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Abstract

In typical multi-talker speech recognition systems, a neural
network-based acoustic model predicts senone state posteriors
for each speaker. These are later used by a single-talker decoder
which is applied on each speaker-specific output stream sepa-
rately. In this work, we argue that such a scheme is sub-optimal
and propose a principled solution that decodes all speakers
jointly. We modify the acoustic model to predict joint state
posteriors for all speakers, enabling the network to express un-
certainty about the attribution of parts of the speech signal to
the speakers. We employ a joint decoder that can make use
of this uncertainty together with higher-level language informa-
tion. For this, we revisit decoding algorithms used in factorial
generative models in early multi-talker speech recognition sys-
tems. In contrast with these early works, we replace the GMM
acoustic model with DNN, which provides greater modeling
power and simplifies part of the inference. We demonstrate the
advantage of joint decoding in proof of concept experiments on
a mixed-TIDIGITS dataset.

Index Terms: Multi-talker speech recognition, Permutation in-
variant training, Factorial Hidden Markov models

1. Introduction

Although automatic speech recognition (ASR) systems today
achieve remarkable performance, they degrade in presence of
interference. Notably, recognizing speech in multi-talker en-
vironments is still a challenge, as demonstrated e.g. in recent
CHiME evaluations [1, 2]. The problem is even more pro-
nounced in the single-channel scenario, where the recording of
only one microphone is available. Significant amount of re-
search addressing single-channel multi-talker speech recogni-
tion has been conducted in the past [3, 4, 5], including early
approaches using factorial generative models [6, 7] and later
neural network-based acoustic models [4, 5].

For multi-talker speech recognition, neural network-based
systems are dominant nowadays [4, 5]. One of the most com-
monly used approaches is a multi-talker acoustic model trained
with permutation invariant training (PIT) [8, 4]. In this case,
the neural network constituting the acoustic model has separate

Lucas Ondel is now affiliated with LISN, CNRS, Université Paris-
Saclay, France.

The work was partly supported by European Union’s Horizon 2020
projects No. 864702 - ATCO2 and No. 884287 HAAWAII, and
by Czech Ministry of Education, Youth and Sports from project no.
LTAIN19087 “Multi-linguality in speech technologies™. Part of high-
performance computation run on IT4Il supercomputer and was sup-
ported by the Ministry of Education, Youth and Sports of the Czech
Republic from the Large Infrastructures for Research, Experimental De-
velopment and Innovations project e-Infrastructure CZ — LM2018140.

Copyright (C) 2022 ISCA

outputs predicting the senone state posteriors for each speaker.
The ambiguity in the order of speakers at the outputs and the
labels is addressed by considering all possible permutations of
the outputs during the training. In the inference time, the ASR
decoder is applied separately on each sequence of posteriors of
each speaker. PIT-ASR systems have shown to be promising
for multi-talker ASR even for complex large vocabulary tasks
[4,9].

However, in the PIT-ASR approach, we expect the acoustic
model to fully solve the “separation” of the speakers, i.e. fully
attribute parts of the mixed speech signal to the different outputs
of the network. This separation is based only on the acoustic
signal and without higher level language information. This may
be challenging especially when the voices of the speakers are
very similar. While the decoder could help to solve the “separa-
tion” with the use of the dictionary and grammar, in the current
scheme, there is no interaction between the decoders of the in-
dividual speakers. This can lead to duplicity where the same
phoneme or word is attributed to multiple speakers [10]. In this
paper we investigate a principled way to overcome this issue by
decoding all speakers jointly.

In pre-deep learning works, joint decoding of multiple
speakers was proposed in the framework of factorial GMM-
HMM (f-GMM-HMM) [6]. This model showed success at rec-
ognizing speech in the monaural speech separation and recog-
nition challenge [3], where it even outperformed human listen-
ers [11]. In the model, features of each speaker are modeled
by GMM-HMMs with states corresponding to parts of speech
(such as phonemes). Combining the per-speaker models us-
ing a speaker-interaction model gives rise to the f-GMM-HMM
which can explain the mixed speech of multiple speakers. By
doing inference of the most probable sequence of states, we can
transcribe the speech of multiple speakers at once. This joint
decoding of all speakers can take full advantage of the available
dictionary and grammar, which can significantly improve the
resulting hypothesis. The f-GMM-HMM has been however ap-
plied only to very constrained tasks with known speakers and is
difficult to scale up to open speaker case, in part because of the
iterative acoustic inference caused by the interaction model [6].
Besides, the GMM-HMM ASR systems have been long outper-
formed by neural network-based systems [12, 4].

In this work, we propose to combine the advantage of neu-
ral network-based approaches with the joint decoding used in
factorial models. To do this, we modify the neural network in
the acoustic model to predict joint state posteriors of multiple
speakers given the mixed speech. By doing this, we enable the
neural network to provide uncertainty about the attribution of
the parts of speech to the speakers, which can be later resolved
in the decoding stage using higher level language information.
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Figure 1: Comparison of neural network architectures for single channel multi-talker speech recognition.

