distribution (b = 0 and µ irrelevant). If however, the speaker
distribution is believed to be non-uniform, b and µ can be learnt
from labelled data, as we are accustomed to do with PLDA.

The observed embeddings in Sd−1, are supposed to have
been generated from speaker-dependent VMF distributions:
embeddings from different speakers are independent and those
from the same speaker are conditionally independent, given z.
If X = {xt}nt=1 are embeddings of a common speaker, then:

P (X | z) =
∏

t

V(xt | z, w) ∝ exp
[
wz′x̄

]
(10)

where x̄ = 1
n

∑
t xt and where w > 0 is the within-speaker

concentration. Note the conjugacy: the product of VMF distri-
butions for the observed data doubles as a likelihood function
for z, which is also in VMF form.

In summary, the learnable PSDA model parameters are
w, b ∈ R and µ ∈ Sd−1. Next we show how to do inference
and learning. We start with inference for z, followed by infer-
ence for the speaker hypothesis (scoring). Finally, maximum-
likelihood learning can be done with an EM-algorithm.

5scipy.optimize.toms748

3.1. The hidden variable posterior

Given one or more observations, X = {xt}nt=1, assumed to be
of the same speaker, the identity variable posterior is still VMF:

P (z | X) ∝ V(z | µ, b)
∏

t

V(xt | z, w)

∝ exp
[(

bµ+ w
∑

t

xt

)′
z
]

∝ V
(
z
∣∣∣ z̃

∥z̃∥ , ∥z̃∥
)

(11)

where z̃ = bµ+w
∑

t xt. The concentrations, b and w behave
in much the same way as the precisions in Gaussian PLDA. But,
in Gaussian PLDA [4], the posterior precision is dependent only
on the number of observations, while here, the posterior con-
centration, ∥z̃∥ is data-dependent. If the data all lie in the same
quadrant then the more data we have, the more the concentra-
tion will grow. But if the data are spread with angles wider than
90 degrees, they can (partially) cancel and the posterior concen-
tration can become arbitrarily small (e.g. if b = 0 and there are
two antipodal observations, then z̃ = 0). This stands in contrast
to the heavy-tailed PLDA model of [12], where larger norms are
associated with larger within-speaker variation.

3.2. Scoring

Given a trained PSDA model, with parameters (w, b,µ), we de-
rive a general recipe for computing likelihood-ratio scores. As
with PLDA [4], PSDA provides closed-form scores for a vari-
ety of verification and clustering trials. Let E = {e1, . . . , em}
denote a collection of m ≥ 1 enrollment observations hypothe-
sized to be from a common speaker. T = {t1, . . . , tn} denotes
a collection of n ≥ 1 test observations from a common (but
possibly different) speaker. We want to compute a likelihood-
ratio (LR) for hypothesis H1, that all observations come from
one common speaker, against hypothesis H2, that they come
from two different speakers:

P (E,T | H1)

P (E,T | H2)
=

P (E,T | H1)

P (E | H1)P (T | H1)
(12)

All RHS factors are marginals, where z has been integrated out.
We can use the conjugacy and the availability of the VMF nor-
malizer (3) to solve these integrals in closed form. Following
the derivation in [4], the LR can be rewritten as:

P (E,T | H1)

P (E,T | H2)
=

P (z0 | E)P (z0 | T)

P (z0 | E,T)P (z0)
(13)

Since the LHS is independent of z0 ∈ Sd−1, so is the RHS:
all factors of the form ez

′
0··· cancel, leaving only the VMF nor-

malization constants to yield our general closed-form scoring
function:

P (E,T | H1)

P (E,T | H2)
=

Cν(∥bµ+ wẽ∥)Cν(
∥∥bµ+ wt̃

∥∥)
Cν(

∥∥bµ+ wẽ+ wt̃
∥∥)Cν(b)

(14)

where ẽ =
∑m

t=1 et, and t̃ =
∑n

t=1 tt.

3.2.1. Relationship with cosine scoring

In the special case when we set the model parameter b = 0
and when the enroll and test sets are singletons, m = n = 1,
there is a close relationship between the PSDA score (14) and
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the ubiquitous cosine score. When b = 0, the score simplifies
to:

P (E,T | H1)

P (E,T | H2)
=

Cν(w)2

Cν(w
∥∥ẽ+ t̃

∥∥) limb→0 Cν(b)
(15)

When ẽ = e1 ∈ Sd−1 and t̃ = t1 ∈ Sd−1, the cosine score is
the dot product

〈
ẽ, t̃

〉
, which can be rewritten as:

〈
ẽ, t̃

〉
=

∥∥ẽ+ t̃
∥∥2 − 2

2
(16)

Since Cν is monotonic decreasing, there is a monotonic ris-
ing functional relationship between the PSDA score and the co-
sine score. This means the EER and minDCF and in general
the whole DET-curve will be identical for cosine scoring and
PSDA. However, for b > 0 and also all other kinds of trials,
this scoring formula (14) has a more complex and possibly more
useful behaviour.

