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ABSTRACT

Sound Event Detection and Source Separation are closely related
tasks: whereas the first aims to find the time boundaries of acoustic
events inside a recording, the goal of the latter is to isolate each
of the acoustic sources into different signals. This paper presents
a Sound Event Detection system formed by two independently pre-
trained blocks for Source Separation and Sound Event Detection.
We propose a joint-training scheme, where both blocks are trained
at the same time, and a two-stage training, where each block trains
while the other one is frozen. In addition, we compare the use of
supervised and unsupervised pre-training for the Separation block,
and two model selection strategies for Sound Event Detection. Our
experiments show that the proposed methods are able to outperform
the baseline systems of the DCASE 2021 Challenge Task 4.

Index Terms— Sound Event Detection, Source Separation,
DCASE, DESED

1. INTRODUCTION

An important amount of information about our surrounding environ-
ment is provided by sounds. The human ability to recognize them
generally gives us an immediate idea of where we are, or what is
happening near us. In computational intelligence, several research
fields try to automatically retrieve this kind of information from
audio recordings. Particularly, the goal of Sound Event Detection
(SED) is to perform an automatic classification of the sound events
and determine their time boundaries [1].

The recent research in automatic processing of acoustic en-
vironments and sound events has been noticeably supported by
the yearly editions of the DCASE (Detection and Classification of
Acoustic Scenes and Events) international challenges [2]. In partic-
ular, DCASE Challenge Task 4 tackles the problem of Sound Event
Detection in domestic environments. The task considers a heteroge-
neous training dataset with different kinds of audio and labels [3],
such as synthetic soundscapes with strong labels (i.e. annotations
for the sound event categories and their time boundaries), and audio
from web videos provided with weak (clip-level) annotations or
without any annotation at all. In order to leverage unlabeled and
weakly-labeled data, mean teacher semi-supervised training [4] is
often employed [5, 6].

A different research field in audio computational intelligence is
Source Separation (SSep), which aims to decompose a sound record-
ing into the latent acoustic sources that form it, regardless of their

1 Funded by Project RTI2018-098091-B-I00 (Spanish Ministry of Sci-
ence and Innovation and ERDF). 2Work supported by Czech Ministry of Ed-
ucation, Youth and Sports from project no. LTAIN19087 ”Multi-linguality in
speech technologies”.

type (speech, music, background noise, etc.) [7]. Considering a
training dataset of audio mixtures for which the original sources are
available, deep neural networks can be trained for Source Separation
in a classic supervised scheme, using Permutation Invariant Training
(PIT) [8]. Moreover, an unsupervised training method for Source
Separation called Mixture Invariant Training (MixIT) has recently
been introduced [9], allowing to train Source Separation systems
when the original sources of the training mixtures are not available.

Recent research has suggested the idea that Source Separation
and Sound Event Detection tasks can benefit from each other, for
instance, using the predictions of a SED system to guide the sepa-
ration of events into different sources [10, 11, 12], learning SSep as
an intermediate representation for SED [13], or applying SSep as a
pre-processing step for SED, either fine-tuning the SED system over
automatically separated data [14] or training a SSep network as a
front-end stage to a pre-trained SED system [15].

In this paper, we propose a Sound Event Detection system com-
posed of two pre-trained blocks: a Source Separation network and a
Sound Event Detection network. In contrast with previous work, we
do not limit the training to just one of the two blocks. Instead, aiming
for both tasks to learn from each other, we introduce a joint training
setting, where the whole system is trained in an end-to-end fashion,
and a two-stage training, in which the SED block is fine-tuned first
while freezing the SSep block (Stage 1), and then the SSep block is
fine-tuned while freezing the SED block (Stage 2). Apart from these
training settings and their analysis, our experimental results provide
two additional contributions. First, for the SSep block, we compare
supervised pre-training on mismatched data with unsupervised pre-
training on matched data, in the context of the SED task. Second, we
compare two model selection strategies for the mean teacher train-
ing, i.e. student and teacher model selection.