The joint state posteriors can be leveraged by the joint decoder
based on factorial HMM. To make the inference feasible, we
employ the loopy belief propagation algorithm as proposed in
f-GMM-HMM works [6, 13]. Contrary to f-GMM-HMM, our
system can take the advantage of the strong modeling power of
neural networks. The neural network also simplifies the acous-
tic inference. In a proof of concept experiment, we demonstrate
that 1) decoding each speaker separately in the PIT-ASR ap-
proach is not optimal, and 2) using the factorial HMM frame-
work in combination with the neural network acoustic model,
we can improve the performance by joint decoding of multiple
speakers.

2. Multi-talker speech recognition

In this work, we assume that the observed single-channel signal
y is a combination of speech x® and x° from two speakers' as

(€))

The goal is to recognize the speech of both speakers in the mix-
ture. This can be expressed as

a b
Yt = Ty + Ty

b

v, v" = arg max p(y|v?, vb)P(va)P(vb), 2)
va,vb
where v® = [vf,...,vF] is a hidden state sequence (which is

mapped to a word sequence) for speaker a, p(y|va,vb) is a
likelihood function of observed mixed speech and P(v®) and
P(v?) are prior probabilities estimated by language model.

Conventional ~ multi-talker  approaches  such  as
PIT-ASR  decode each speaker k&  separately as
N arg max p(y|v®)p(v¥) [8, 4]. This rule can be
obtained by assuming conditional independence of the
state sequences of the speakers given the observation, i.e.
p(v®, vl|y) p(v®|y)p(v®|y). However, this is a strong
assumption that may not be valid in practice. We propose
instead to consider the dependencies that should eventually
lead to better modeling.

In this paper, we focus on DNN-HMM hybrid systems,
where a DNN predicts senone states posteriors and HMM is
used to model state transitions. In the following, we briefly
review the conventional scheme for PIT-ASR with separate de-
coding and then introduce our proposed joint decoding with fac-
torial DNN-HMM.

I'To simplify the derivation, we restrict ourselves to the two speaker
case and discuss extension to more speakers in Section 5.

4956

2.1. Conventional PIT-ASR with separate decoding

In PIT-ASR, the acoustic model predicts the posterior probabil-
ities for each speaker separately

[PV 1ye), p(v7ye)] = Frn(ye), 3)
where p(v{|y:) and p(vf|y:) are posterior probabilities of hid-
den states given observed frame y:, fnn(y:) is the DNN for-
ward function. Such model is depicted in Figure la. Then,
the ASR decoding is performed for each speaker independently
using e.g. Viterbi algorithm. Below, we briefly explain the de-
coding considering the case of speaker a.

The joint probability p(x®, v®) of source x* and sequence
of hidden states v is modeled by HMM

p v = [T hipeii) @
t

patlof) = HUEORED) )

p(vi |2t) ~ p(vflye), (©)

where p(vi|y:) is a posterior modeled by neural network (3).
Note that the evidence p(z¢) does not affect the decoding re-
sults, since it is constant. That is why we use pseudo-likelihoods
p(af|vi)

p(vily:)

p(vf)

However, in this work, we found out that normalizing by prior
p(vf) does not really help either, so we kept p(zf|vy) =~
p(vi|ye)-

Recognizing speech using an HMM involves finding the
most likely sequence v* given observed data x* (i.e. the max-
imum a posteriori (MAP) state sequence). The MAP state se-
quence is obtained by Viterbi algorithm, where messages m(v¢)
are defined as

Pl |vi) = ™

m(vit1) = max p(viy oy )m(vi)p(atloy)  (8)
Ui
Oe(vit1) = arg max p(viyq [vi )m(vi)p(at o). (9)

t

The MAP state sequence ¥ = [01,...,0r] is recovered by
backtracking 0, = ©¢(0¢41), where o7 = argmax,, m(vr)
initiates the recursion.
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Figure 2: Factorial HMM for speaker a and b with observed se-
quence 'y and hidden state sequences v® and v®. Green dashed
lines show message passing in loopy belief propagation.

2.2. Proposed PIT-ASR with joint decoding

To take account of the dependencies, we model the joint prob-
ability of mixed speech y and hidden state sequences v®, v’
in Factorial HMM framework [14]. Figure 2 shows dynamic
Bayesian network representing this model, where the joint prob-
ability is

p(y, v, v") = [ p(yelof, o0 )p(of [vi_1)p(vi vy 1), (10)
t

where p(y:|ve,v?) is derived from a neural network that pre-
dicts the posterior probabilities of a tuple of states (v{, v¢) as

p(v, vilye) = gan(we), (11

where gnn(y:) is a forward function of proposed neural net-
work shown in Figure 1b (also referred as joint network in
follow-up text). Similar to the separate decoding, we use
pseudo-likelihood F(ys|vi, v?) = p(vy, v2|ys).