The proposed model can be seen as intermediate between
cosine scoring and PLDA. Cosine scoring has no learnable pa-
rameters, while PLDA has a substantial set of parameters, on
the order of d2. The PSDA model has parameters, but only
about d of them. When b is small the EER for PSDA can get ar-
bitrarily close to cosine scoring, but some extra flexibility is ob-
tained when w, b,µ are trained. For multiple enrollments, this
model also gives a more interesting (arguably more principled)
computation compared to simple averaging of the enrollment
embeddings.

3.2.2. Scoring implementation

To implement (14) we note some details. Bessel-I functions are
tricky. Iν(κ) is available in scipy.special, but when ν is
large (as here), both overflow and underflow occur. Overflow
can be managed by using scipy.special.ive, which im-
plements Iν(κ)e−κ, which we used for:

log Iν(κ) = log
(
Iν(κ)e

−κ)+ κ (17)

This still underflows for small κ. Whenever κ <
√
ν + 1, we

used the first few terms (say 5) of the series expansion:

log Iν(κ) = log
∞∑

i=0

(κ/2)2i+ν

Γ(i+ 1)Γ(i+ ν + 1)
(18)

using logsumexp, log κ and gammaln.
Since

∥∥bµ+ wẽ+ wt̃
∥∥ is required in the denominator

of (14), for every trial, a fast implementation is desirable. The
numerator norms are of lesser concern. We can rewrite the norm
as:

∥∥bµ+ wẽ+ wt̃
∥∥2

= ∥bµ+ wẽ∥2 +
∥∥wt̃

∥∥2
+ 2

〈
bµ+ wẽ, wt̃

〉 (19)

where the dot product for an m-by-n block of scores can be
implemented with a fast matrix multiplication.

3.3. Learning

Maximum-likelihood-learning can be done via an EM algo-
rithm with closed-form updates, given labelled observations for
a number of speakers. For each speaker, i, let there be ni ob-
servations with mean, x̄i. The required statistics are just zero
and first-order stats. In Gaussian PLDA, we need second-order

statistics of the data too, but here, the speaker cluster spread is
effectively contained in ∥x̄i∥. The total number of observations
is N =

∑
i ni and the number of training speakers is S. The

E-step is the computation of the EM auxiliary:

Q(w, b,µ) = const+
∑

i

⟨logP (Xi | z, w) + logP (z | µ, b)⟩P (z|Xi)

=
∑

i

〈
ni logCν(w) + niwx̄′

iz
〉
P (z|Xi)

+

〈
logCν(b) + bµ′z

〉
P (z|Xi)

= N logCν(w) +Nw
1

N

∑

i

nix̄
′
i ⟨z⟩i +

S logCν(b) + Sbµ′ 1

S

∑

i

⟨z⟩i

(20)

The expectations are taken w.r.t. the posteriors (11), where ⟨z⟩i
is the posterior expectation for speaker i, as given by (5). The
M-step maximizes Q w.r.t. the parameters. For b,µ this can
be done by identifying the last line above with (6). For w, we
identify the second last line with (8). This gives the updates:

µ← z̄

∥z̄∥ , b← ρ−1(∥z̄∥), w ← ρ−1(∥r̄∥) (21)

where:

z̄ =
1

S

∑

i

⟨z⟩i , and ∥r̄∥ = 1

N

∑

i

nix̄
′
i ⟨z⟩i (22)

Since ρ−1 is monotonic rising, we see:

• When z̄ is closer to the origin, the estimated between-
speaker concentration, b is smaller (good for accuracy).

• The better the observations align with the hidden vari-
ables, the higher the estimated within-speaker concen-
tration, w (also good).

4. The VMF classification head
The VMF-based PSDA model provides some interesting in-
sights into classifier-style embedding extractor training. The
functional form of the standard discriminatively trained mul-
ticlass linear classifier, with inputs in Rd, is obtained by let-
ting the logits (softmax inputs) be the class log-likelihoods of a
Gaussian model with a common within-class covariance. The
logit for class i is:

logN (x | µi,P
−1) = µ′

iPx− 1

2
µ′

iPµi + const (23)

where x,µi ∈ Rd. Note the class-dependent offsets. If instead,
we restrict x,µi ∈ Sd−1, we can derive a similar classifier
using a VMF model, with common within-class concentration,
so that the logits become:

logV(x | µi, κ) = κµ′
ix+ const (24)

now without the offsets.6 Although logits of the form (24) are
now almost ubiquitous in machine learning,7 and the connection

6If there is a known class imbalance, fixed, non-trainable offsets
log pi, where pi is class proportion, can be added to the logits.