The paper is organized as follows: In Section 2, the Sound Event
Detection and Source Separation tasks are introduced, discussing the
most relevant aspects for this work. Section 3 describes the pro-
posed methods for joint Source Separation and Sound Event Detec-
tion. The experimental setup is presented in Section 4, describing
the model settings and the datasets that are employed, along with the
results of the experiments and their discussion. Finally, Section 5
highlights the conclusions of the paper and overviews some future
work.

2. SOUND EVENT DETECTION AND SOURCE
SEPARATION

2.1. Sound Event Detection in DCASE Challenge 2021 Task 4

The goal of SED is to determine, from a given audio signal x, the
onset and offset times (ton, toff ) of the occurrences of a closed set
of K acoustic event categories. These times are usually obtained by
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setting a threshold τ ∈ (0, 1) for score sequences D̂ = ⟨d̂k⟩ ∈
(0, 1), 1 ≤ k ≤ K. In a neural network-based SED system, D̂
is the output of a sigmoid layer with K units. Such system, with
parameters θsed, can be expressed as

D̂ = f (sed)(x;θsed). (1)

In contrast with previous editions, the primary metric for eval-
uation in DCASE 2021 Task 4 is PSDS (Polyphonic Sound Detec-
tion Score) [16]. This metric aims to overcome some issues of F1
score, such as the dependence to a specific threshold. Two param-
eterizations are proposed for PSDS, leading to metrics PSDS1 and
PSDS2. These represent different application cases, prioritizing a
finer temporal detection (PSDS1) or a more precise event classifica-
tion (PSDS2). The challenge encourages to optimize each scenario
with different systems [17].

A baseline system is provided by DCASE to benchmark the
Sound Event Detection performance, based on a convolutional-
recurrent neural network (CRNN) trained with mel-spectrogram
features and mean teacher [3]. Mean teacher [4] is a semi-supervised
method that consists on training two models (student and teacher)
at the same time. The teacher has the same topology as the student,
and its weights θt are computed as an exponential moving average
of the student’s weights θs (thus, the teacher does not learn from
back-propagation). In addition to a binary cross-entropy supervised
loss (Lsup), the teacher score sequences are used as self-supervised
targets for the student by means of a mean squared error loss (Lself )
between the student (D̂s) and the teacher (D̂t) predictions, allowing
the system to learn from examples where ground truth annotations
(D) are not available. The total loss function (Lsed) of the system
is the sum of the supervised and self-supervised losses. A weight
αself is used to control the contribution of Lself to the total loss.

Lsup = BCE(D̂s,D) (2)

Lself = MSE(D̂s, D̂t) (3)

Lsed = Lsup + αselfLself (4)

Although the model (student or teacher) to use at test time is
not defined in advance, the model selection criterion of the baseline
system only tracks the performance of the student model.

A different baseline system is provided for the Sound Event De-
tection+Separation (SSep+SED) subtask, using the SED baseline
system as a pre-trained model, in addition to a pre-trained Source
Separation network. The SSep+SED baseline is a weighted com-
bination of two branches: the first branch fine-tunes the pre-trained
SED block over the output sources of the pre-trained SSep model,
whereas the second branch consists only of the pre-trained SED
block. The SSep model in the first branch and the SED model in
the second branch are frozen, thus they do not learn during the fine-
tuning process. The weight of the combination of the two branches
is learnt during the training process.

2.2. Source Separation

Universal Sound Separation [7] aims to separate arbitrary types of
sounds in a mixture x to M different outputs, Ŝ = ⟨̂sm⟩, 1 ≤ m ≤
M . Therefore, it is a particular task in the field of Source Separation
(SSep), and can be expressed as:

Ŝ = f (sep)(x;θsep) (5)

A typical issue when training SSep systems, compared to other
machine learning tasks, is that the order of the M output channels is

usually irrelevant for the adequacy of the result. This fact is known
as the permutation problem, and it is solved by the Permutation In-
variant Training (PIT) paradigm [8]. PIT computes the loss func-
tion L for all possible permutations of the output (Ŝ) and target (S)
sources using the permutation matrix P, and considers only the min-
imum loss, assuming that it corresponds to the correct permutation:

LPIT (S, Ŝ) = min
P

M∑
m=1

L(sm, [PŜ]m) (6)