Note that our model is similar to Factorial HMM proposed
in [6], where the authors model sources x* and x° explicitly.
They introduce interaction function p(y:|x®,x"), which mod-
els the coupling. However, we instead use a more direct and
simpler approach where a DNN is trained to directly predict
hidden state tuples given mixed speech y.

Standard Viterbi algorithm can be used to exactly infer the
MAP hidden state sequences in FHMM. However, its time com-
plexity is O(TKV ™ ™) for K speakers and HMM with V'
states [6] (i.e. it scales exponentially w.r.t. number of speak-
ers). Fortunately, there are algorithms, that can approximate the
inference in a more efficient way (e.g. variational methods [14]
or loopy belief propagation [6]). In this work we use the loopy
belief propagation (LBP).

In LBP framework, messages are passed between variables,
which share common factors [15] according to a predefined
schedule. Our message passing schedule was inspired by [6]
and has the following form for one speaker:

Blyelo?) = max plye v v} ) (07 )Bow (v7) (ml)
Vi

Prw(vi) = max p(vi [vf_1)Prw(vi1)p(ye—1|vi1) (m2)
Vi1

Pow (Vi) ::?laxzwv?+1|vf)ﬁbw(v?+1)ﬁ(yt+1|vﬁ+1)
Vi1

(m3)
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The message passing is also depicted in Figure 2. Green dashed
lines depict the message passing for speaker a, while messages
of speaker b are fixed.

When all messages for the first speaker are computed, the
process is repeated for the next speaker, while messages of other
speakers are fixed. Similar to Viterbi, we store also maximizing
arguments ¥; for all messages. These are used to recover the
MAP state sequences in the manner analogous to the Viterbi al-
gorithm. The whole process is repeated until it converges or
some number of iterations is reached. Although there is no
guarantee that the LBP finds the global MAP configuration, it
is known to work well in practice [16]. The time complexity of
proposed LBP inference is O(T K'V?), and thus it scales lin-
early w.r.t. number of speakers.

3. Experiments
3.1. TIDIGITS 2 mixture data

To evaluate the performance of proposed architectures,
we conducted experiments on artificially mixed TIDIGITS
dataset [17]. Each mixture consists of exactly two speakers ran-
domly selected from original TIDIGITS. Each utterance is a se-
quence of pronounced digits, the length may vary from 1 to 7
digits. The training data contains 6 328 different pairs of speak-
ers, 52.5 hours of speech. The evaluation data comprises of
4 821 different speaker pairs, in total 5.3 hours of audio. More
details about the dataset are available on GitHub?. We use this
simple dataset to allow for easy analysis of the method and fast
experimentation. For discussion on scaling up to larger data,
see Section 5.

3.2. Acoustic model

Both the PIT-ASR with separate decoding and the proposed
ASR with joint decoding employ a DNN-based acoustic model.
Both models are trained in PyTorch [18] using permutation in-
variant training (PIT)[8, 4] with cross entropy (CE) loss func-
tion. We can use PIT-CE objective function for both ap-
proaches, since, for every frame, both neural networks predict
probabilities of being in HMM state v and v? although, the
state probabilities are modeled in different manner.

Both networks shares the same architecture: TDNN [19]
layers with 384 units followed by batch normalization and ReLu
activation function. We compared neural networks with 5 or
10 TDNN layers. The neural network for separate decoding
contains 2 output layers with size of 62 each. On the other hand,
the neural network used with joint decoding consist of single
output layer with the size of 62 x 62, i.e. 3844. Note that
the size of joint network output layer grows exponentially w.r.t.
number of speakers. We discuss how this issue can be addressed
in Section 5. The input consists of 40-dimensional MFCCs.

The frame-level labels (i.e. state index for each time frame)
for each source ¢ and [ are obtained by applying the force-
alignment on original sources x® and x°. We generate the labels
by mono-phone GMM-HMM models, taken from Kaldi [20]
recipe for TIDIGITS dataset. For the conventional separate PIT
model, the CE loss target probabilities are [p(v§|y:), p(v?|y:)]
where p(vi = ily:) = dig i, where dy¢ ; = 1 if training label
I# = i and is zero otherwise. For the joint decoding model,
we derive the target probabilities as p(v{ = i,v) = jly:) =
61g,i61?’j.

2https://github.com/MartinKocour/TIDIGITS_mix



3.3. Decoding network

The recognition network is similar to WEFST used in Kaldi
TIDIGITS setup * for monophone GMM-HMM ASR system.
The network is based on unigram LM, where each word, i.e.
digit, is equally likely. Pronunciations are taken from CMU
Dictionary*. We model silence with 5 HMM states and the other
19 phones with 3 HMM states. The HMM states do not share
emission probabilities, i.e. we use 62 distinct PDFs in total. The
network is implemented in Julia [21] using the MarkovModels
toolkit .