7κ−1 is usually termed temperature
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Table 1: Comparison of the speaker verification performance for cosine scoring, PLDA, and PSDA. The performance metrics are EER
(%) and minDCF for ptar = 0.05

Back-End Dim.reduction VoxCeleb1-O VoxCeleb1-H
EER MinDCF EER MinDCF

cos - 1.10 0.071 2.13 0.126
cos PCA 100 1.12 0.073 2.21 0.130
cos LDA 100 2.05 0.157 5.28 0.340
PLDA - 4.47 0.254 6.80 0.325
PLDA PCA 100 1.34 0.094 2.69 0.152
PLDA LDA 100 2.16 0.157 4.61 0.273
PSDA - 1.10 0.071 2.13 0.126
PSDA PCA 100 1.12 0.073 2.21 0.130
PSDA LDA 100 2.04 0.155 5.20 0.333

with VMF likelihood has been explored in [9], it appears to be
relatively unknown.

In speaker recognition (24) is used when embedding ex-
tractors are trained classifier-style (with one class per train-
ing speaker), although the problem may be made artificially
harder by modifying the target logits with a margin, as in AM-
softmax [13] and AAM-softmax [14].

In a variety of embedding extractors trained with AM-
softmax and AAM-softmax, we found [15] that the length-
normalized embeddings tend to collapse almost to a subspace,
with very little variability in at least half of the dimensions.
This is termed dimensional collapse in [16]. Curiously, if we
train 512-dimensional embeddings, they collapse to less than
256 dimensions. If we train 256-dimensional embeddings, they
collapse to less than 128 dimensions. Since dimensional col-
lapse is not modelled by PSDA, we tried using PCA and LDA
dimensionality reduction to better fit the data to the model, but
with mixed results. For future work, we are interested in modi-
fying the embedding extractor training criterion to combat such
collapse and instead encourage a uniform hypersphere between-
speaker distribution. The ideas in [17, 16, 9] may be helpful.

5. Experiments
We experimentally compared PSDA with two baseline back-
ends, PLDA and cosine scoring, on a variety of data sets, with
similar outcomes. We report only the VoxCeleb results here.
Embeddings of dimension 256 were extracted with a ResNet34
that was trained on the development part of VoxCeleb2 [18] to
optimize AAM loss. We reused the same dataset to train the
back-end, with the difference that we concatenated all segments
belonging to the same session before extracting the embedding,
while for training the extractor, the original VoxCeleb segments
were used. Also, augmentation was not done for back-end train-
ing. The performance was tested on two conditions: the “orig-
inal” VoxCeleb1-O set and the “hard” trial list VoxCeleb1-H.
We report equal error-rate (EER) and minimum detection cost
function (DCF) at a target prior of 0.05.

Because of the above-mentioned dimensionality collapse,
we tried dimensionality reduction before applying the various
back-ends. We compared PCA, LDA, and no dimensionality
reduction for each of the three back-ends. The results are pre-
sented in Table 1. On this data, cosine scoring provides better
performance than PLDA, regardless of preprocessing, in agree-
ment with previous works, e.g. [7]. For PLDA trained on the
embeddings without dimensionality reduction we had to set the
size of the speaker and channel subspaces to 100 to avoid singu-

lar covariance matrices. In other cases, we use two-covariance
PLDA i.e. speaker and channel hidden variables have the same
dimensionality as the observed data. Second, we observe that
for both cosine scoring and PSDA, the raw embeddings without
dimensionality reduction provide better performance than using
low-dimensional embeddings. For PLDA we see the opposite
trend: for good performance PLDA has to be applied after di-
mensionality reduction. Finally, the results of cosine scoring
and PSDA are very similar, with the best performance achieved
without preprocessing.

6. Conclusion
In speaker recognition state of the art (as in many other ma-
chine learning problems), length-normalized embeddings em-
pirically perform better. Cosine scoring follows naturally, but is
merely geometrically motivated (within-class distances should
be small, between-class large). The PLDA model provides a
beautiful, rich probabilistic scoring recipe, but makes use of
Gaussians to model densities in Rd. However, distributions re-
stricted to Sd−1 do not even possess densities in Rd. Gaussians
can only approximately fit length-normalized data. This is com-
pounded with the above-mentioned speaker-dependent within-
class distribution problem. We have shown that by using VMF
distributions instead, PSDA can model distributions directly in
Sd−1, while still enjoying the scoring and training benefits of
PLDA. We have shown theoretically and empirically, that (up to
calibration) PSDA can be equivalent to cosine scoring. We hope
this new tool can provide new theoretical insights and practical
tools for both embedding extraction and scoring algorithms. In
future we aim to explore calibration properties of PSDA, mix-
tures of PSDA, and PSDA scoring for clustering and diarization.
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