In order to train SSep when target sources are not available for
the training data, Mixture Invariant Training (MixIT) [9] proposes to
train over the sum of two audio examples (x1,x2). In an analogous
way to PIT, MixIT considers the best assignment of the outputs to
each example, employing a 2×M binary matrix, A, in which each
column sums to 1:

Ŝ = f (sep)(x1 + x2;θsep) (7)

LMixIT (x1,x2, Ŝ) = min
A

2∑
i=1

L(xi, [AŜ]i) (8)

In both cases (PIT and MixIT), the loss function L is a negative
signal-to-noise ratio (SNR) between a target and an output source:

LSNR(s, ŝ) = −10 log10

(
||s||2

||s− ŝ||2

)
(9)

3. PROPOSED METHODS

3.1. Joint Source Separation + Sound Event Detection

We propose a Joint SSep+SED (JSS) model composed of pre-trained
SSep and SED blocks, as described in Figure 1. The input audio
clip x is fed to the SSep block, which outputs M waveforms with
the estimated sources, Ŝ. Then, the SED block is applied to each
source, obtaining M source-level SED predictions, D̂(src)

1...M . Finally,
a max-pooling function is applied to the source-level predictions,
obtaining clip-level predictions, D̂. The loss function Lsed (eq. 4)
is employed for training, back-propagating its gradients to update
the parameters of the SED block (θsed) and the SSep block (θsep).
This enables both blocks to adjust to each other, namely the SSep
block, pre-trained with the signal-level objective, is now fine-tuned
to produce optimal signals for the SED task, whereas the SED block
learns to process the separated signals.

The JSS model introduces two main differences with the
DCASE SSep+SED baseline: First, JSS is composed of a single
branch, omitting the SED-only branch of the baseline. This simpli-
fies the training process, however, the combination with a SED-only
model can still be performed in test time. Second, whereas the
SSep+SED baseline fine-tunes the SED system over already sepa-
rated mixtures, in JSS the SSep block is a part of the model itself,
meaning that its parameters can be optimized during the training
process.

In order to train JSS models, we propose two methods. On the
one hand, Joint Training (JT) loads the two pre-trained blocks and
trains them together in a single additional process. Alternatively, a
Two-stage Training is considered: In Stage 1, only the SED block
is updated, fine-tuning the SED block on separated data, as done
in the SSep+SED baseline. Afterwards, Stage 2 updates only the
SSep block, by back-propagating gradients of Lsed through the SED
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Fig. 1. Structure of the Joint Source separation and Sound event detection (JSS) system. The input is an audio waveform, which is separated
into M sources by the Source Separation (SSep) block. Each of the estimated sources is fed into the Sound Event Detection (SED) block,
obtaining M sets of SED source-level predictions that are combined into a single set of SED mixture-level predictions by means of a max-
pooling function. SED metrics and loss functions are computed over the mixture-level predictions.

Fig. 2. Diagram of the Two-stage Training method proposed for
Joint Source separation and Sound event detection (JSS). Horizontal
arrows indicate that the model obtained in a given stage is used as
the starting point for the next one.

system. Dividing the training into two stages allows us to better
control the process (e.g. check the convergence of each block) and
to analyze the contribution of each component in more detail. The
Two-stage Training process is illustrated in Figure 2.

3.2. Model selection

Our experiments involve several training processes that require a cri-
terion for model selection. For this purpose, the SED baseline pro-
poses choosing the student model that holds the best performance
in validation. However, due to the nature of the mean teacher train-
ing, the teacher model often holds a better performance in test time.
We also observed that the teachers consistently outperform their cor-
responding student models in the validation objective metric, thus,
we propose applying the model selection criterion over the teacher
model.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

Our experimental setup involves three datasets, one for Sound Event
Detection (DESED) and two for Source Separation (FUSS and
YFCC100M).

DESED (Domestic Environment Sound Event Detection) [18,
19] is the development dataset for DCASE 2021 Task 4. It con-
tains real audio clips (retrieved from Google AudioSet [20]) and
synthetic audio soundscapes, which are generated using the Scaper
toolkit [21], mixing foreground event recordings from the Freesound
Dataset (FSD) [22] and background recordings from SINS [23].
Several subsets are defined, according to the origin of the audio clips

and their available annotations: Unlabeled training set (14412 clips),
Synthetic training (12500), Weak training (1578), and Validation set
(1168 clips).