4. Results

We evaluate the speech recognition systems in all experiments
using Word error rate (WER). To pair the multi-talker hypothe-
ses with the references, we use the oracle permutation with min-
imal WER.

4.1. Comparison of joint and separate decoding

We evaluate the performance of separate and joint decoding on
5.3 hours of 2-talker mixed speech. We use two different sizes
of TDNN with 5 layers and 10 layers. In Table 1, we com-
pare the results obtained with both models using separate and
Jjoint decoding. For a more fair comparison, we include third
separate-marginal method marked with 3-symbol, which com-
bines the AM predicting joint posteriors (Sec. 2.2) with separate
decoding (Sec. 2.1). For this, we marginalize the joint posteriors
for each speaker as p(vf|y:) = ng p(v¢, v2|y:). This allows
us to separately evaluate the benefit of the joint posterior output
(which also induces increased number of parameters) and the
benefit of the joint decoding itself.

By comparing the results of separate decoding in rows 1
and 2 for the smaller model, and 3 and 4 for the larger model,
we can see the advantage of the joint posteriors on the output of
the acoustic model. More importantly, comparing the separate-
marginal decoding with the joint decoding, we can see improve-
ments for both smaller and larger models, demonstrating the
benefit of decoding both speakers jointly in the factorial frame-
work.

We also compare the performance of Kaldi decoder with
our implementation of separate decoding. The results slightly
differ when marginalized joint posteriors are used, which we
believe is caused by pruning. In our approach, we do not use
any kind of pruning.

4.2. Analysis of 2-talker speech recognition results

We further analyzed the WER differences between separate and
joint decoder on the speech mixtures of same or opposite gen-
ders. The results are shown in Table 2. We observe that the
proposed joint decoding greatly improves performance on same
gender mixtures, where it may be particularly difficult to dis-
tinguish speakers. We hypothesize that thanks to employing
dictionary and grammar (in recognition network) to “separate”
speech, the proposed method can better discriminate the speak-
ers than the separate decoding scheme performing “separation”
only based on the acoustic information.

3The recipe is available on GitHub https://github.com/
kaldi-asr/kaldi/tree/master/egs/tidigits

4The dictionary is avaialable on https://github.com/
cmusphinx/cmudict

5The toolkit is available on GitHub https://github.com/
lucasondel/MarkovModels. jl
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Table 1: Comparison of separate and joint decoding in terms
of WER. The results marked with ¥-symbol are computed from
marginalized joint posteriors.

Arch Output  #params | Separate Joint Kaldi
[dim]

5L-TDNN  [62, 62] 1.9M | 26.09 - 25.99

5L-TDNN [3844] 3.3M | 17.55%  15.79 | 17.83%

10L-TDNN  [62, 62] 4.1M | 18.68. - 18.66

10L-TDNN  [3844] 55M | 16.36%  14.70 | 16.97%

Table 2: Comparison of joint and separate decoder on the mixed
speech of two female speakers (F + F), two male speakers (M
+ M), same (F + F N M + M) and opposite gender speakers (F
+ M).

Genders ‘ Separate [%2WER] Joint [%2WER]
F+F 30.54 21.45
M+M 32.61 27.12
same 31.56 24.26
opposite 6.17 5.42

5. Discussion and Future work

In this study we analyzed the performance on rather simple task
as a proof-of-concept of the joint decoding scheme. The results
suggest that considering joint decoding could greatly improve
recognition performance of multi-speaker ASR. These results
come at the expense of increased computational complexity.
For example, in our experiments we observed that the real time
factor of the decoding on a CPU increased from approximately
0.3 with separate decoding to 0.5 with joint decoding. How-
ever, the decoding time would further increase when dealing
with larger vocabulary tasks where the number of senones and
the computational graph is larger. In future work, we plan to re-
duce the computational complexity by investigating factorized
model for the joint posteriors and implementing fast decoder us-
ing pruning, sparse matrices and GPU-based computations[22],
which would allow tackling larger tasks.

6. Conclusion

This work investigates the potential of joint-decoding for multi-
talker speech recognition, in contrast with separate decoding
in conventional approaches. The proposed method is based on
early multi-talker speech recognition works, which use genera-
tive factorial approaches. Our work extends this ideas by re-
placing the acoustic model with DNN. The proof-of-concept
experiments showed that the approach has potential to improve
performance in challenging conditions where it may be difficult
to achieve high separation by simply relying on the acoustic in-
formation (e.g. potentially when dealing with noisy and rever-
berant mixtures). We hope that the findings of this study will
promote the importance of joint decoding for future research in
multi-talker ASR.
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