The FUSS (Free Universal Sound Separation) dataset [24] con-
sists on synthetic audio mixtures, which are artificially generated by
overlapping from 2 to 4 isolated recordings of foreground and back-
ground sounds. The individual sources are provided as well, in order
to use them as targets for Source Separation. FUSS is comprised of
20000 mixtures for training, 1000 mixtures for validation and 1000
mixtures for evaluation.

YFCC100M (Yahoo-Flickr Creative Commons 100 Million)
[25] is a dataset of pictures and videos obtained from web sources
and licensed for free public use. The dataset contains approximately
0.8 million videos with their corresponding audio. In contrast with
FUSS, and due to the origin of the videos, the individual audio
sources are not available.

4.2. Model settings

The SED baseline of DCASE 2021 is a CRNN with 7 convolutional
layers and 2 Bi-GRU (Bidirectional Gated Recurrent Units), trained
using mean teacher [3]. The unlabeled data from DESED, together
with a 90% of the weak set and an 80% of the synthetic set, are
used for training, whereas the remaining of the weakly-labeled and
synthetic sets are employed as validation data for model selection.

The Source Separation model of the SSep+SED baseline is an
improved time-domain convolutional network (TDCN++), trained
using MixIT over the YFCC100M audio data. The training and val-
idation data is distributed in the same way as in the SED baseline.

Alternatively, the SSep block in our JSS models is a Conv-
TasNet model [26] with R = 1 repeat, X = 4 convolutional blocks
and M = 4 outputs, whereas the SED block is a replica of the SED
baseline, with no changes in the structure or the training process.
The SED pre-training for JSS uses the same data distribution as the
SED baseline. This configuration is also used for the Joint Training
and Two-stage Training methods.

We try two pre-training settings for the SSep block: supervised
training over FUSS, and unsupervised training with MixIT using
DESED. In the latter case, Synthetic and Unlabeled training sets are
used for training, and the Weak training set for validation. Both
models were trained using the Asteroid toolkit [27].

4.3. Results and discussion

We have performed experiments comparing the Joint Training and
Two-stage Training methods, taking as starting point for the SED
block the DCASE baseline system, and for the SSep block the Conv-
TasNet model [26] trained over FUSS (with supervised training) or
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Student model sel. Teacher model sel.
PSDS1 PSDS2 F1(%) PSDS1 PSDS2 F1(%)

SED baseline 0.338 0.522 40.12 0.357 0.552 41.65
FUSS-S0 0.241 0.336 31.42 0.281 0.380 33.15
FUSS-S1 0.329 0.517 41.03 0.349 0.534 41.47
FUSS-S2 0.344 0.549 42.36 0.356 0.552 42.75
FUSS-JT 0.336 0.535 41.50 0.358 0.547 41.46
DESED-S0 0.249 0.352 33.89 0.273 0.373 35.69
DESED-S1 0.346 0.539 39.25 0.355 0.550 42.41
DESED-S2 0.328 0.529 40.85 0.362 0.572 43.40
DESED-JT 0.337 0.504 40.77 0.365 0.555 43.14

Table 1. Sound Event Detection results of the Two-stage Training (S0, S1, S2) and the Joint Training (JT) methods over the DESED Validation
set in terms of PSDS1, PSDS2 and collar-based F1 score. For each method, FUSS and DESED pre-training for the Source Separation block
are included, as well as Student and Teacher model selection for the mean teacher training. Our result with the SED baseline system of
DCASE 2021 is provided for comparison. The best result for each metric is highlighted in bold.

PSDS1 PSDS2 F1(%)
SSep-SED baseline 0.363 0.532 44.34
SED Bs + DESED-S2 0.379 0.590 43.74
SED Bs + DESED-JT 0.366 0.563 43.02
DESED-S2 + DESED-JT 0.380 0.589 45.52
SED Bs+DESED-S2+DESED-JT 0.379 0.587 45.05

Table 2. Sound Event Detection results of model fusions over the
DESED Validation set in terms of PSDS and collar-based F1 score.
All the models in each fusion use Teacher model selection. Our
result with the SSep-SED baseline of DCASE 2021 is provided for
comparison. The best result for each metric is highlighted in bold.

DESED (with MixIT unsupervised training). Moreover, we consid-
ered separate experiments with Student model selection or Teacher
model selection, leading to four different settings: FUSS+Student,
FUSS+Teacher, DESED+Student and DESED+Teacher.

We divide the results of the Two-stage Training into three steps:
Stage 0 (S0) is the initial state of the JSS model, loading the pre-
trained blocks without any further training, Stage 1 (S1) is a partial
result after the first stage of the training, and Stage 2 (S2) is the final
result after both stages.

Following the evaluation setup of DCASE 2021 Task 4, results
are provided in terms of PSDS1 and PSDS2 (primary metrics) and
collar-based F1 score (supplementary metric) over the DESED Vali-
dation set. Our results with the SED baseline system are included as
a benchmark of performance.

Table 1 shows the results of Joint Training and Two-stage Train-
ing for the four considered settings. It is worth noting that the S0
models hold lower performance than the baseline. This is caused
by the domain mismatch between the pre-trained SED block and the
separated sources. However, S1 results are comparable to the base-
line performance, suggesting that the domain mismatch is solved
when the SED block is tuned on separated data. In addition, S2 gen-
erally provides further improvement, showing that a fine-tuning of
the SSep block can be helpful, even using SED objective functions.
On the other hand, the performances of JT and S2 are similar.

When comparing the two proposed pre-training settings for the
SSep block, it is found that the unsupervised pretraining on matched
data (DESED) allows for similar or better performance than the su-
pervised training on unmatched data (FUSS). Between the student
and teacher model selection strategies, the teacher model selection
provides better results. Overall, the best results are obtained using

the DESED-pre-trained SSep network and teacher model selection:
0.365 PSDS1 (JT), 0.572 PSDS2 and 43.40% F1 score (S2).

In order to compare our methods with the SSep-SED baseline,
we computed a score fusion of our proposed models and the SED
baseline. For this purpose, we chose the DESED-pre-trained SSep
network with Teacher model selection. Results are provided in Ta-
ble 2, including as a benchmark our results with the SSep-SED base-
line.

In contrast with the SSep-SED baseline, which trains the weight
of the model combination, our score fusion is a fixed average of
the network predictions. Moreover, whereas the SSep-SED baseline
requires external data to train SSep, our DESED-SSep block is pre-
trained using the training data of the SED task.

Our fusion of the SED baseline and the Two-stage Training out-
performs the SSep-SED baseline in terms of PSDS, reaching 0.379
PSDS1 and 0.590 PSDS2, while holding a lower F1 (43.74%). When
combining the S2 model with the JT model, similar PSDS results are
obtained (0.380 PSDS1 and 0.589 PSDS2), whereas F1 increases to
45.52%, outperforming the SSep-SED baseline . Nevertheless, com-
bining the three models (SED baseline, DESED-S2 and DESED-JT)
does not provide further improvements.

Although the results show that JSS is beneficial for SED, the
winner systems of the DCASE 2021 challenge yield clearly better
performance.1 This was expected, however, due to the use of large
model ensembles and data augmentation in the challenge.

5. CONCLUSIONS

In this paper, we have introduced two training methods for joint
Sound Event Detection and Separation. Additionally, we compared
supervised and unsupervised pre-training for SSep, as well as two
different model selection criteria for mean teacher (student or teacher
model selection).

Our experiments show that the proposed methods outperform
the DCASE Task 4 baseline system, reaching our best results when
using unsupervised pre-training for SSep and teacher model selec-
tion. Moreover, score fusion allows to further improve the results.

In future work, the use of specific loss functions for SSep in
combination with SED objectives could be explored. Furthermore,
it would be interesting to perform experiments with high levels of
event overlap and to analyze the SSep performance of the models.

1https://dcase.community/challenge2021/task-sound-event-detection-
and-separation-in-domestic-environments-results
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